SQUARE ROOTS AND NTH ROOTS

OLIVIER CASTÉRA

ABSTRACT. Demonstration of Heron's sequence for calculating square roots using elementary operations of addition, subtraction, multiplication, and division. Then generalization of the method to nth roots.

Contents

1	Numerical Example	1
2	Proof of Heron's Sequence	1
3	Generalization to Nth Roots	5
4	Numerical Example	6

1 Numerical Example

We need to calculate $\sqrt{10}$. The calculator gives $\sqrt{10} = 3{,}162\ 277\ 66\dots$ To start the sequence, we need an initial value. We choose 3 in this example because $\sqrt{10}$ is close to 3, but Heron's sequence converges regardless of the choice of initial value. A first approximation of $\sqrt{10}$ is given by the following calculation:

$$\frac{1}{2}\left(3+\frac{10}{3}\right)=3{,}166\ 666\ 6\dots$$

To obtain more exact decimal places, we repeat the process. Note that it is unnecessary to keep all decimals in intermediate calculations:

$$\frac{1}{2}\left(3,17+\frac{10}{3,17}\right)\approx 3{,}162\ 287\ 07\dots$$

2 Proof of Heron's Sequence

The method used for calculating $\sqrt{10}$ is a sequence written as:

$$B_n = \frac{1}{2} \left(B_{n-1} + \frac{A}{B_{n-1}} \right)$$

in which A = 10 and $B_0 = 3$. Then we calculated:

$$B_1 = \frac{1}{2} \left(B_0 + \frac{A}{B_0} \right) = 3,166 \ 666 \ 6 \dots$$

 $B_2 = \frac{1}{2} \left(B_1 + \frac{A}{B_1} \right) \approx 3,162 \ 287 \ 07 \dots$

Date: December 14, 2025.

In what follows, parameters will be denoted in uppercase (A and B), while variables will be denoted in lowercase (x and y).

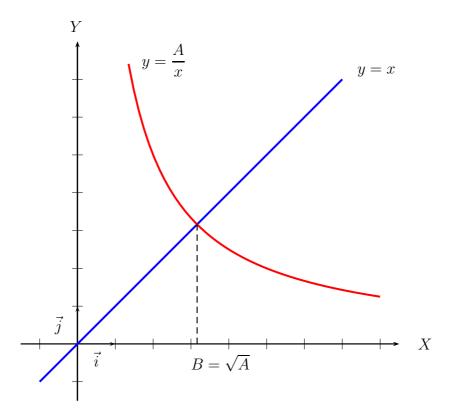
Let A be a number whose root B we seek, then:

$$B = \sqrt{A}$$

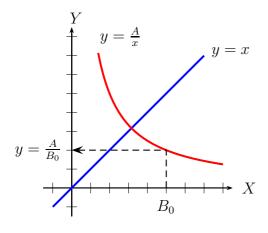
$$B^2 = A$$

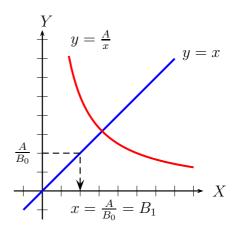
$$B = \frac{A}{B}$$

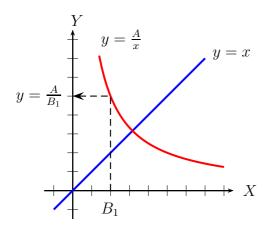
To solve this equation, vary x until it is a solution to x = A/x. When x is a solution to the equation, it will have the value B. Therefore, if we plot the curves y = x and y = A/x, they will intersect at x = B.

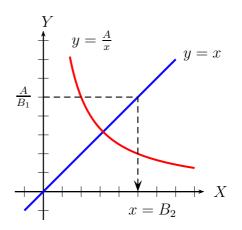


Let us see what happens if we use the sequence $B_n = A/B_{n-1}$ by fixing the initial value at B_0 , with B_0 arbitrary and preferably close to \sqrt{A} . Once B_0 is fixed, we graphically find $B_1 = A/B_0$, then $B_2 = A/B_1$.









We observe that $B_2 = B_0$, which we can easily verify:

$$B_2 = \frac{A}{B_1} = \frac{A}{A/B_0} = B_0$$

This result shows that the sequence $B_n = A/B_{n-1}$ does not converge to \sqrt{A} . To make x tend toward \sqrt{A} , graphically, we need to approach the intersection of the two curves (here one of the curves is a line, but the solving method is used generally with two curves).

