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LE PRINCIPE DES TRAVAUX VIRTUELS EN STATIQUE

Sommaire
1.1 Principe des déplacements virtuels. . . . . . ... ... ... ........ 2
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En 1586, Simon Stevin énonce le principe des travaux virtuels en étudiant des palans. En 1717,
Jean Bernoulli pose le principe des travaux virtuels comme loi fondamentale de la statique :
a I’équilibre, aucun travail n’est nécessaire pour provoquer un déplacement infiniment petit
d’un systeme mécanique donné. En 1743, Jean le Rond D’Alembert étend ce principe a la
dynamique. Il devient alors une écriture équivalente des équations de la mécanique de Sir Isaac
Newton. En 1756, dans une lettre a Léonhard Euler, Joseph-Louis de La Grange démontre toute
la mécanique a partir du principe de moindre action. Ces écrits paraissent dans un mémoire des
Meélanges de philosophie et de mathématique de la Société Royale de Turin Tome 2, 1760-1761.
Dans son ouvrage Méchanique analitique de 1788, il pose le principe des travaux virtuels a
la base de la mécanique analytique. En appliquant les coordonnées généralisé€es a ce principe,
il énonce les équations de la mécanique analytique. Comme les équations de Newton, les n
équations différentielles de Lagrange sont du 2"¢ ordre par rapport au temps, du fait des termes
d’accélération. En 1827, Sir William Rowan Hamilton effectue la transformation de Legendre du
lagrangien pour les vitesses généralisées. Les 2n équations différentielles de Hamilton sont du
1¢r ordre par rapport au temps, donc intégrées une premiere fois, et sont remarquables par leur
symétrie. Dans son mémoire de 1837 « Note sur I'intégration des équations différentielles de la
dynamique », Carl Gustav Jacob Jacobi simplifie I’intégration des équations de la dynamique en
abaissant leur ordre.

Il me parait difficile de comprendre la mécanique analytique en partant du principe de Hamilton



ou des équations de Newton, c’est pourquoi, comme le fit Lagrange dans son ouvrage de 1788,
j’ai choisi de partir du principe des travaux virtuels.

Nous supposerons comme Newton que le temps est absolu, et que I’espace physique est un espace
euclidien a trois dimensions. L’espace et le temps sont les mémes pour tous les observateurs,
quel que soit leur mouvement relatif. A partir des notions de temps et d’espace, on définit un
référentiel comme étant un systeme de coordonnées et une horloge, a chaque référentiel on associe
un observateur, et réciproquement, a chaque observateur on associe un référentiel.

Galilée note qu’aucune expérience effectuée dans la cale d’un navire ne permet de mettre en
évidence la vitesse de ce navire, si celle-ci est constante en norme et en direction par rapport aux
étoiles lointaines. Cette expérience de pensée nous amene a appeler référentiels galiléens tous les
référentiels qui se déplacent d’'un mouvement de translation rectiligne uniforme (a vecteur vitesse
constant) par rapport aux étoiles lointaines, et a énoncer le principe de relativité galiléenne : «les
référentiels galiléens sont équivalents pour I’écriture des lois de la physique ». Dans ce document
nous nous plagons toujours dans un référentiel galiléen.

1.1 Principe des déplacements virtuels

A la fin du XVI® siecle, Stevin étudie les palans qui permettent de charger et décharger les
palanquées sur les navires marchands. Il étudie ces systémes de poulies & I’équilibre . On
suppose la masse des poulies négligeable devant les autres masses, et les liaisons parfaites (ou
polies) c.-a-d. sans frottements au niveau des axes des poulies.
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Fic. 1.1 — Systemes de poulies

1. Ernst Mach, La mécanique (Edition Jacques Gabay, 1987).
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En a, par symétrie m' = m. En b, la masse m est soutenue par les cordes paralleles 1 et 2. Par
symétrie, chacune des cordes supporte la moitié du poids de la masse m, il faut un contrepoids
de masse % pour qu’il y ait équilibre.

Stevin remarque que pour chaque systeme de poulies ci-dessus, si I’on déplace la masse m vers
le bas ou vers le haut d’une hauteur h, alors :

« en a, le poids m’ = m monte ou descend de h,
« en b, le poids % monte ou descend de 2h,

 enc, le poids % monte ou descend de 6h,

« end, le poids % monte ou descend de 8h.

Ainsi, dans un systeme de poulies a I’équilibre, les produits de chacune des masses par les
déplacements que I’on pourrait leur donner, sont égaux :

mxh:%xzh

m

= — X 6h
6

m

=—X8h
8

Cette remarque contient en germe le principe des déplacements virtuels. On imagine le systeéme
dans une configuration toute proche de celle que 1’on a, chaque masse subissant un déplacement
dit virtuel, car il n’y a pas a proprement parler de déplacement. La notion de temps n’intervient
pas puisqu’il s’agit de comparer deux positions d’équilibre d’un systeme, sans le passage de I’un
a ’autre. Le mieux est d’imaginer deux systemes de poulies parfaitement identiques, dans des
positions d’équilibre proches.

Stevin étudie également 1’équilibre des forces sur les plans inclinés 2. Il décrit I’expérience de
pensée suivante : une chaine fermée formée de perles de méme poids est placée sur un double
plan incliné (fig. 1.2 de la présente page). On néglige les forces de frottement des perles sur les
plans inclinés.

Fic. 1.2 — Chaine de perles

La chaine de perles reste immobile car sinon, selon Stevin « les boules tourneront par elles-mémes
de maniére infinie. Ce qui ne se peut. » 3. Or, la partie représentée en bleue, appelée chainette ou

2. Simon Stevin, De Beghinselen der Weeghconst (Les principes de 1’art de peser, 1586).
3. Notez qu’en I’absence totale de frottements, les perles pourraient tourner de maniére infinie.
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caténaire, est symétrique par rapport a I’axe vertical, si bien que la force exercée par la caténaire
en A est égale a celle exercée en C. La partie AB de la chalne de perles équilibre donc la partie
BC, et ce, quel que soit le double plan incliné sur lequel repose la chaine de perles.

1.2 Principe des travaux virtuels

En étudiant les plans inclinés, Galilée constate la validité du principe des déplacements virtuels
et en trouve une formulation plus générale, le principe des travaux virtuels. Une masse m repose
sur un plan incliné dont la longueur AB est double de la hauteur BC. D’apres 1’expérience de
pensée de Stevin, lorsque les liaisons sont parfaites, c.-a-d. en I’absence de frottements entre
la masse m et le plan incliné, et au niveau de 1’axe de la poulie, cette masse est maintenue en
équilibre par une masse % :

~ |3

A C

Fic. 1.3 — Equilibre d’une masse sur un plan incliné

Si I’on déplace virtuellement la masse m vers le haut sur une distance d le long du plan incliné,
alors la masse — descend d’une hauteur d. Nous n’avons plus I’égalité trouvée par Stevin entre

2
les masses multipliées par leur déplacement virtuel respectif :

mxd#%xd

. 14 ) h )
Mais Galilée constate que la masse m monte d’une hauteur > et que la masse % descend d’une
hauteur A, et cette fois les produits sont égaux :

h
mx-=2"xh
2 2
[’équilibre est déterminé par les masses multipliées par leur hauteur de chute, et non par leur

déplacement. Par rapport a Stevin, Galilée précise que le déplacement a prendre en compte est
celui effectué selon la verticale, autrement dit, celui dans le sens des forces de pesanteur.

Notons m; la premiere masse, m, la seconde, h; la hauteur de chute virtuelle de m, et h, celle
de m, :

my hy = my hy
Si les hauteurs de chute virtuelle sont des mesures algébriques affectées d’un signe positif ou d’un
signe négatif selon qu’elles sont ou non de mé€me sens que le poids des masses (force verticale
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vers le bas), alors :

Généralisons a N masses my, m, ..., m, subissant respectivement les déplacements virtuels
dy,d,, ..., dp compatibles entre eux et avec les liaisons, autrement dit compatibles avec le méca-
nisme, donc non indépendants.

Remarque 1.2.1

Sur la fig. 1.3 page précédente, les déplacements des masses sont compatibles entre eux si lorsqu’une masse monte I’autre descend, et
ils sont compatibles avec les liaisons si la masse 1 ne passe pas a travers le plan incliné.

Soient hy, hy, ..., hy, les projections de ces déplacements sur la verticale, a 1’équilibre :

N
Z mihi =0
i=1

En écriture vectorielle, soient :
« g le champ de gravitation terrestre
. 1_))1- = m; g le poids de la i®™ masse
« T; le vecteur position de la i®™ masse
« AT, le déplacement virtuel de la i*™ masse
« B, AT, le travail virtuel de la i*™ masse

Le principe des travaux virtuels énonce qu’a I’équilibre la somme des travaux virtuels est nulle,

N—>
D P;-AT; =0
i=1

« les liaisons sont parfaites
« les déplacements virtuels sont compatibles entre eux
« les déplacements virtuels sont compatibles avec les liaisons

1.3 Formulation générale du principe

En 1717, Jean Bernoulli énonce la formulation générale du principe des travaux virtuels pour
tous les cas d’équilibre, en ce qu’elle ne s’applique pas uniquement aux forces de pesanteur. En
effet, une force quelconque peut étre remplacée par la traction exercée par une corde attachée a
une masse par I’intermédiaire d’une poulie.

Plusieurs forces peuvent s’exercer sur une méme partie mobile du systeéme (les masse m;). Notons
i
F; la somme des modeéles des forces exercées sur la i¢ partie mobile :

— def — -
Fi = f1+ f2+
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Soient N sommes de modeles de force 1_51, fz, s I?N actives (qui créent le mouvement, aussi
appelées motrices) appliquées aux N parties mobiles d’un systeéme, subissant respectivement les
déplacements virtuels infiniment petits & ?1, o) ?2, ) ?p. A I’équilibre, la somme des travaux
virtuels des forces actives est nulle,

N —
S FY. 67, =0 (1.1)

i=1

« les liaisons sont parfaites

« les déplacements virtuels sont compatibles entre eux

« les déplacements virtuels sont compatibles avec les liaisons
« les déplacements virtuels sont infinitésimaux

Ceci constitue le principe des travaux virtuels appliqué a la statique dans sa formulation la plus
générale. Nous verrons avec les ex 1.4.2 page 9 et 1.4.3 page 11 que c’est justement parce que
les déplacements virtuels sont compatibles entre eux et avec les liaisons, c.-a-d. respectent le
mécanisme, que I’on ne considere plus les forces de contrainte (aussi dites passives ou résistantes)
mais seulement les forces actives.

L’emploi de déplacements infinitésimaux plutot que finis considérés par Galilée, est justifié par
la remarque qui suit. Soit le systeme suivant, pour lequel la poulie est parfaite et la masse glisse
sans frottements sur le plan incliné :

FiG. 1.4 — Déplacements finis

Les deux masses et I’inclinaison du plan sont choisis de sorte que le systeme soit a 1’équilibre.
Cet équilibre persiste quelle que soit la position du poids sur le plan incliné. Dans ce cas parti-
culier, nous pouvons employer au choix, des déplacements finis ou infinitésimaux. Cependant,
considérons le cas général en remplagant le plan incliné par une surface quelconque tangente au
plan incliné au point de contact de la masse :

Fic. 1.5 — Déplacements infinitésimaux

[’équilibre subsiste puisque du point de vue de la masse rien n’a changé. Si nous considérons
alors un déplacement fini, le systeme se transforme en une conformation voisine toute autre,
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pour laquelle il n’y a pas toujours équilibre. Le systeme n’est pas a I’équilibre mais revient a sa
position d’équilibre ou s’en éloigne définitivement. Si I’on considére maintenant un déplacement
infinitésimal, le poids reste sur le plan tangent et I’équilibre est maintenu. Il n’y a donc d’essentiel
que la possibilité de déplacement infinitésimal, pour lequel I’équilibre subsiste toujours. Les
déplacements virtuels sont donc toujours infinitésimaux.

1.4 Exemples

Exemple 1.4.1 : Masse glissant sans frottements sur un plan incliné

Reprenons la fig. 1.3 page 4, et cherchons la masse m, pour qu’il y ait équilibre. Dans cet
exemple on ne part pas du principe des travaux virtuels mais on le fait apparaitre a partir
de la mécanique de Newton.

Rl Tl ?2
ot P
P, 2

Fic. 1.6 — Equilibre d’une masse sur un plan incliné

—->
Le systéme comprend N = 2 parties mobiles. F i(e) est la somme des forces extérieures

s’exercant sur la i€ partie mobile du systeme :

FO=P, +T,+&,
F{¥=P,+ T,
Lorsque le systeme est a 1’équilibre, chacune de ces sommes de forces extérieures est nulle :

=) _

Leur travail virtuel est donc nul pour tout ensemble de déplacements virtuels quelconques
indépendants (pour le moment aucun lien entre 5T, et 51 ,) :

V5?1 ?)1((3) . 5?1 = 0
V5?2 Fz(e) . 5?2 = 0
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Additionnons ces travaux virtuels nuls :
— —
V5?1,5?2, F15?1+F25?2=0

La force active est ici le poids P les forces de contrainte sont la tension T et la réaction
du support R.

— —

(P + T +R,) 5r1+(P2+T2) §T,=0

—

(P1 ST+ P,- 5T,) + (T1 ST+ T, 6T, + R, - 5T,)=0

Choisissons les déplacements virtuels T ; et 5 T, compatibles entre eux et avec les liaisons.
IIs ne sont plus quelconques mais dépendants, et sont liés par I’équation de liaison qui
remplace les forces de tension :

— —
ISl =61

Fic. 1.7 — Déplacements virtuels compatibles entre eux et avec les liaisons

-
En I’absence de frottements la réaction du support R est perpendiculaire au déplacement
virtuel et ne travaille pas :

(P 6%+ P, 8T,)+(T,- 6T+ T, 6T,) =0

La tension de la corde travaille

T, -8T;#0
S (1.2)
Tz -0r 2 # 0
mais la somme de ces travaux virtuels est nulle. En effet, la tension étant constante
[Tl = 1Tl
qui donne
T1-8T1+ T2-8T, =T8Tl — T [8T ]
=TI 8T = I8T>1)
=0
Il reste, N N
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qui est le principe des travaux virtuels appliqué aux deux parties mobiles, les masses m;
et m,. Supposons que la masse m; monte et la masse m, descende :
— . — =g —
—[|P1llsin(@) |14l + | P2l |61 =0
m, = my sin(a)
Les déplacements virtuels compatibles entre eux et avec les liaisons ont permis de trouver
—>
la condition d’équilibre. S’il existe une force de frottement f entre la masse et le plan
incliné, il va de suite que :
= . — — = —
—I Pyl sin(a) |14l = fUST [ + | P2l ST 2]l = O
f=(my —my)gsin(a)
Effectuons un déplacement virtuel perpendiculaire au plan incliné, donc incompatible avec

la liaison. Le déplacement virtuel de la seconde masse est choisi nul pour étre compatible
avec le déplacement virtuel de la premiere.

Fic. 1.8 — Déplacements virtuels compatibles entre eux mais pas avec la liaison

1_'_“)1 . 5?1 =0
La tension est perpendiculaire au déplacement virutel, elle ne travaille pas :
?1'5?1"‘1_2)'5?1 =0
—[I P8 T [l cos(er) + [IRIIIST || = O
IRl = [ P1]| cos(ex)

Un déplacement virtuel incompatible avec une liaison permet sa détermination.

Exemple 1.4.2 : Pendule statique

Une masse est attachée a une corde de longueur p faisant un angle 6 avec la verticale.
—
Quelle doit étre I’intensité || f || de la force horizontale pour qu’il y ait équilibre ?

On imagine le systeme dans une configuration d’équilibre toute proche de celle que 1’on
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a, ce qui revient a effectuer un déplacement virtuel compatible avec la liaison. Pour cela,
faisons varier 1’angle d’une valeur 60 infiniment petite :

ST = 6x1+8yJ
= pcos(0)861 + p sin(0)56]

Fic. 1.9 — Pendule statique

Le déplacement virtuel est perpendiculaire a la tension, le travail virtuel de la tension est
donc nul. Appliquons le principe des travaux virtuels (1.1) page 6 a la seule partie mobile
(N = 1), pour un déplacement virtuel compatible avec la liaison :

F@.s7 =0

(f+P)- 6T =0

||?||p cos(0)60 — ||1_3)||p sin(6)66 = 0

|l = mg tan(9)
C’est la condition d’équilibre cherchée. On note que_)la longueur de la corde n’intervient
pas. Pour 6 = 0° la force est nulle, pour 6 = 45°, || f || = mg. La force tend vers I’infini

lorsque 6 tend vers 90°.
Prenons un déplacement virtuel incompatible avec la liaison :

ST =68yJ
La force horizontale lui est perpendiculaire, son travail virtuel est donc nul.
F.6T=0
(P+T) 67 =0
—IBII6y + | Tl cos(8)8y = 0

— _ mg
|| T” - COS(@)

—> —>
Pour 6 = 0°, || T|| = mg, puis || T|| croit avec 6 et tend vers 1’infini lorsque 6 tend vers 90°.
La composante verticale de la tension est toujours égale a mg, sa composante horizontale
—
est toujours égale a || f ||.
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Exemple 1.4.3 : Le principe du levier

N - . . N e o1 .
Dans le repere orthonormal (o, 1 f), soit un levier a I’équilibre sous I’action de deux forces
actives :

Fic. 1.10 — Levier a I’équilibre quel que soit I’angle 6

{fl = - 407
fo=—1f2l7

Les vecteurs position des extrémités du levier s’écrivent :

{?1 = |71l cos(6) T+ | 74| sin(6)
Ty = =Tl cos(®) 7~ || T, sin(®)

Donnons au levier une rotation virtuelle d’angle 66 compatible avec la liaison R:
1_2) l ?1
T
| 2 V66

A

FiG. 1.11 — Rotation virtuelle d’angle §6

Les variations des vecteurs positions ont pour expressions :

L 0T,
oty = 36 30 {5?1 = —|| 7| sin(6) 86T + || 71| cos(6) 66 ]
8T, = %59 81, = ||, sin(0) 867 — || T, cos(6) 66 ]

La réaction R ne travaille pas lors de ce déplacement virtuel, elle reste identique a elle-
méme quel que soit I’angle. Appliquons le principe des travaux virtuels (1.1) page 6 pour
un déplacement virtuel compatible avec la liaison. Nous devons considérer qu’il y a deux
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parties mobiles (N = 2), chaque extrémité du levier :

N —
i=1
f1'5?1+ f2-5?2=0
~[I £101 171 cos(6) 86 + || £, |72l cos(6) 66 = 0

— > -
Il =20l
Nous retrouvons le principe du levier, c.-a-d. I’égalité des moments de force.

Remarque 1.4.1

Le principe du levier est précisément le principe des travaux virtuels. Celui-ci aurait pu étre établi en étudiant le levier plutot
que les palans. Le principe de fonctionnement des palans et celui du levier étant a la base de la statique, ils ne sont pas
démontrables.

Calcul de la force de réaction

Lorsque I’on veut calculer une force de réaction, le déplacement virtuel doit étre incom-
patible avec cette liaison pour qu’elle travaille virtuellement. La force de liaison est alors
traitée comme une force active. Pour calculer la réaction du point d’appui, on donne au
levier une translation verticale virtuelle ST = 8yJ :

t, R

C ! D)
| oy

A

Fic. 1.12 — Force de réaction d’un levier

Le principe des travaux virtuels s’écrit :
R-6T+ f1-0T+ £,-6T =0
IR 8y — 1 E116y — I £l 6y = 0
EHE R
Remarque 1.4.2

La translation virtuelle aurait pu étre vers le bas, le résultat aurait été le méme. Il est permis de considérer un déplacement
virtuel ol deux solides se compénetrent et ne respectent pas les liaisons.

Nous voyons sur cet exemple la différence entre un déplacement virtuel et un déplacement
-
réel. Dans ce dernier, si le levier se sépare de son appui, la réaction R devient nulle, et ne
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travaille Dbas. Dans le déplacement virtuel, la réaction reste la méme et effectue le travail
virtuel | R|| dy.

Dans I’exemple que nous venons de voir, nous ne cherchons pas 1I’équation d’équilibre du systeme
mais la force de réaction, c’est pourquoi le déplacement virtuel choisi n’est pas compatible
avec la liaison. Lorsque nous étudierons 1I’équilibre d’un systeéme, nous prendrons toujours des
déplacements virtuels compatibles avec les liaisons, c.-a-d. pour lesquels le travail virtuel des
forces de liaison est nul.

1.5 Comparaison avec la mécanique de Newton

En mécanique de Newton, un systeme est a 1’équilibre lorsque la somme de toutes les forces
extérieures exercées sur ce systeme est nulle, et lorsque la somme des moments de ces forces
est nulle. Pour un systeme articulé, on doit définir plusieurs sous-systémes, puis déterminer les
forces exercées sur ces sous-systemes, dont les forces de liaison entre ces sous-systemes. C’est la
détermination des forces de liaison qui permet de résoudre le probleme.

Exemple 1.5.1 : Palan

Reprenons I’exemple du palan (fig. 1.1.b page 2). Quelle doit étre la valeur de la masse m,
pour équilibrer celle de m; ?
Résolution par la mécanique de Newton

=3
=~
=3

F1c. 1.13 — Palan : inventaire des forces

Le premier sous-systeme étudié est constitué de la premiere poulie et de la premiere masse.
Appliquons le principe fondamental de la dynamique. L’ ensemble est immobile donc la
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somme des forces extérieures exercées sur ce sous-syteéme est nulle :

1_:;1+2?=
-~ P,
T=-—1
2

N
Nous avons déterminé la force de liaison, la tension T de la corde. Le second sous-systeme

étudié est la masse m,. Appliquons le principe fondamental de la dynamique. Elle est
immobile donc :

— —

STO=7
P2+T=6)
P

[\S)

I

I
H

Par conséquent :

my = —
Résolution par le principe des travaux virtuels
Donnons 2 la masse m, un déplacement virtuel 5T, vertical vers le bas :
5T, =-06yJ
Le vecteur déplacement virtuel 5T de la masse m; compatible avec les liaisons et compa-

tible avec 5T, est tel que :

5 5T,
6T, = -2
rq 5

FiG. 1.14 — Palan : déplacements virtuels

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2),
les masses m, et m,, pour des déplacements virtuels compatibles entre eux et avec les
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liaisons :

Nous avons tenu compte des liaisons sans introduire de forces de liaison inconnues a
déterminer, mais en utilisant des déplacements virtuels compatibles entre eux et avec les
liaisons (un mouvement virtuel compatible avec le mécanisme).

Au lieu de s’appliquer séparément a chacun des sous-systemes, le principe des travaux
virtuels s’applique au systeéme dans son ensemble en regardant comment les sous-systemes
s’articulent entre eux grace aux liaisons.

Exemple 1.5.2 : Poulies coaxiales

Deux poulies coaxiales de rayon R; et R, supportent respectivement les masses m; et m,.
Quelle est la condition d’équilibre ?

Résolution par la mécanique de Newton

L’ensemble des poids et des poulies coaxiales constitue le systeme.

—

Py

Fic. 1.15 — Poulies coaxiales : inventaire des forces

sciences-physiques.neocities.org
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A T’équilibre, la somme des moments des forces extérieures est nulle par rapport a n’importe
quel point. Par rapport au centre ¢ de I’axe commun aux deux poulies, nous avons :

(2 (&) =
Mﬁl/c+M§2/C= 0
R X P, +RyxPy=0
IPL IR = IPAl IRy =0
ml &mz

R,

Résolution par le principe des travaux virtuels
La position du systeme ne dépend que de 1I’angle ¢ de rotation des poulies. Donnons aux
poulies une rotation virtuelle d’angle d¢.

Ry
Ry

: ‘5?2

P,

Fic. 1.16 — Poulies coaxiales : déplacements virtuels

Les déplacements virtuels s’écrivent :

-
01,

5T,

—-R, 5§07
R, 5§0f

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2),
les masses m; et m,, pour des déplacements virtuels compatibles entre eux et avec les

liaisons :

i=

?1'5?14‘?2'5?2:0

N

—

IP1l|Ry 8¢ — || P2 Ry 6 = 0

mgRy — mygR, =0

Nous avons montré avec 1’exemple du palan que le principe des travaux virtuels contient le
principe de I’équilibre des forces de la mécanique de Newton. Gréice au principe des travaux
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virtuels nous retrouvons aussi 1’équilibre des moments de force de la statique géométrique.
Le principe des travaux virtuels contient donc les deux principes de la mécanique de
Newton, 1’égalité des forces et 1’égalité des moments de force.

1.6 Avantage de la méthode

Imaginons qu’une machine inconnue soit placée dans une caisse fermée d’ou il ne sort que deux
— —
bras de levier, servant de point d’application aux forces F; et F,.

F,
T T —
1‘ ___ITrz
_ T
E‘

Fic. 1.17 — Mécanisme dans une boite noire

z . z z - - e . . 7 1:
En observant les vecteurs déplacements simultanés réels 17 et 1 ,, nous déduisons immédiatement
la condition d’équilibre :

—

-
F,-T14+F,-T,=0
Dans cet exemple, les vecteurs forces étant constants, les déplacements virtuels se confondent

avec les déplacements réels. Ce type de probleme n’est pas soluble par la mécanique de Newton
car nous n’avons pas acces aux mécanismes internes de la machine.

1.7 Types de liaisons et coordonnées généralisées

Un systéme est soumis a des liaisons s’il existe des contraintes qui en limitent les mouvements
externes ou internes. Les liaisons s’expriment soit par des forces de contrainte, soit par des
équations de liaison.
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1.7.1 Liaisons géométriques et liaisons cinématiques

Une liaison géométrique concerne uniquement les positions et éventuellement le temps.
I d oy . 0
Soit 1 = (X1, ..., X;p,); le vecteur position du i "¢

Une liaison géométrique s’écrit sous la forme f (?1, . ?p, t) =0

point matériel (ou partie mobile) du systeme.

Exemple 1.7.1 : Trois exemples de liaison

—
« La liaison du pendule simple plan peut s’exprimer soit par la force de contrainte T

(tension dans la corde), soit par I’équation de liaison x3 + x3 = p? :
X2
X1
I
-
T

Fic. 1.18 — Le pendule se déplace sur un arc de cercle

« Deux mobiles sont maintenus a une distance constante par une liaison rigide qui

peut s’exprimer soit par deux forces égales et opposées, soit par 1’équation de liaison
= 7| = pSte .
19— 1ol =c™:

Fic. 1.19 — Liaison rigide entre deux mobiles

« La liaison CE;I solide glissant sur un plan incliné peut s’exprimer soit par la force de
contrainte R (réaction du plan incliné sur le solide), soit par I’équation de liaison
X,=ax;+b:

18 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

X1

FiG. 1.20 — Le solide se déplace sur une droite

Une équation de liaison concernant les vitesses (X1, .., X,,,); €t €ventuellement les positions et le
temps est dite cinématique.

1.7.2 Liaisons scléronomes et liaisons rhéonomes

Une liaison dont I’équation ne dépend pas explicitement du temps est dite scléronome. Dans le
cas contraire, une liaison dont 1’équation dépend explicitement du temps est dite rhéonome.