Let us rewrite the initial equation as follows:

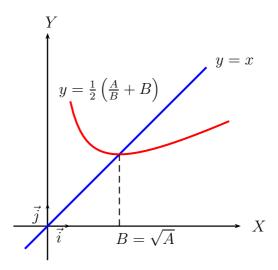
$$B = \frac{A}{B}$$

$$B + B = \frac{A}{B} + B$$

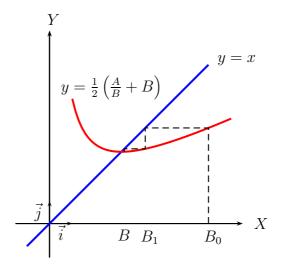
$$2B = \frac{A}{B} + B$$

$$B = \frac{1}{2} \left(\frac{A}{B} + B \right)$$

We plot y = x and $y = \frac{1}{2} \left(\frac{A}{B} + B \right)$. They intersect at x = B.



How does the new sequence $B_n = \frac{1}{2} \left(B_{n-1} + \frac{A}{B_{n-1}} \right)$ behave:



It converges quickly to $x = \sqrt{A}$. By examining the diagram above, we understand that the convergence condition of the sequence is that the curve $y = \frac{1}{2} \left(\frac{A}{x} + x \right)$ is minimal at \sqrt{A} . In fact, it suffices for it to be extremal at this point, whether a maximum or a minimum.

Let us verify that \sqrt{A} is indeed an extremum of $y(x) = \frac{1}{2} \left(\frac{A}{x} + x \right)$

$$y'(x) = \frac{1}{2} \left(1 - \frac{A}{x^2} \right)$$
$$\frac{1}{2} \left(1 - \frac{A}{x^2} \right) = 0$$
$$\frac{A}{x^2} = 1$$
$$A = x^2$$
$$x = \pm \sqrt{A}$$

 \sqrt{A} is therefore indeed an extremum of $y(x) = \frac{1}{2} \left(\frac{A}{x} + x \right)$.

$$B^{n} = A$$

$$B \times B^{n-1} = A$$

$$B = \frac{A}{B^{n-1}}$$

$$B + (n-1)B = \frac{A}{B^{n-1}} + (n-1)B$$

$$nB = \frac{A}{B^{n-1}} + (n-1)B$$

$$B = \frac{1}{n} \left[\frac{A}{B^{n-1}} + (n-1)B \right]$$

whence the sequence

$$B_m = \frac{1}{n} \left[(n-1) B_{m-1} + \frac{A}{B_{m-1}^{n-1}} \right]$$

Let us verify that $\sqrt[n]{A}$ is an extremum of $y(x) = \frac{1}{n} \left[(n-1)x + \frac{A}{x^{n-1}} \right]$

$$y'(x) = \frac{1}{n} \left[(n-1) - (n-1)Ax^{-n} \right]$$
$$\frac{n-1}{n} \left(1 - Ax^{-n} \right) = 0$$
$$Ax^{-n} = 1$$
$$A = x^{n}$$
$$x = \pm \sqrt[n]{A}$$

 $\sqrt[n]{A}$ is therefore indeed an extremum of $y(x) = \frac{1}{n} \left[(n-1)x + \frac{A}{x^{n-1}} \right]$.

Remark 3.1. In the case where A is negative, n must be odd, and we keep only the negative sign in the previous relation. For example, for A = -27, we have $3 = -\sqrt[3]{-27}$.

4 Numerical Example

We need to calculate $\sqrt[5]{7}$. In this example, A = 7, n = 5, and we choose $B_0 = 1$.

$$B_0 = 1$$

$$B_1 = \frac{1}{5} \left[4 \times 1 + \frac{7}{1^4} \right] = \frac{11}{5} = 2,2$$

$$B_2 = \frac{1}{5} \left[4 \times 2, 2 + \frac{7}{2, 2^4} \right] = 1,819 \ 763 \ 67 \dots$$

$$B_3 = \frac{1}{5} \left[4 \times 1,82 + \frac{7}{1,82^4} \right] = 1,583 \ 597 \ 59 \dots$$

$$B_4 = \frac{1}{5} \left[4 \times 1,58 + \frac{7}{1,58^4} \right] = 1,488 \ 646 \ 51 \dots$$

$$B_5 = \frac{1}{5} \left[4 \times 1,49 + \frac{7}{1,49^4} \right] = 1,476 \ 042 \ 26 \dots$$

The calculator gives $\sqrt[5]{7} = 1,475773161...$

Email address: o.castera@free.fr

Website: https://sciences-physiques.neocities.org