1.7.3 Liaisons holonomes

Une équation de liaison est dite holonome si elle permet d’éliminer I’une des m coordonnées.
Lorsque toutes les liaisons sont holonomes, le systeéme est dit holonome. Dans la plupart des cas,
les liaisons géométriques sont holonomes et les liaisons cinématiques sont non-holonomes.

Définition 1.7.1 : Degrés de liberté

Soit un systeme décrit par m coordonnées dont k sont superflues. Si ’on utilise k équations
de liaisons holonomes pour éliminer les k coordonnées superflues alors le nombre m — k
de coordonnées restantes est €gal au nombre minimal n de parametres nécessaires pour
décrire le mouvement du systéme, c.-a-d. au nombre de degrés de liberté du systéme :

n=m-—k
On définit le symbole de Kronecker &;; par

def (1sii=j
ij

~ losii#j

Définition 1.7.2 : Coordonnées généralisées

Si la configuration d’un systeme est déterminée par un ensemble de n variables indépen-
dantes g, alors ces variables sont appelées coordonnées généralisées de ce systeme, et I’on
a la relation d’indépendance :

. 9q;
Vi, j a—;’f = 5y (1.3)
9]
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Le nombre de degrés de liberté d’un systeme est donc égal au nombre de coordonnées généralisées
de ce systeme.

Les coordonnées généralisées étant indépendantes, leur nombre est minimal. Réciproquement, si
le nombre de coordonnées est minimal alors elles sont indépendantes. Nous pouvons donc aussi
définir les coordonnées généralisées en écrivant qu’elles constituent un ensemble minimal de
coordonnées pour un systeme.

Remarque 1.7.1 : Rappel sur les dérivations totales et partielles

Soit x(t) une fonction explicite du temps et soit £(x) = x? une fonction explicite de x et implicite du temps par I’intermédiaire de la

fonction X : af of df df
E:O 5 a:Zx H a:Zx ; E:Zxx
Plus précisemment :
of
df[x()] _ of dx
dt 7~ ox dt
Notez dflx()] , N df . . . .
que = napas le méme sens que a[x(t)] dans le premier cas la fonction f a pour variable x(t), dans le second cas

c’est la dérivée de la fonction f qui a pour variable x(t).

Exemple 1.7.2 : Liaison holonome scléronome

Deux masses m; et m, sur un double plan incliné sont reliées entre elles par un cable de
longueur constante passant par une poulie. Quelle est la condition d’équilibre ?

Fic. 1.21 — Double plan incliné

. —> —-> ey .
Soient 1, et r, les vecteurs position des masses par rapport au sommet de la poulie.
Nous avons deux coordonnées, 1, et 15, donc m = 2, et le systeéme est soumis a une liaison
holonome scléronome telle que :

— —
15Tl =181l
Remarque 1.7.2
Nous avons

I3l + 175l = et
S(IT1l+ 1721 =0
I T1ll+ 81Tl =0

mais la variation de la norme d’un vecteur n’est pas la norme de sa variation, la premiére pouvant étre négative mais pas la
seconde.
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Donc k = 1l,etn = m—k = 2—1 = 1 un seul degré de liberté. Cette relation
permet d’éliminer la coordonnée r,, et 1; devient I’'unique coordonnée, appelée coordonnée
généralisée. La force de tension du cible est remplacée par I’équation de liaison. Appliquons
le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2), les masses
m, et m,, pour des déplacements virtuels compatibles entre eux et avec les liaisons :

N —
S F® .87 =0
i=1

- -
P1'5?1+P2'5?2:0
Supposons que la masse m; descende et que la masse m, monte :

| P4l sin(ery) |6T,]| — || P2l sin(ay) |6T,| =0
(mygsin(ay) — mygsin(ay)) 6T =0

my Sin(al) =m, Sin(az)
On vérifie que pour o, = 7/2 on retrouve m, = m, sin(a;).

Exemple 1.7.3 : Liaison holonome rhéonome

Une masse M est posée sur une trappe qui s’ouvre, p. ex. grace a un moteur, d’un angle 6
donné en fonction du temps : 6 = f(t)

FiG. 1.22 — Masse sur une trappe

Le vecteur position de la masse s’écrit :
T=p¢,
T (p,0) = p(cos(6) T+ sin(6) J)

Nous avons deux coordonnées, p et 8, donc m = 2, mais le systéme est soumis a une
liaison holonome rhéonome,

06— f(t)=0
donc k =1etilreste n =2 — 1 = 1 un seul degré de liberté. Le vecteur position est une
fonction explicite du temps, et de la seule coordonnée généralisée p :

T (0, 1) = p [cos(f(O) + sin(f(£))]] (1.4)
Ce probléme est résolu dans 1’ex. 2.4.5 page 66.
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1.7.4 Liaisons non-holonomes

L’enceinte d’un gaz constitue une liaison non-holonome. Dans le cas d’une enceinte sphérique de
rayon r, I’équation de liaison pour chaque molécule du gaz de coordonnées (x;, X5, X3) s’écrit :

X2+ x5+ x:<r?

On ne peut pas exprimer 1’une des coordonnées en fonction des deux autres grace a cette équa-
tion de liaison. Les liaisons s’exprimant par une inégalité, dites unilatérales, sont toutes non-
holonomes. Pour étre holonomes, les liaisons doivent s’exprimer par une égalité, c.-a-d., étre
bilatérales. C’est une condition nécessaire mais pas suffisante.

Exemple 1.7.4 : Disque roulant sans glissement sur un plan horizontal

Considérons un disque roulant sans glissement sur un plan horizontal (une piece de monnaie
sur la tranche roule sur une table). La position du disque est définie par ses deux coordonnées
x et y dans le plan, et son orientation est définie par 1’angle 6 de rotation du disque autour
de son axe, et par I’angle ¢ que fait I’axe du disque avec I’axe des x.

FiG. 1.23 — Disque roulant sans glissement sur un plan horizontal

En projetant le vecteur vitesse instantanée (a chaque instant perpendiculaire a I’axe du
disque) sur les axes x et y :

{Ux IVl cos(m/2 — ) {x = ||V sin(p)
> . = . -
vy = —[| V| sin(z/2 — ¢) y = —|| V] cos(p)

Notons r le rayon du disque, la condition de roulement sans glissement s’écrit
N .
Vil =ré
si bien que les équations de liaison du disque avec le sol s’écrivent :

% = rsin(p) dx —rsin(p)d6 =0
. =
y = —rBcos(¢) dy + rcos(p)dé =0

Ces équations différentielles ne peuvent €tre intégrées, il n’existe pas de facteur intégrant
qui les transformerait en différentielles totales exactes. Si cela était possible, I’on pourrait
exprimer une coordonnée en fonction des trois autres. Or, pour une position du disque en un
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point (x, ), toutes les orientations en 6 et ¢ sont possibles, en fonction de la trajectoire prise
pour venir en ce point. Les quatre coordonnées (x, y, 0, ¢) sont nécessaires pour définir
completement la position et ’orientation du disque dans I’espace. Aucune coordonnée
n’est superflue, et par conséquent la liaison est non-holonome.

1.8 Multiplicateurs de Lagrange

Soit a résoudre le systeme de deux équations a deux inconnues X et y suivant,

=ax+b —ax—b=0
b - 0

y=cx+d y—cx—d=0

Soit A un multiplicateur indéterminé, différent de zéro. Le systeéme précédent est équivalent a la
seule équation suivante

VA #0, y—ax—-b)+A(y—cx—-d)=0

En effet, la seule facon d’annuler cette équation pour fous les lambda non nuls est bien que chacun
de ses deux termes soient nuls. Il est important que le multiplicateur 4 soit indéterminé, car s’il
prenait une valeur déterminée il suffirait de résoudre I’équation. Nous avons :

VA#0, y—ax—b+Ay—Acx—Ad =0

VA#0, (1+A)y—(a+Ac)x—(b+1d)=0 (1.5)
Si I’on prend 4 = —1 pour éliminer I’inconnue y, on obtient la solution triviale,
@-9x—b-d=0 = 17°°
a—c)x—(b—-d) =
b=d
(1.5) doit étre valable VA # 0, donc aussi pour 4 = —a/c, qui permet d’éliminer 1’inconnue X,
a ad
(- 2-(o-2)-o
_b—ad/c
~ 1-al/c
__bc—ad
 c—a

On trouve I’expression de x griace a y = ax + b, ce qui finit de résoudre le systeme.

Exemple 1.8.1

Résolvons le probleme du double plan incliné de 1’ex. 1.7.2 page 20 en utilisant les
multiplicateurs indéterminés de Lagrange. Le systeme formé par le principe des travaux
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virtuels et I’équation de liaison holonome,

{_”PIH sin(ay) |67 1]l + || P2 sin(e) 6T 5]l = 0
1671l = 1875l =0

est équivalent a la seule équation suivante,

VA#0  — [Py sin(e) 5T + | B,ll sin(ap) [Tl + 4 (I8T 1] = [8T2[) = 0
VA#0  (=IPy] sin(ay) + ) [8T 4] + (I P2l sin(az) — 2) [6T,] =0

qui redonne le systeme

{mlg sin(o;)) =1 =0

m,gsin(a,) — A =0 = my sin(a) = my sin(ay)

1.9 Forces dérivant d’une énergie potentielle

Lorsque tous les modeles de forces qui travaillent lors de leur déplacement virtuel dérivent d’une
énergie potentielle, le principe des travaux virtuels (1.1) page 6 s’écrit

1_:1)1'5?1'20

M=

.~
Il
—

B

—grad, (1) - §T;=0

M=

Il
—

1
ou grad, (1}) est le vecteur gradient du modele d’énergie potentielle V.

N

z(g—)’isﬁg—;’;€y+§—;’;€z).(axi€x+5yi€y+azizz)=o
i=1
N ov on L
;(a—xié‘xi+a—yié‘yi+a—zi§zi)—0
N
> 8% =0
i=1
N
§Y =0

i=1

Soit V = Zf] V. 1a somme des modeles des énergies potentielles de toutes les parties mobiles. Sa
variation lors du déplacement virtuel s’écrit :

V=0

n

2, S—Véqj =0
j=1 %9

24 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

ou n est le nombre de degrés de liberté du systeme et gj est la j éme coordonnée généralisée. Les
dq; étant indépendants, a I’équilibre :

v

— =0 1.6
% (1.6)

Vji=1,..,n

1.10 Nature de I’équilibre

1.10.1 Systeme a un degré de liberté

Soit q la seule coordonnée généralisée. D apres (1.6), la condition d’équilibre en q = ¢ (la
notation qg est réservée pour désigner la position a I’instant initial) est,

V(@=0
le prime indiquant une dérivation par rapport a q.

Remarque 1.10.1

V’(q) est un abus de notation pour

v
_d @ | . En effet ¢ n’est pas une variable.
dq lg=q

Pour q = ¢, I’énergie potentielle V(q) est donc soit minimale, soit maximale, soit constante, soit
elle présente un point d’inflexion. Cela correspond respectivement a un équilibre stable, instable,
indifférent, et de nouveau, instable.

a) premier cas, éloigné de sa position d’équilibre, le systeéme gagne de 1’énergie potentielle,
AV > 0, qu’il restitue plus ou moins rapidement pour retrouver sa position initiale.

b) deuxieme cas, éloigné de sa position d’équilibre, le systeme perd de I’énergie potentielle,
AV <0, il s’éloigne irrémédiablement de sa position d’équilibre.

¢) troisieéme cas, I’énergie potentielle est constante, AV = 0. Toute nouvelle position est
encore une position d’équilibre.

d) quatriéme cas, dans un sens AV < 0 et dans ’autre AV > 0. Un petit déplacement fait
quitter son état d’équilibre au systeme. Dans le premier sens, le systeme s’éloigne de
son point d’équilibre. Dans I’autre sens, il repasse momentanément par son ancien état
d’équilibre avec une vitesse non nulle, puis s’en éloigne.

L’étude du signe de 1’accroissement de potentiel au voisinage de 1’équilibre se fait a ’aide du
développement de Taylor de V(q) pour q au voisinage de G :

_ A 3
V(@) =@+ V@a- D+ @ S vy
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A I’équilibre nous avons vu que V'(§) = 0, et la variation d’énergie potentielle s’écrit,
AV =v(q) - V(@

Y A3
— vll(q) (q 2!q) + /Vlll(q) (q 3!q) + .

q étant au voisinage de G, g — { est petit, et donc le signe de AV est celui du premier terme non
nul.

« AV > 0 (équilibre stable), implique V"(§) > 0.
« AV < 0 (équilibre instable), implique V" (§) < 0.
« AV = 0 (équilibre indifférent), implique Vn > 2, V" (§) = 0.
« Si V"(§) = 0, il faut étudier le signe de la premiére dérivée p-ieme non nulle V®)(§) selon
la parité de p, avec p > 2:
— si p est pair et V(P)(§) > 0, Iéquilibre est stable.

— si p est impair et VP)(§) > 0, I’équilibre est instable. C’est un point d’inflexion de
V().
— si Y®)(§) < 0 (p pair ou impair), I’équilibre est instable.

Exemple 1.10.1 : Poulies coaxiales

Reprenons 1’ex. 1.5.2 page 15. Les deux forces de ce probleme dérivant de 1’énergie
potentielle de gravitation, nous pouvons le résoudre grace a (1.6) page précédente.

R
Ry

N

Fic. 1.24 — Poulies coaxiales
= —> 8171 > -
Py=—grad, (V) = ~3y /= Mgl

Yi+Ay;
a—yl =mg = V= / m;gdy = m;gAy; = m;gh;
Yi

ou les h; sont les variations de hauteur des masses m;. L’énergie potentielle totale est la
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somme des énergies potentielles :

V = mygh; + mygh,
= mg (e’ + Rip) + myg (¢5° — Ry9)

@ est la seule coordonnées généralisée. A 1I’équilibre, le principe des travaux virtuels
s’écrit :

De plus,

dpn
donc I’équilibre est indifférent. Le systeme est a I’équilibre quelle que soit la valeur de
1’angle . Eloigné de sa position, il ne revient ni ne s’éloigne d’avantage de celle-ci.

Exemple 1.10.2 : Double plan incliné

Reprenons I’ex. 1.7.2 page 20. Les deux forces de ce probleme dérivant d’une énergie
potentielle (de gravitation), nous pouvons le résoudre grace a (1.6) page 25.

FiG. 1.25 — Double plan incliné

Prenons le sommet de la poulie comme origine des énergies potentielles de gravitation.

L’énergie potentielle totale est la somme des énergies potentielles. Du fait de la liaison
—> v d _ t
Il + I 2ll = ™
la seule coordonnée généralisée est 1; :

V= —||Py|[ITy]sin(ey) = [| Po]l I T2l sin(ars)

= —mg|| 71| sin(er;) — myg (¢3¢ — || 1) sin(ay)
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A I’équilibre, le principe des travaux virtuels s’écrit :
v
on

—m,gsin(a;) + mygsin(a,) =0

0

m, sin(a;) = m, sin(ex,)
De plus,
onv

Vn>2 —=
- on"

0

I’équilibre est indifférent.

1.10.2 Systéme a deux degrés de liberté

Soient q; et g, les coordonnées généralisées, et soient ¢, et §, les coordonnées généralisées de la
position d’équilibre. Le développement de Taylor de V(q,, q») pour q;, g, au voisinage de §;, 4,
s’écrit :

V(q1,42) = V(1 G2) + aqlv(ql’ d)(q1 — 1) + aqzv(‘ﬁ, 42)(q2 — G2)
1 q q q o1 A ~ ~
+3 [63117(611, @) (@1 — )+ 202, 0, V(@1 @) (g1 — @1) (92 — G2)

+03,V(@1. @) (@2 = ©)°] + ...

A I’équilibre, les dérivées partielles 9q, V. et 64,V sont nulles. On pose :
B = aCzll,qZV(ql’ qZ)
C = 83,V(G1,42)
La variation d’énergie potentielle s’écrit alors :
1 ) ~ ~ 5 N2
AV =~ [A((h — )" +2B(q1 —q1) (02 — G2) + C(q2 — G2) ] + ..
C’est I’équation de la surface AV(q;, q,), de la forme :

AV = %xz + Bxy + %yz + ...

Si I’on suppose A > 0,
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Si B2 — AC <0, donc si C > 0, alors AV > 0 et 1’équilibre est stable.
Si B2 — AC > 0 alors,

(5 BB )
BB (VB

dont le signe dépend des valeurs prises par x et y, donc par q; — §; et q; — §,, et de celles des
dérivées partielles secondes A, B, C. L’équilibre est stable ou instable selon les directions.

SiA = B = C = 0, I’équilibre est indéterminé, il faut étudier le signe des dérivées d’ordre
supérieur a deux.

Si ¥ = ¢5%, alors AV = 0, I’équilibre est indifférent.

1.11 Applications des travaux virtuels

1.11.1 Poutre sur deux cylindres

-
Une poutre de masse M est posée sur deux cylindres de masse m. Quelle force F faut-il appliquer
pour maintenir I’ensemble a I’équilibre sur un plan incliné d’un angle o ?

FiG. 1.26 — Poutre sur deux cylindres

Communiquons 2 la poutre un déplacement virtuel §s 4. Appliquons le principe des travaux
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virtuels (1.1) page 6 aux trois parties mobiles (N = 3) :

N —
F@.67,=0
=1

i
i

1_:‘)5_§>A+65_§)A+2?5§)B=0

Cherchons la relation entre les déplacements virtuels §S 4 et §'s g de sorte qu’ils soient compa-
tibles entre eux et avec les liaisons. Le point de contact des cylindres avec le plan incliné est un
centre instantané de rotation. Soient V 4 et V g les vitesses virtuelles instantanées (rapport d’un
déplacement virtuel sur un temps réel infinitésimal) des points A et B :
Vi=2Vpg
7A dt = 2VB dt
§s,=285g

par conséquent,

F-0S,+Q-6S4+P -85,=0
Il — 1Q]| sin(a) — | P sin(a) = 0
IE]| = (M + m) g sin(x)

1.11.2 Treuil

Soit un treuil a I’équilibre sous 1’action d’un poids P et d’une force F. Pour quelle valeur de la
force F'y a-t-il équilibre ? Donnons au treuil une rotation virtuelle d’angle 66 :

o

Fic. 1.27 — Treuil
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Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

N -
i=1
P-87T+F-67,=0
—|P||r56 + | F| as6 = 0
= r
F| = -
IF) = mg~
Nous ne pouvons pas résoudre ce probleme en aRpliquant (1.6) page 25, 0V/d6 = 0, car nous

n’avons pas I’expression du potentiel de la force F. Il faudrait p. ex. attacher une masse au bras
de levier pour remplacer la force exercée.

1.11.3 Appareil de levage

Un appareil de levage dont le mécanisme n’est pas Visilzl)e est tel qu’a chaque_four de manivelle la
vis s’éleve d’une hauteur h. Quelle valeur de la force F équilibre le poids P ?

|7

1111 }

jL
F

Fic. 1.28 — Appareil de levage

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

N —
S FP .87 =0
i=1

F-LSp€,+P -6hj=0

IF||27L — |[P]lh =0

e h —
F||==—=|P
1Pl = 5= I P

Ce probleme simple est impossible a résoudre par la mécanique de Newton car le mécanisme est
inconnu.
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1.11.4 Ciseaux de Nuremberg

Soient un ensemble de barres rigides articulées sans frottements appelé « Ciseaux de Nuremberg ».
—>
Le point C est fixe. Au point A est appliquée une force verticale vers le haut f ;.

FiG. 1.29 — Ciseaux de Nuremberg

Quelle force _f)z faut-il exercer au point B pour qu’il y ait équilibre ? Si I’on communique au
systeéme un déplacement virtuel, toutes les diagonales verticales des parallélogrammes formés
par les tiges s’allongeront d’une méme longueur &7,. Par conséquent, 5T, = 35T ,. Prenons —f>2
dirigée vers le bas.

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2)
subissant des efforts :

N —
ZFi(a)‘é?i=0
i=1
f1'5?1+ f2'6?2=0
| £1l8n I T2ll6r, =0
BIful—1fal)én =0

20l = 3] £

Remarque 1.11.1

Si I’on prend ?2 dirigée vers le haut on obtient ||?2|| = —3||?1|| ce qui est impossible.

-
Pour calculer la réaction R on la fait travailler virtuellement. Supposons que le point B 3 soit fixe,
onadT; =—208T3, 0l 5T est le déplacement virtuel vers le bas du point C. Prenons R dirigée
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vers le haut. Le principe des travaux virtuels s’écrit :

?1-5?1+§.5?3:0

I £116n — K] or =0

(21,0 - I1R])or =0
EHEFE

Les ciseaux étant a I’équilibre, on vérifie que la somme des forces est nulle :

R+f,- 1, L+ 31,

2—)
0

1.11.5 Probléme a deux degrés de liberté

Trois poids sont relié€s par des cables passant par trois poulies fixes A, B, C. Pour quelle disposition
des cables y a-t-il équilibre ?

ol

2P

FiG. 1.30 — Probléme a deux degrés de liberté

Supposons que I’équilibre soit réalisé et donnons au point O les déplacements virtuels élémentaires
5?2 selon OB, et 573 selon OC. Seules les tensions dans les cables comptent, un schéma
équivalent du point de vue de la mécanique est celui-ci, vu de dessus :
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ol

FiG. 1.31 — Probleme a deux degrés de liberté. Schéma équivalent vu de dessus

On peut réaliser n’importe quel déplacement du point O dans le plan ABC, le déplacement selon
OA étant une combinaison linéaire des déplacements selon OB et OC.

Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (N = 3) selon
deux axes :

N —
i=1
?A'5?2+?A'5?34_f;B'5?2-'_?3'5?3+?C'5?2+?C'5?3:0
—[I P16 T 2] cos(a) — [| P[[I8T 3]l cos(B) + 2[| PIST 2l + 2| P16 T 5| cos(ax + B)
+2| P16 T 5] cos(a + B) + 2| P|[[|6T 3| = 0
[—cos(a) + 242 cos(a+ B)] |67, + [—cos(B) + 2+ 2 cos(a + B)] |6 T3] =0

Les déplacements virtuels étant indépendants, on a le systeme :

2+ 2 cos(ax+ ) —cos(ax) =0 cos(a) = cos(P)
{2 +2 cos(at + B) —cos(f) =0 = {2 + 2 cos(ax + ) — cos(ax) = 0

On ne traite pas le cas &« = —f qui implique que les poids B et C soient confondus.
a=p N a=f
2 +2[2cos*(a) — 1] — cos(ar) = 0 4 cos?(a) — cos(a) =0

a=f
L > a=p=7531
cos(oc)=z
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1.11.6 Poulie a ressort

Une poulie de rayon R et de masse m est suspendue par un cable terminé par un ressort de

coefficient de raideur k. La force de rappel exercée par le ressort sur la poulie vaut :

f = —kxj

On attache une masse m au centre C de la poulie. De quelle hauteur & descend le centre de la

poulie ? L’allongement du ressort au nouvel équilibre vaut 2h.

P
F1c. 1.32 — Poulie a ressort

On imagine un déplacement virtuel vertical vers le bas du centre de gravité :

6h =—|gh|y

L’allongement virtuel du ressort compatible avec ce déplacement et avec les liaisons vaut
— -
26h = =2||6h]|y

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

M=

)

1

BP-Sh+f-26h=0
mg|6h|| — k(2h)2|6h| =0

mg —4kh =0
_mg
h_4k
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Toutes les forces dérivant d’un potentiel, nous pouvons résoudre le probleme grace a (1.6) page 25.
Le potentiel est la somme des potentiels :

V= %k(Zh)z — mgh

= 2kh? — mgh
Nous avons alors :
oV
% =0
4kh —mg =0
_ mg
h= 4k
De plus,
9%V
3= 4k >0

donc I’équilibre est stable.

1.11.7 Poulie différentielle de Weston

La poulie différentielle de Weston est formée de deux poulies de méme axe, invariablement liées,
de rayons R; et R, peu différents, avec R, < R;.

Pour quelle valeur de la force t y a-t-il équilibre ?

o

Fic. 1.33 — Poulie différentielle de Weston
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Communiquons aux poulies coaxiales une rotation virtuelle d’angle d@. En respectant le méca-
nisme, la poulie extérieure enroule une longueur de cible R, d¢ et la poulie intérieure déroule
une longueur de céble R, d¢ : la longueur du cable sous tension diminue de (R; — R,) d¢. Le
poids P monte alors d’une hauteur (Ry —Ry)d¢/2.

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

—

Plus R; et R, sont proches et plus la force T est démultipliée mais plus il faut tirer du cable.

1.11.8 Echelle contre un mur

Une échelle de masse m et de longueur L est appuyée contre un mur. La force de frottement
—

contre le mur est nulle. On cherche la valeur de la force de frottement f avec le sol pour qu’il y

ait équilibre.

1.11.8.1 Résolution par le pr1nc1pe des travaux virtuels
Pour s’affranchir des forces de réaction R A et R B, effectuons un déplacement virtuel compatible
avec celles-ci, de sorte qu’elles ne travaillent pas. Ce déplacement est représenté en pointillés :

Fic. 1.34 — Echelle contre un mur
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Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

N—>

1
i=1

P-6Tg+ 1 -8T;=0
mgdédyg+ fox, =0

Exprimons les déplacements virtuels en fonction de la coordonnée généralisée 6. Nous avons :

{xA = Lcos(0) {SxA = —Lsin(6) 66

Yo = %sin(@) Syg = %cos(@) 56

mg IEJ cos(6) 66 — f Lsin(6) 6 =0
% cos(8) — f sin(6) = 0

f= %cot@

N
Pour calculer la force de réaction R 4, prenons un déplacement virtuel qui la fasse travailler et
compatible avec la liaison en B. L’échelle tourne autour de B d’un angle da, le déplacement
virtuel est donc perpendiculaire a 1’échelle est fait un angle 3 avec le sol :

6+§+9=n
T
f=5-6
Y
B

X

Fic. 1.35 — Echelle contre un mur. Calcul de la réaction du sol
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Le principe des travaux virtuels s’écrit :
P-6Tg+Ry-8Ta+ 1 -8T,;=0
L
—mg > sin(B) da + R4Lsin(f) da — fLcos(B)dax =0

—% cos(8) + Ry cos(6) — fsin(6) =0

Ry = % + ftan(0)
= mg

1.11.8.2 Résolution par la mécanique de Newton
A I’équilibre la somme des forces exercées sur I’échelle est nulle :

SurlaxeX: Rp+f=0 = [Rg|=|T]
Surl’axe Y : I_fA+l_5=0 = ||1_3)A|| =mg
Y
B .........

Fic. 1.36 — Echelle contre un mur. Analyse des forces

Le moment des forces pris en un point quelconque doit aussi €tre nul. Prenons-le par rapport au
point O pour annuler le moment des forces de réaction :

OAx f+0GxP=70
L
—Lsin(0) f + > cos(O)mg=0
m
f= Tg cot 0
Cet exemple montre que le principe des travaux virtuels employé dans le cas d’un seul solide ne

présente pas un avantage décisif par rapport a la méthode classique. Cependant il s’impose pour
les problemes comprenant des systémes de solides.
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1.11.9 Poutre articulée

Une poutre de masse négligeable, composée de deux barres articulées en C, soutient une charge
P. Quelle est la pression exercée sur le support en B ?

B C
A/@ (S) @\D
o b
P1 02 |

F1c. 1.37 — Poutre articulée

1.11.9.1 Résolution par le principe des travaux virtuels
Effectuons un déplacement virtuel pour lequel les liaisons ne travaillent pas :

Fic. 1.38 — Poutre articulée

Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (N = 3) :

g

S F® .87 =0

i=1

1_2>B~5§)B+1_5-5§)p+RD-5§)D=0

!

—

IREIISS Bl = I PSS pll =0
soit,
3 =, 185l
IRsl = [ Plli==
165 Bl
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La relation entre les déplacements virtuels s’écrit :

16581l _ 15cll R
a " e L 155k _bp
15spll _ lI9scll s gl apa
b P2
par conséquent,
IRl = IP] ==
ap;

1.11.9.2 Résolution par la mécanique de Newton
Pour résoudre ce probleme en mécanique de Newton, il faut étudier 1’_é)quilibre de chacun des
éléments de la poutre. La seconde barre exerce sur la premiére la force R ¢, et la premiére barre

— —
exerce sur la seconde la force R, égale et opposée a R, :

ﬁ —> -
— ’ R &) P
Ra
A
s X
R R

Fic. 1.39 — Poutre articulée

On isole par la pensée la premiére barre. La somme des moments des forces exercés en A sur la
premicre barre s’écrit :
— —
a|Rgll = p1| R, [l = 0
- a  —
IRc,I = —[IRgl
P1

On isole par la pensée la seconde barre. La somme des moments des forces exercés au point D
sur la seconde barre s’écrit :

—P2 [Rg,ll + bl P =0

- b —
RC = —|P
IR, | P 1Pl
En se servant du fait que ||1_Q)C1 | = ||§c2||, nous obtenons :
IRsl = =P
ape;
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L’équilibre des forces sur la premicre barre donne :

I_Q)A + I_Q)B + l_icl = 0
[Rall + [RBll = [Rc,[| =0
[RAll = [Rc, Il = IR Bl
b .z, _ pb 3
= —IIPII——IIPII
P2

- > (1-2)17)

-
La force R 4 est toujours dirigée vers le haut car a < p;.

1.11.10  Chaine suspendue

Une chaine de quatre tiges homogenes de masse m et de longueur L chacune, est fixée au plafond
par I’une de ses extrémités. Une force F est exercée horizontalement a I’autre extrémité.

FiG. 1.40 — Chaine suspendue

Etudions son équilibre. Soient 5T, 6T 2, ¢ 5T, 5T 4 les déplacements virtuels des centres de
gravité Gy, G,, Gy et G, des tiges, et soit ST le déplacement virtuel de la force F. Appliquons le
principe des travaux virtuels (1.1) page 6 aux cinq parties mobiles (N = 5) :

N
Z ?)i(a) : 5?1 =
i=1
P-(6T,+0T,+0T3+0T)+F 6T =0
mg (6y, + 8y, + 8y; + 8y4) + Féx =0
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ou les dy; et le dx sont positifs. Les relations suivantes

(y1 = L cos(6y)

y, =L [cos(@l) + % cos(@z)]

1y; =L [cos(@l) + cos(6,) + é cos(63)]

ys=1L [cos(@l) + cos(6,) + cos(63) + % cos(64)]
(X = L [sin(6,) + sin(6,) + sin(63) + sin(6,)]

donnent les expressions des déplacements virtuels :

(Sy, = —L% sin(6,) 56,

5y, = —L (sin(@1)591 + ism(ez)aez)

16¥3 = —L (sin(6,) 86, + sin(6,) 86, +  sin(63) 365

8y, = —L <sin(61) 56, + sin(6,) 56, + sin(6s) 565 + %sin(64) 594)
(0x = L(cos(6;) 66, + cos(6,) 86, + cos(6;) 665 + cos(64) 66,)

Si bien que,

mg [—L% sin(6,)56, — L (sin(@1)561 + ; sin(@2)5@2)
~L (sin(@1)591 + 5in(6,)56, + % sin(93)593>
L (sin(@1)561 + 5in(6,)36, + sin(6;)56; + sin(94)564)]
+ FL (cos(6;)86; + cos(6,)86, + cos(65)86; + cos(6,4)86,) =0

On simplifie par L. Les §6; étant indépendants, nous avons :

r—% sin(6;) — 3 mgsin(6;) + F cos(6,) =0 (mg sin(6;) G + 3) = F cos(6,)
—% sin(8,) — 2 mg sin(8,) + F cos(6,) = 0 mg sin(6,) (% + 2) = F cos(6,)
1 —3 P
—g sin(6s) — mg sin(6s) + F cos(65) = 0 mg sin(6;) (% + 1) = F cos(6;)
mg .
f% sin(6,) + F cos(6,) = 0 \Tg sin(64) = F cos(6,)
( 2 F
tan(@l) = 7 m—g
2 F
tan(@z) = g m—g
= ) 2 F
tan(93) = g m—g
2F
Ltan(94) = g
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1.11.11 Systeme isostatique

Considérons le tabouret a trois pieds suivant :

Fic. 1.41 — Systeme isostatique

Donnons au tabouret une rotation virtuelle autour de la droite passant par les points de contact B
et C, de sorte que le pied A se souleve. Les réactions en B et C ne travaillent pas. Dans le triangle
équilatéral ABC, il reste a savoir quelle est la position du centre de gravité G sur la hauteur OA,
le point O étant au milieu de BC :

GA+GB+GC=0
GO+0A+GO+0B+GO+0C=0
3G0+0A =0

— 1—

OG—gOA

Lors de la rotation virtuelle le point G se soulevera trois fois moins que le point A.
Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :
N —
S FY .87, =0
i=1
Ry -8T4+P-8Fg=0
- oz
IRaloz—mg < =0

R =8
1R all = 5
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De la méme facon on trouve les réactions Ry et R, égales a R . Bien entendu, par symétrie du
probleme on trouve directement le résultat.

1.11.12  Systeme hyperstatique

Considérons le tabouret a quatre pieds suivant :

D

Fic. 1.42 — Systeme hyperstatique

Donnons au tabouret une rotation virtuelle autour de la droite passant par les points de contact
C et D, de sorte que les pieds A et B se soulevent. Les réactions en C et D ne travaillent pas.
Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (N = 3) :

N —
i=1
RA5?A+RB5?B+P5?G=O
- = 0z
IR all6z + || Rpll6z — mg — =0
— —> mg
[RAll + [ Rpll = -

De la méme facon on trouve les relations suivantes :
— — — — — — mg
IRsl+ IRl =lIRcl + [ Rpll = IRpll + [Rall = —>

En utilisant ces quatres relations, on a :

IR Al = I Rcl
IRgll = [IRpl

On aurait pu trouver ces deux relations directement en considérant des rotations selon les diago-
nales AC et BD. On en déduit :

— — — —
IRl +IRBll + [ Rcll + [ Rpll = mg
Donnons au tabouret une rotation virtuelle autour de la droite parallele a BD passant par A, de
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sorte que les pieds B, C et D se soulevent :

R)B'6?B+I_€C'5?C+I_€D'5?D+?'5?G=0

- - Oz - Oz oz
[Rcléz + |Rpll = + IRpll — —mg— =0
2 2 2
—> —> mg
[Rcll + IRl = —

Il est impossible de déterminer la réaction individuelle de chaque pied, car aucun déplacement
virtuel ne permet de faire travailler une seule réaction a la fois. Ce systeme est dit hyperstatique :
I’équilibre peut €tre réalisé avec un pied en moins.

1.11.13 Le levier

—> —
Pour trouver directement 1’expression de la force f, en fonction de la réaction d’appui R, on
—
effectue une rotation virtuelle d’angle da telle que la force f; ne travaille pas :

—

R \fz

Fic. 1.43 — Expression de la force de levier

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (N = 2) :

N —

i=1
IR|| a16a — | £ (a3 +az)Sa =0
IR a1
a +a,

Il =

1.11.13.1 Calcul des efforts dans le levier

-
L’effort résultant a une composante de cisaillement T perpendiculaire au levier, et une composante
de dilatation-compression N suivant I’axe du levier.

-
Pour calculer I’effort tranchant 7' en un point p du levier, on donne une translation virtuelle
verticale 5T = 8z & une partie du levier, p. ex. 4 droite de ce point :
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Fic. 1.44 — Effort tranchant

Leffort en _gompression—dilatation et le moment résultant ne travaillent pas. Choisissons de facon
arbitraire T vers le haut.

Le principe des travaux virtuels s’écrit :

— —
T'5?+ f2-5?=0
— —>
IT|| 6z — || f5]| 6z =0
—> —>
1T =1 £l

La partie gauche de la section exerce sur la partie droite un effort tranchant vertical vers le haut,
et la partie droite exerce un effort tranchant vertical vers le bas sur la partie gauche.

N
Pour calculer I’effort de compression-dilatation N dans le levier, on donne a la partie coupée une
translation virtuelle horizontale 5T = 8x1:

~|

T
1 ox N J

C A |« [— )

FiG. 1.45 — Effort de compression-dilatation

-
L effort tranchant et le moment résultant ne travaillent pas. Choisissons arbitrairement N vers la
droite. Le principe des travaux virtuels s’écrit :

N-6T =0
IN| 6x =0
|N|| =0
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1.11.13.2 Calcul du moment des efforts dans lglevier

Le moment résultant a une composante en torsion M, suivant I’axe du levier, et une composante
&)
en flexion My perpendiculaire au levier.

(&)
Pour calculer le moment en flexion M ¢ dans le levier, on donne & la partie coupée une rotation

virtuelle 66 dans le plan.

~|

f)

FiG. 1.46 — Moment en flexion

L effort tranchant, I’effort en compression-dilatation, et le moment en torsion ne travaillent pas.
(&)

Choisissons arbitrairement le moment en flexion My dirigé vers I’arriere. La rotation virtuelle

d’angle &6 se faisant dans le sens du moment en flexion, nous avons un signe positif devant
&)
M 86. Le principe des travaux virtuels s’écrit :

) S
+Mf56+ f2-51‘2=0
= -
M;86+|T,lad6=0
- -
Mg =—|f,]a

Le moment en flexion exercé par la partie gauche de la section sur la partie droite est donc dirigé

vers le lecteur.

&)
Pour calculer le moment en torsion M, dans le levier, on donne a la partie coupée une rotation

virtuelle 8 selon 1’axe du levier :

|

?Zl

" ;‘}L/ Uy

Fic. 1.47 — Moment en torsion
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L effort tranchant, I’effort en compression-dilatation, et le moment en flexion ne travaillent pas.
()

Choisissons le moment en torsion M, dirigé vers la droite. La rotation virtuelle d’angle § choisie
étant dans le sens contraire du moment en torsion, le signe est négatif. Le principe des travaux
virtuels s’écrit :

(&)
)
Mt=0

1.11.14 Systeme bielle-manivelle

N

Considérons la bielle-manivelle suivante supposée a I’équilibre. En B on exerce une force F, en
-

retour le gaz dans la cavité exerce la force f.

\@ A 5T 4

FiG. 1.48 — Systeme bielle-manivelle

Donnons au systéme un déplacement virtuel compatible avec les liaisons, c.-a-d. § T 5 perpendi-
culaire a R car B décrit un cercle. Appliquons le principe des travaux virtuels (1.1) page 6 aux
deux parties mobiles (N = 2) :

N -
i=1
F5?3+ f 5_)A=0
F- ST g est positif et Sa est négatif :
—|FIR cos()8c — || T [|S[0A] = O
On retrouve le fait que la composante de la force exercée selon I’axe de la manivelle [OB] ne sert
arien. On suppose dans ce qui suit que la force est exercée perpendiculairement a la manivelle,

on supprime donc le cosinus alpha.
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Il reste a trouver 1’expression de §[OA] :

[OA] = Rcos(a) + Lcos(B)
d[0OA] d[0A]

o dor + 35 6
= —Rsin(a)da — Lsin(B)df

S[0A] =

Si bien que :

||f||R5a - ||?|| (Rsin(a)da + Lsin(B)56B) = 0
(IF]l = Il £ 1| sin(2)) RS — L|| £ | sin(8)5B = 0
On ne peut pas annuler les coefficients devant les angles « et 8 car ils ne sont pas indépendants.
La relation existant entre les deux est différentiée,
Rsin(ar) = Lsin(B)
Rcos(ax)da = Lcos(B)d
Rcos(ax)da — Lcos(B)6p =0

Nous avons deux équations pour deux inconnues, || 1_5|| et || ?ll, utilisons la méthode des multipli-
cateurs indéterminés de Lagrange :
(||f|| —1Ifl sin(a))) Roa — L sin(B)3p + A (R cos(a)8a — L cos(B)3p) = 0
(IF)| = I Il siner) + A cos(e)) Réet — (|| £ sin(B) + A cos(8)) L6 = 0

On obtient le systeme d’équations suivant :

{||_f)|| sin(B) + Acos(B) =0
IE] = 1 Tl sin(a) + A cos(a) = 0

{A = —| Tl tan(B)
IE] = | |l sin(e)) — A cos(a)

Zi — 1 Fu sin() cos(x)
171 = 171 (sinGe) + = 2)

_ ||—f)|| sin(a) cos(f) + sin(B) cos(ax)
cos(f8)
_ ||_f)|| sin(a + )
cos(8)

Lorsque « et 3 tendent vers zéro, sin(a + 3) tend vers zéro et cos(3) tend vers un. Dans ce cas, si
e —
I’une des forces reste constante, soit || F|| tend vers zéro, soit || f || tend vers I’infini.
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1.11.15 Vitesses virtuelles et puissances virtuelles

Nous pouvons résoudre le probleme précédent plus facilement en utilisant les notions de vitesse
virtuelle et de puissance virtuelle.

FiG. 1.49 — Systeme bielle-manivelle

Soit O ’origine, et soient T 4 et T g les vecteurs position des points A et B. Leurs vitesses
virtuelles s’écrivent :

Va=—g ¢ VBT g

ou ¢ est le temps. La bielle-manivelle est supposée a I’équilibre, les points A et B n’ont donc pas
de vitesse, c’est en cela qu’elles sont virtuelles. En multipliant la somme des travaux virtuels par
dt, nous obtenons la somme des puissances virtuelles :

2 - 2z -
F'VB+f'VA=O

— —
IENV sl =1 £1IVall =0
= o2y 1 Val
IE] =1 £
IV 5l

Soit I le centre instantané de rotation, commun aux points A et B. C’est le point d’intersection
des droites perpendiculaires aux vitesses V 4 et V . Soit w la vitesse angulaire commune aux
points A et B :

IVal = w[IA] =0 2y HA
{MVBM = wIB] IE1 =111 7

Dans le triangle AIB, soit h la hauteur (non représentée) passant par le point I. Nous avons les
relations suivantes :

sin (/2 — B) = h/[IA] ) )
{sin(oc + B) = h/[IB] = [IA] sin(z/2 — B) = [IB] sin(a + )
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et,

52

[IA] _ sin(a + )

[1B]

IE( =1 £

cos(8)

sin(a + f)
cos(f)
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LE PRINCIPE DES TRAVAUX VIRTUELS EN
DYNAMIQUE
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2.1 Généralisation du principe a la dynamique

D’Alembert généralise I’ utilisation du principe des travaux virtuels (1.1) page 6 en 1’appliquant a la
dynamique. Dans un référentiel galiléen, donc en 1’absence de forces fictives dues au mouvement
de I’observateur, cherchons les équations du mouvement d’un systeme de solides mobiles soumis
a des contraintes.

N
Soit F; le modele de la force fotale exercée sur la i partie mobile du systeme, somme des modeles
des forces actives et des modeles des forces de contrainte :

= def —(q)

F, = +F©

14

Notons p; la quantité de mouvement de la ic partie mobile. La relation fondamentale de la
dynamique appliquée a la i® partie en mouvement s’€crit :

—

Fi=p;

Tout probleme de dynamique peut se ramener a un probleme de statique, simplement en écrivant
que
. =2 -
vi, Fi—p;i=0



-
et en considérant que la force d’inertie p; est maintenant une force appliquée. En sommant sur
I’ensemble des N parties mobiles formant le systeme,

N
¥t D (Fi—pi)-8Ti=0
i=1
ou chacun des N termes est identiquement nul. En comparaison, le principe des travaux virtuels
(1.1) page 6 ne contient pas les forces de contrainte mais uniquement les forces actives. En
revanche dans le principe des travaux virtuels (1.1) page 6 les termes ne sont pas identiquement
nuls, seule la somme des termes est nulle.

D’Alembert montre alors que 1’on peut s’ affranchir des forces de contrainte comme dans le cas
de la statique. Pour le démontrer faisons un retour sur la statique. La somme des forces s’exercant
sur chaque partie mobile d’un systeme a I’équilibre est nulle :

- >

Vi, Fi =0
En sommant N termes nuls, nous avons :

V5?i, 2?15?1 =0
i=1

Décomposons la somme des forces s’exercant sur chacune des N parties mobiles du systeme en
une force active et une force de contrainte :

S(F@ 1+ FO). 57, =0

i=1
N — N —
i=1 i=1

En supposant les liaisons parfaites, appliquons le principe des travaux virtuels (1.1) page 6 pour
des 6T ; compatibles entre eux et avec les liaisons. Le premier terme est alors nul et il reste :

N —
i=1

Cette relation constitue le principe de D’Alembert : le travail total des forces de contrainte est nul
lors d’un ensemble de déplacements virtuels compatibles entre eux et avec les liaisons, celles-ci
étant parfaites. Ce principe est équivalent au principe des travaux virtuels.

Remarque 2.1.1
Individuellement les forces de contrainte peuvent travailler lors d’un déplacement virtuel compatible avec les liaisons, seule la somme

des travaux virtuels des forces de contrainte est nulle (pour des déplacements virtuels compatibles entre eux et avec les liaisons, celles-ci
étant parfaites), voir p. ex. (1.2) page 8.

On peut donc s’affranchir des forces de contrainte et énoncer le principe des travaux virtuels
appliqué a la dynamique :

i(ﬁi@ —Pi)- 8T =0 2.1)
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« les déplacements virtuels sont compatibles entre eux
« les déplacements virtuels sont compatibles avec les liaisons

« les liaisons sont parfaites

Chacun des termes n’est plus nul puisqu’il n’y a plus les forces de contrainte, seule la somme est
nulle.

Remarque 2.1.2

y: . g = . s 1 Lo £ = 227342 -
La force d’inertie, qui s’écrit p = mT lorsque la masse est constante, contient I’accélération réelle T = d*T/dt? ou dT est un
déplacement infinitésimal réel, et df un élément infinitésimal de temps réel.

De la méme facon que la relation fondamentale de la dynamique s’applique aussi a la statique,
le principe de travaux virtuels (2.1) s’applique a la dynamique et a la statique. Avant de voir
quelques exemples, faisons un rappel sur les coordonnées polaires.

2.2 Coordonnées polaires

Nous nous intéressons ici aux coordonnées polaires (p, ) prises dans le plan (x, y).

2.2.1 Expression des vecteurs de base de la base polaire orthonormée

~
<
__/Y
+

Fic. 2.1 — Vecteurs de la base polaire orthonormée

1. Premiére méthode

En se servant de la fig. 2.1, exprimons les vecteurs unitaires de base E’p et € en fonction
de ceux de la base rectangulaire normée (1, J) :

€5 = cos(O)T + sin(6)]
€ = —sin(0) + cos(0)]

2. Deuxiéme méthode
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Soit M un point de coordonnées rectangulaires (x, y) et de coordonnées polaires (p, 6). Le
changement de coordonnées rectangulaires (x, y) a polaires (p, 0) s’écrit :

p=+/x+y

0 = arctan <£>
y

Réciproquement, le changement de coordonnées polaires a rectangulaires s’écrit :

= 6
x pc'os( ) p=20ect 0K<O0<27 2.2)
y = psin(6)

Déterminons les vecteurs unitaires de base ‘e"cJ et €g en différentiant le rayon vecteur

— e .y i . . P,
r = OM exprimé en coordonnées polaires (o, 8) dans la base rectangulaire normée (7, J) :

Ty =xi+yJ

T(0,0) = pcos(8)T+ psin(0) J

. or ar

dr(g@)_(EE)de+(E@>pd9
= [cos(0) T+ sin(8) J]dp + p[— sin(0) T+ cos(0) J]dO
Les vecteurs unitaires de la base polaire ont alors pour expression,

E)p = cos(0)I + sin(0)]
€ = —sin(O)l + cos(0)]

etl’'ona:
dT(p,6) = €,do +p€pd6

2.2.2 Expression du vecteur position
Cherchons I’expression du vecteur position en coordonnées polaires (p, ) dans la base polaire

orthonormée (€, €p) :

T(p,0) = pcos(8)T+ psin(0) ]
= p[cos(6) 7+ sin() J]

2.2.3 Dérivée des vecteurs de base

Nous aurons besoin de la dérivée des vecteurs de base pour exprimer la vitesse et I’accélération :

de de dé

e — i v v 2 A
T sin(6) T 1+ cos(6) e N {ep =0¢,

dey 6. . do. &g =—6¢,
T —cos(0) T 1 — sin(6) T J
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2.2.4 Expression du vecteur vitesse

Le vecteur vitesse est la dérivée premicre du vecteur position par rapport au temps. En coordonnées
polaires, dans la base polaire orthonormée, il a pour expression :

s df
V@
d ,
=E(Pep)
=pe,+pé,
V =p€,+p6¢€ (2.3)

2.2.5 Expression du vecteur accélération

Le vecteur accélération est la dérivée premiere du vecteur vitesse par rapport au temps. En
coordonnées polaires, dans la base polaire orthonormée, il a pour expression :

o d¥
Codt
d . N
= &(pep+p9e@)
=p¢€, +,o'_é)p +0C s+ pB€s + pbeg

=€, +0p6€g+p0€g+p0€s — p6%€,

a = (f—p0%) €, + (266 + pb) €g (2.4)

2.3 Exemples

Exemple 2.3.1 : Volant d’inertie

Une masse m est attachée a une corde enroulée autour d’une poulie de masse M, de rayon
R et de moment d’inertie I. Quelle est 1’accélération de la masse m1?
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=

Fic. 2.2 — Volant d’inertie

La position du systeme ne dépend que de I’angle ¢ de rotation de la poulie. Donnons a la
poulie une rotation virtuelle d’angle d¢. Le déplacement virtuel de m vers le bas s’écrit :

r = Rgp
or =Rdgp
ST = —RSpJ

S
Pour calculer la force d’inertie p s de la poulie en rotation, considérons un élément de
masse dM de cette poulie, a la distance o du centre. Son vecteur déplacement virtuel 5s a
pour expression

S=pp
ds = pdyp

5§)=%57‘€9

oll € est un vecteur polaire unitaire partout perpendiculaire au rayon de la poulie. La
norme de la force d’inertie de I’élément dM s’écrit :

1P amll = dM §
= dM p¢
P ..
=dM=
R
Le travail virtuel de la force d’inertie de I’élément dM s’écrit :
Pam 08 —dMRree R5r €9
ior
=gz M
Le travail virtuel de la force d’inertie de la poulie s’écrit :

— M—>
PM'5S=/ Pam - 0s
0

—@/Mpsz
R2 0

I .
= ﬁrér
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Appliquons le principe des travaux virtuels (2.1) page 54 pour les deux parties mobiles
(N = 2), la masse et la poulie, pour des déplacements virtuels compatibles entre eux et
avec les liaisons :

M=

1l
—

(ﬁi(a) - f;z) -6T; =0
1

(P=Pm) 6T~ Pp-65 =0

I
o
3

mgor — mi'dr — %if’& =0

. I
r<m+ﬁ> = mg

R —
1+1/(mR?)

2.4 Comparaison avec la mécanique de Newton

Exemple 2.4.1 : Deux masses reliées par une poulie

Deux masses sont attachées a une corde passant par une poulie. Quelle est 1I’accélération
de ces masses ?

a) Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique a la masse m; :

=1_))1+T)
T
T L,
] P2
P,

FiG. 2.3 — Masses reliées par une poulie

En projetant sur I’axe verticale orienté vers le haut :

mih =—-mg+T (2.5)
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ii est la composante verticale de I’accélération de la masse m;, elle peut étre positive,
négative ou nulle. Pour le vecteur déplacement réel,

—

vt, dT7,=—-dT, => f;,=-1f, = T T

1= I
et pour la composante verticale,

ih=—0
qui donne pour la masse m, :

myi, = —myg+ T
myii =myg—T

En additionnant avec (2.5) :

(my+my)iy =(my—my)g
. _ My —my
h=—"""-§
my + m,
On vérifie que i; = 0 pour m; = m,. L’accélération ij est bien positive (donc vers le
haut) si m, > m;.

Pour obtenir la tension dans la corde on soustrait les deux expressions :

(my —my) iy = —(my +my) g + 2T

N | =

T ==[(m; +m,) g+ (m; —m,) ]

N | =

m1+m2 m1+m2

2
m+m m,—m
( 1 2) g+(m1_m2) 2 lgl

_ g[mi+2mymy + m5 —mi + 2mym, — m3
_2 m; +m,

mm
= og MMM

m; +m,

On vérifie que pour m; = m, on abien T = m; g.

b) Résolution par le principe des travaux virtuels

N 2 . - .
Donnons a la masse m; un déplacement virtuel d r ; vertical vers le haut :

Le déplacement virtuel 5T, de la masse m, compatible avec 5T et avec la liaison
est tel que :

5?2 = —5?1
—[67 1117

Le travail virtuel de la force d’inertie de la masse m; s’écrit :

e ..

P1- 5?1 = ml’”lf‘ ||5?1||f
.o —>

mii |6 1]
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Celui de la masse m, s’écrit :

g .. —
P2 5?2 = —mz”zf‘ ||6r1||f
= —mzi"z||5?1||

= My 8T |

Appliquons le principe des travaux virtuels (2.1) page 54, pour les deux parties
mobiles (N = 2), les masses m; et m,, pour des déplacements virtuels compatibles
entre eux et avec les liaisons. On ne considere alors que les forces actives, la somme
des travaux virtuels des forces de contrainte (réaction de 1’axe de la poulie et tension
de la corde) est nulle :

z

Z <Fi(a) - Ez) 8T;=0

i=1
(B = 1) 871+ (By— Ba) 672 =0
—myg — miii + myg — myi; =0

(my—my)g—(my +my)ii =0
. _ My —my
I’1 =

_m1+m2g

Pour obtenir I’expression de la tension dans la corde on choisit un déplacement
virtuel non compatible avec la liaison :

Nous avons alors :
(Pi+T=p1) 61+ (Pa+T—p,) 8T, =0
—mg+T—mih—myg+T+myii =0
—(my+my)g+2T+(my,—my)i; =0
1 .
T = > [((my + my) g + (my — my) /]

Exemple 2.4.2 : Palan

Reprenons I’exemple du palan (fig. 1.14 page 14). Quelle est ’accélération de la masse
m, ?

a) Résolution par la mécanique de Newton Le premier sous-systeéme étudi€ est constitué
de la premiere poulie et de la premicre masse. Appliquons le principe fondamental
de la dynamique :

my ?1 = Z ?(6)
En projetant sur I’axe vertical dirigé vers le haut :

mi = —-mg+ 2T
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b)

TV NT 17
K —
P,

In

Py

Fic. 2.4 — Palan : inventaire des forces

Pour le vecteur déplacement réel,

—> 1 ,> 5
Vt, drlz—gdrz => > S

et pour la composante verticale,

si bien que
myb, = 2myg — 4T

Le second sous-systeme €étudié est la masse m,. Appliquons le principe fondamental
de la dynamique :

mz._I:)z - Z _f)(e)
= ?2 + T)
my, = —myug+ T

Par conséquent :

(my + 4my)iy = (2my — 4my)g
.. 2m;—4m,
"'2 -
my + 4m,
On vérifie que pour m; = 2m, on a bien ¥ = 0. Pour m; > 2m, I’accélération de
la masse m, est positive, c.-a-d. vers le haut.
Résolution par le principe des travaux virtuels

N z . - .
Donnons a la masse m; un déplacement virtuel J r ; vertical vers le haut :

5T, =671 T
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FiG. 2.5 — Palan : déplacements virtuels

Le déplacement virtuel 5T, de la masse m, compatible avec § T, et avec la liaison
est tel que :

Appliquons le principe des travaux virtuels (2.1) page 54, pour les deux parties
mobiles (N = 2), les masses m; et m,, pour des déplacements virtuels compatibles
entre eux et avec les liaisons :

1
(Bi—P1) 071 +(By—B,)- 6T, =0
(Pr=p1)- 18T =2(p2—P,) - I6F1]T=0
—m g — myii + 2myi5 + 2myg = 0

Pour le vecteur déplacement réel

— 1 , > rd 12 25 1=
drlz—gdrz = 1=-;fy > 1 =-51,

et pour la composante verticale,

si bien que :

1. ..
—-mg + gml”z + 2myih +2myg =0

2emy,—m))g+ (%ml + 2m2) h=0
2m1 — 4m2

i =
2 m; + 4m,

8
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Exemple 2.4.3 : Masse glissant sans frottements sur un plan incliné

Une masse m glisse sans frottements sur un plan incliné. Quelle est I’équation de son

mouvement ?
t —
w R

P
o

FiG. 2.6 — Masse glissant sans frottements sur un plan incliné

a) Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique a la masse m :

mq T

>u¢b”4

+P

En projetant sur les axes tangent et orthogonal au plan incliné :

IP| sin(e) = mgj . Png@)
R — | P| cos(a) = 0 R = mg cos(c)

En notant q et g, les conditions initiales sur la position et la vitesse, cherchons la
solution q(t) en intégrant cette équation différentielle du 2" ordre par rapport au
temps :

§(0) = gsin(@)
4(t) = gsin(@) ¢ + do
q(t) = = gsin(@) 2 + dot + o

b) Résolution par le principe des travaux virtuels
Le principe des travaux virtuels pour la seule partie mobile (N = 1), la masse m,
pour un déplacement virtuel compatible avec les liaisons, s’écrit :

N —
i=1
(P+R-p)-67 =0
On choisit un déplacement virtuel confondu avec le déplacement réel, donc compa-

S
tible avec la liaison supposée parfaite. Le travail virtuel de la réaction R du plan sur
la masse est alors nul, et nous avons :

[mg sin(a) — m{] dq =0
G = gsin(a)
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Exemple 2.4.4 : Masse glissant sans frottements sur un plan incliné motorisé

Une masse m glisse sans frottements sur un plan incliné se déplacant horizontalement
selon une fonction du temps connue x(t). Quelle est I’équation de son mouvement ?

oy

x(t)

ol

) X

FiG. 2.7 — Masse glissant sur un plan incliné motorisé

a) Résolution par la mécanique de Newton

Soit X I’accélération du plan incliné, et soit ?f I’accélération de la masse m relati-
vement au plan incliné. L’accélération de la masse m dans un référentiel galiléen
est la somme des accélérations ff + X. Appliquons la relation fondamentale de la
dynamique a la masse m :

m(q + X) =Z?(6)
=P+R

Le vecteur accélération g est parallele au plan incliné. En projetant sur les axes
parallele et perpendiculaire au plan incliné, nous avons :

{P sin(a) = mg + m¥ cos(x) {(j = gsin(a) — ¥ cos(a)

—Pcos(ax) + R = mi sin(x) R = m (i sin(a) + g cos(a))
Lorsque X = 0 on retrouve le résultat de I’exemple précédent, et lorsque

gsin(a) — X cos(a) < 0
gsin(a) < X cos(a)
gtan(a) < X

KiN . .2
le vecteur g est vers le haut, la masse m remonte le plan incliné.

b) Résolution par le principe des travaux virtuels
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qx(1)

q:(0)

@) X

Fic. 2.8 — Masse glissant sans frottements sur un plan incliné motorisé

Le systeéme n’a qu’un seul degré de liberté car la fonction g, (t) est donnée. Choisis-
sons g, comme coordonnée généralisée. Le déplacement virtuel étant compatible
avec la liaison, le principe des travaux virtuels pour la seule partie mobile (N = 1),
la masse m, s’écrit :

Avec
§q, = 6q; [cos(a)T— sin(a) J]

nous avons :

mg sin(a) — m [§; cos(a) + G,] =0
g, = gsin(a) — g cos(a)

Exemple 2.4.5 : Masse sur une trappe

Reprenons 1’ex. 1.7.3 de la page 21. Une masse M est posée sur une trappe qui s’ouvre
d’un angle 6(t) donné en fonction du temps. Quelle est 1’équation de son mouvement ?

FiG. 2.9 — Masse sur une trappe
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a)

b)

Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique a la masse M :

MT =10
=R+P

(2.4) page 57 donne I’expression de 1’accélération en coordonnées polaires dans la
base polaire orthonormée (—e)p, ?9) de centre o :

T = (5 - p&?) €, + (06 +206) €
Nous avons alors :
Mgsin() = M (p — p6?) g —p6% —gsin(6) =0
R — Mgcos(6) = M (o8 + 260) M|[pf +2p6 + gcos(®)| =R
Nous obtenons deux équations pour deux inconnues, p(t) et R(t).
Résolution par le principe des travaux virtuels
Le déplacement infinitésimal réel s’écrit,
4T = d(6E,)
=dp €, +pd€,
=dp €, + pdb €
et le travail réel de la force de contrainte R est non nul :
R-dT =R € (dp €, +pdo €p)

Choisissons le déplacement virtuel de sorte que la force de contrainte ne travaille
pas,

8T =6p €,
Le déplacement virtuel de la coordonnée p est noté dp. Il ne s’inscrit pas dans le
temps, il n’est pas fonction du temps, ni explicitement ni implicitement, contrairement
a la différentielle dp qui est une fonction implicite du temps. La difficulté tient au
fait qu’en physique tout déplacement réel dans 1’espace est une fonction explicite ou
a défaut implicite du temps. Ce n’est pas le cas en mathématique ou un déplacement
n’est pas nécessairement fonction d’un parametre. En ce sens, un déplacement virtuel
est un déplacement mathématique sans parametre.
Le travail virtuel de R est alors nul :

E-5?=R€9'5p€p
=0

Le principe des travaux virtuels s’écrit :
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(2.4) page 57 donne I’expression de 1’accélération en coordonnées polaires dans la
base polaire orthonormée (_e)p, 39) :

[Mgsin(6)€, — Mgcos(6)€g — M (5 — p6%) €,
—M (00 +2p0) €g|-6p €, =0
g —p%—gsin(6) =0
Pour trouver I’expression de la réaction de la trappe sur la masse M, on choisit un

déplacement virtuel pour lequel cette réaction travaille. Avec un déplacement virtuel
selon € g, nous avons :

[R + Mgsin(6) €, — Mgcos(6)€g — M( — p82) €,
—M (00 +200) €| - p56 €5 =0
R — Mgcos(8) — M(p6 + 266) = 0
R =M|[pB + 266 + gcos()]
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LA MECANIQUE DE LAGRANGE
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3.1 Equations de Lagrange

Repartons du principe des travaux virtuels appliqué a la dynamique (2.1) page 54, pour un systeme
a N parties mobiles, dans un référentiel galiléen non avons

i=1
N ) N N
Zml?i~5?i—ZFi-5?i=O (31)
i=1 i=1

-
ou I’on rappelle que F; est la somme des modeles des forces s’exercant sur la i¢ partie mobile.
Nous pouvons essayer de remplacer les produits scalaires par des scalaires. Le produit scalaire
d’une force d’inertie par un déplacement donne une énergie cinétique. En mécanique de Newton,



pour faire apparaitre les vitesses (donc 1’énergie cinétique), on écrit :

N N dr
Zmi?i-d?i=2m d dr
i=1 i

N
= Z m;dv;- v;
i=1
N on
= zd(-mivg)
4 2
i=1
N

Avec les déplacements virtuels nous ne pouvons pas tenir le méme raisonnement car 5T ; n’est
pas une fonction implicite du temps par I’intermédiaire des coordonnées comme I’est d T';. Il
représente une longueur, et non une distance parcourue. Le terme § T ;/dt est bien homogene a
une vitesse, une longueur divisée par une durée, mais ce n’est pas la vitesse réelle de la i® partie
mobile. 5 T; est fonction des variations infinitésimales des coordonnées 5x;, de la i¢ partie mobile
dans deux positions d’équilibre infiniment proches :

< 0T
5T, = S (3.2)
k=1 axk
En remplacant dans (3.1) nous avons :
1 l
Zmiri- Z Wéxk—ZFi- Z_: an 5xk—0
i=1 i=1 k=1
N N —
- 0T - 0T, )
> Zmlrl — =D F;- Sx; =0 (3.3)
k= ( i=1 dxic

Les m coordonnées x; ne sont pas toujours indépendantes si bien que la somme sur k est nulle
mais pas chacun de ses termes. Il nous faut utiliser les coordonnées généralisées g; (déf. 1.7.2
page 19) car elles sont indépendantes. Pour cela nous devons supposer que le systeme est holonome
(§ 1.7.3 page 19) pour utiliser les équations de liaison et supprimer les coordonnées superflues.
On effectue alors le changement de coordonnées suivant :

Vk=1,...,m Xk = [(q1s -5 qn) n<m (3.4)
Nous avons alors,
"X, a7, Y. o
JZ=1<;ml ' og) _;Fl oq; )5qj =0
Véq;, (g: mT;- aa?i - % F; o, ) 8q; =0
i=1 9 i oq;
aT; T

N N .
Vi=1,..,n m; -y F,-— =0
; H an g{ ' 0g;

Pour le second terme on pose la définition suivante :
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Définition 3.1.1 : Force généralisée

On appelle force généralisée selon le degré de liberté j, la quantité

N —
def - ari
Q= ;Fld_q]

—
ou I’on rappelle que F; est la somme des modeles des forces s’exercant sur la i¢ partie
mobile.

Avec cette définition :

il a7
v]:1’ ’n Zml?l a l:QJ
i=1 qj
Intégrons par parties le terme de droite :
N —
d - 0r; -
Vi=1,..,n —(m~f~-—l)—m-f- ( )] Qi (3.5)
; dt 11 aqj L1 aqj J

Etablissons maintenant les deux relations suivantes

3f; _of | 4 (9F - 2 (4n)
pour les remplacer dans (3.5). Pour la premiere relation, notons que le vecteur position de la i®

partie mobile dépend des coordonnées généralisées, et explicitement du temps lorsqu’une liaison
est théonome ou pour un référentiel en mouvement :

N L 0T aT;
dri(Qkaf)=2 3% dgy + T de

drl o7, . 6rl
3.6
Zaqk (3.6)
i<“‘> T2 e 5
dg; \ d aqj quk
6 aria&

En utilisant I’indépendance des coordonnées généralisées (1.3) page 19 :

dt; 0T,
Etablissons la seconde relation. Nous avons :
4T 5 8%T; 2T
d —l) L dg, + —Ldt
(aqj kzlaqkaqj U™ 3taq;
d (3T; 58T, . 8T
_(a_l) = 2 3q:9q 9 * 33g, 38)
qj k=1 qr9q; t qj
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D’autre part, en dérivant par rapport a g; la relation (3.6) page précédente

d (dr ) (Z arl _)i)
+
an aqj

an
R27, . IT aqk) 3 (a?i)
§ (aqjaqk U 3q, 3q;) " 3g \at

Les coordonnées généralisées et les vitesses généralisées ne dépendant pas explicitement I’une
de ’autre, le terme 0q;./0q; est nul

*(47) =3 s e+
dq; aqjaqk

Comparons avec (3.8). Les dérivations partielles 9/0q; et d/9qy. €tant continues, nous pouvons
les intervertir, d’ou la seconde relation

5 I; 0 (d?l)
dt 6qj 6qj d
Avec (3.7) et (3.9), (3.5) page précédente devient
N e
) d FS ot - O0fr;
Vi=1,...,n Zl—(mi i 5 ) miri._ll_Qj
o1 qj
V;

N —
—> aV'
dthlVl ——Zmlvla—qleJ
i=1 J)
d

N N
0 1 ) 0 1 )
dt (aqj ; zmivi)

-m;vi =Q
aq] i:l2

Définition 3.1.2 : Energie cinétique

On appelle énergie cinétique d’un solide i, la quantité

def 1 —>
—m Vi

i

L’énergie cinétique est un scalaire, elle est additive. Notons J 1’ énergie cinétique totale du systeme
(la somme des énergies cinétiques de toutes les parties mobiles)

deflzm

Nous avons alors n relations, une pour chaque coordonnée généralisée q; du systeme

Vi=1,..n i(a_f)_a_f

dt \ 8¢ =9

3.10
;2
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Remarque 3.1.1

Supposons le changement de variables de coordonnées généralisées rectangulaires a des coordonnées généralisées quelconques :

vk=1,...,n xk=fk(q1,-.-,qn)
dxy = Z afkd

xk—zafk

NI»—‘
a-N

=im 22(325) ]

En coordonnées généralisées, 1’énergie cinétique reste une fonction quadratique des vitesses généralisées mais peut dépendre des
coordonnées, le terme 877/9q j est alors non nul. Par exemple en coordonnées polaires :

T = %m,czzé2

Remarque 3.1.2
Les n équations différentielles (3.10) page ci-contre du 2" ordre par rapport au temps, sont équivalentes a la relation fondamentale de la
dynamique :
= d"
Z fl _ ap
k dt

k

Cette derniere est une écriture vectorielle qui donne 7 relations, une par coordonnée, également du 2™ ordre par rapport au temps du
fait des termes d’accélération.

3.1.1 Modéeles de forces dérivant toutes d’une énergie potentielle

Lorsque chaque modiﬂe de force f s’exercant sur la i® partie mobile dérive d’une énergie
potentielle, la somme F; de ces modeles de force dérive alors d’une énergie potentielle totale 12
qui est la somme des énergies potentielles des forces individuelles. Selon chaque degré de liberté
J, la force généralisée s’écrit :

N —>

. — or
Vji=l..n  Q=-) erad ()3
i—1 lj

5%
i=1 an

Vi=1,...n Q=-= G.11)
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Remarque 3.1.3

Le principe des travaux virtuels en statique (1.1) page 6 s’écrit :

et I’on retrouve (1.6) page 25 :

Les équations de Lagrange deviennent :

Vj =

1,...

N

dt

ot =
a—q' 5(1;) =0
oti .
. 6_q] 5q] =0
n
2. Qjdq;=0
j=1
ov
- 5q. =0
=1 9q; !
oV
— =0
an'
(a:r) 0T

(3.12)

Si I’énergie potentielle totale V(q, t) ne dépend pas des vitesses généralisées ¢, nous pouvons

ajouter le terme nul 0V/d¢; :

Définition 3.1.3 : Lagrangien

d

0
i3V

J]

d
50 7= =0

La fonction des n coordonnées généralisées g, des n vitesses généralisées ¢, et du temps

. def i
’C(q’ q, t) = T(q’ q, t) - V(q, t)

est appelée fonction de Lagrange ou lagrangien du systéeme.

Remarque 3.1.4

Le modele de force de la relation fondamentale de la dynamique, devenu modele d’énergie potentielle, est intégré au lagrangien. Il
faudra donc trouver un modele de lagrangien adapté au probléme a résoudre. La « physique »du probléme est donc contenue dans le
lagrangien. De plus, on note que par I’intermédiaire de 1’énergie potentielle, le lagrangien dépend du choix de ’origine des énergies

potentielles.

Remarque 3.1.5

L’énergie potentielle est fonction du temps lorsque le systeéme est dans un champ extérieur variable, p. ex. une particule chargée dans un

champ électrique variable.

Nous obtenons les n équations de Lagrange, une par coordonnée généralisée :

A

1,...

N

4
dt

(

oL
3G;

)

_9% _

(3.13)

Une équation par coordonnée ne signifie pas que les variables sont séparées, car le lagrangien peut
contenir toutes les variables (ex. du pendule double 3.5.2 page 117). Ces n équations différentielles
du 27 ordre par rapport au temps sont équivalentes a la relation fondamentale de la dynamique
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lorsque tous les modeles de force dérivent d’un potentiel. Chaque intégration de I’une de ces
équations différentielles faisant apparaitre une constante, il faudra spécifier 2n conditions initiales
pour déterminer les n coordonnées généralisées indépendantes : n conditions initiales sur les g et

n sur les q.

Exemple 3.1.1 : Masse glissant sans frottements sur un plan incliné

Une masse m glisse sans frottements sur un plan incliné. Quelle est I’équation de son

mouvement ?
w

(04

Fic. 3.1 — Masse glissant sans frottements sur un plan incliné

Si nous choisissons comme coordonnée la hauteur y de 1a masse par rapport au sol alors
I’énergie cinétique
1 /. .
T =-m(x? +y?
“m (i +y?)

fait nécessairement apparaitre la coordonnée x. Or nous n’avons besoin que d’une seule
coordonnée pour désigner la position de la masse, la coordonnée généralisée q (fig. 3.1) qui
tient compte de la liaison entre la masse et le plan incliné. En prenant I’origine de 1’énergie
potentielle de gravitation au sommet du plan incliné, le lagrangien a pour expression :

def
LS -V
=§mq2 + mgq sin(a)
’équation de Lagrange s’écrit :

4 (%)%,

dt \ 9q oq

d . . _
I (mq) — mgsin(a) =0

G —gsin(a) =0 (3.14)
4 = gsin(a)t + o
1

q= Egsin(oc) 2 + ot + qo

Exemple 3.1.2 : Pendule mathématique, simple, plan, gravitationnel

Une masse m est attachée a une corde de longueur p faisant un angle 6(t) avec la verticale.

Quelle est I’équation du mouvement de la masse m ?
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Fic. 3.2 — Pendule mathématique, simple, plan, gravitationnel

Ce pendule est dit « mathématique »par opposition au pendule physique pour lequel on
considere le moment d’inertie du pendule. Le systeme n’a qu’un degré de liberté. Il n’y
a donc qu’une coordonnée généralisée, 1’angle 6(t) que fait le pendule avec le temps.
Ecrivons le changement de coordonnées, de cartésiennes a polaires :

x = psin(6) x = pBcos()
y = —pcos(6)
L’énergie cinétique a pour expression
_1 22 2
T = 2m(x +5?)

= ém [0%62 cos?(0) + p?6? sin*(0)]

y = pBsin(6)

_ 1 242
= -mp S
et I’énergie potentielle s’écrit :
V =mgy
= —mgp cos(H)

D’ou le lagrangien :
L=T -V
1 /. .
=-m (%% + y*) — mgy

= %mpzéz + mgp cos(6)

L’équation de Lagrange s’écrit :
4 <5£) _9%
dt\g6) 96
d 25 ; —
m (0%6) + mgpsin(6) = 0

P8 + gsin(@) =0
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Exemple 3.1.3 : Pendule attaché a un point tournant

Dans le plan horizontal (x, y), un pendule de longueur p est attaché a un point tournant
a vitesse angulaire constante w sur un cercle de rayon R. Quelle est I’équation de son
mouvement ?

FiG. 3.3 — Pendule tournant dans le plan horizontal

Le passage des coordonnées polaires aux coordonnées rectangulaires (rectilignes et ortho-
gonales) s’écrit :

X = Rcos(wt) + p cos(wt + 0) % = —Rw ssin(wt) — p(w + 6) sin(wt + )

y = Rsin(wt) + p sin(wt + 6) Yy = Rw cos(wt) + p(w + 6) cos(wt + 6)

Il n’y a pas d’énergie potentielle, le lagrangien est simplement 1’énergie cinétique :

L=T==(¥+)%)
= %[szz sin?(ewt) 4+ 2Rw sin(wt)p(w + 6) sin(wt + ) + p(w + 6)? sin’(wt + 6)
+R%w? cos?(wt) + 2Rw cos(wt)p(w + ) cos(wt + 0) + p(w + 6)? cos*(wt + 6)]
= % [R?w? + 2Rpa(w + 0) cos(6) + p*(w + 0)?]

La seule coordonnée généralisée est I’angle 6. I’ équation de Lagrange s’écrit :

d(@f)_a_fzo

dt\58) 96
d . .
I [mRpw cos(6) + mp*(w + 0)| + mRpw(w + 6) sin(6) = 0
06 + Rw? sin(8) = 0
Cette équation en O est similaire a celle du mouvement d’un pendule simple plan dans un
champ de gravitation Rew?.
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3.1.2 Energie potentielle généralisée
Lorsque les modeles de force dérivent tous d’une énergie potentielle généralisée U(q, g, t) telle

que,

d

ou\ adu
Getn g= S (2) 2

ag;)  dq;

VieLon g(a_r) af_d(au) U

i5) 5 - @)~ s
. d| o 0

En définissant le lagrangien généralisé par

. def ) .
£(q,q,t) = 7(q,q,t) — U(q,q,1)

nous retrouvons les équations de Lagrange (3.13) page 74 :

. d (dL 0L
VJ—l,...,n &(a—qj)—a—q]—o

Exemple 3.1.4 : Particule chargée en mouvement dans un champ électromagnétique

Le champ électrique E et le champ magnétique B dérivent du potentiel scalaire ¢ (T, t)
et du potentiel vecteur A (T, 1) :

. A
= —grad () - 5+

— —

ol le vecteur rot (A) est le rotationnel de A. Soit q la charge électrique de la particule, et
soit V sa vitesse dans le champ électromagnétique. Sur cette particule s’exerce une force
électromagnétique, appelée force de Lorentz, dont le modele a pour expression :

f:q(§+7x§)

= q|-erad(@) - 22 + ¥ x ot (4)
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En projetant sur les axes :

o= af- wd@)], - 5| +[7xai(d)] |
h=al-mdo), - 5 +[vxmi(d) |
y

s BA| (o ==
E, = q{— grad (¢)|Z ~ 5 7t [V X rot(A)]Z}
Par exemple, pour la composante en x :

3 ¢ OA, 0A;,  0A, (an aAZ>

0x dy oz o0x
Or
L 0A, . 0A, . A, . 0A,
A = 2 di+ X de+ X dy+ Tz
dA, 0A, 0A, . 3A, . OA, .
&t - T Tyt
0A, _dA, _ 9A, 34, 34,
ot dt *ox Y ady % oz
nous donne :
[ 9 dA,  0A, A,  OA,
E=a=5 @ "9 +Uy6y Tz,
0A 0A 0A 0A
-y x| _ x z
+Uy<6x 6y) vZ(dz dx )]
_ ¢ dA, 0A, 0A,, 0A,
‘q< ax _ar T ax Ty TG
0 9 ., = dA,
|5+ 5 (V- A) -]
0 - - d[d ,» -
—al-5 6= 4) - g |55, (7 A
0 > - d( o - -
Ro=—glae=7 D)+ gz lae - v A))
On pose,

I’énergie potentielle généralisée qui engendre la force de Lorentz :

R () s
X dt\dv,) Ix
En prenant le lagrangien généralisé,
def
L= T-Uu

=%mvz—q(¢—Z-V)
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les équations de Lagrange donnent les équations du mouvement de la particule chargée

dans le champ électromagnétique.

Lorsque le champ magnétique est uniforme, c.-a-d. constant dans 1’espace, une condition
= — /> — 1= > X N =g

suffisante pour avoir B = rot (A) estque A = EB X 1. Soit donc a montrer que si B est

uniforme et A = %E X T alors B = rot (Z) Par hypothese :

R R Oy B, X
rot (A) = lrEf(B XT)= L (ay) X [(By) X (y)]
2 2 d, B, z

ax (Bxy - Byx) - (Bzx - sz)
ay) X [(Byz - Bzy) - (Bxy - Byx)]
0z (Bzx — Byz) — (ByZ —B.y)

[0y, (Byxy — Byx) — 9,(B,x — sz)]

N =

az(ByZ - Bzy) - ax(Bxy - Byx)
| 0x(Bzx — Byz) — ay(ByZ —B,y)

N =

-
Le champ magnétique B étant uniforme, ses dérivations partielles dans 1’espace sont

nulles :
N 2B,
rof (4) = - 2B,
2B,
=B

-
Si B est uniforme le lagrangien généralisé s’écrit :

f
s _u

:%mvz—q[¢—%(§x ?)-7]

3.1.3 Forces ne dérivant pas toutes d’une énergie potentielle

Lorsque les modeles de force ne dérivent pas tous d’une énergie potentielle, nous pouvons
séparer les forces s’exercant sur une partie mobile en une somme de force dérivant d’une énergie
potentielle et une somme de forces ne dérivant pas d’une énergie potentielle (notée avec une
barre) :

— — =
F;=—grad,(V) + F;

Les équations de Lagrange s’écrivent,

N —>
o d (67\ 97T _ — 2. 91
=t 5(5) s = Do+ Py G
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N — N —
d (0T oT or; = O0r
Vi=1,...,n —=)-==- rad (V) =—+ > F L
! dt(%) dg; ;g W ag; ,Z{ ' dq;
N N —
d (0T oT ov = 0r;
Vi=1,...,n —(—_)——:— — + F.- L
ai\eg) " aq =" m A
. d (oL oL
V]—l,...,l’l a(a_qj>—a—q]_Q]

dans lesquelles le lagrangien contient les €nergies potentielles de toutes les forces dérivant d’une
énergie potentielle indépendante des vitesses généralisées et ou la barre sur Q rappelle que ces
forces généralisées ne dérivent pas d’une énergie potentielle.

Exemple 3.1.5 : Forces de frottements sec

Soit une masse m glissant avec frottements sur un plan incliné. Quelle est I’équation de
son mouvement ?

q(?)

=
3

o

Fic. 3.4 — Masse glissant avec frottements sur un plan incliné

On prend comme modele de force de frottements cinétiques, une force proportionnelle a la
composante du poids qui s’exerce sur le plan incliné, et s’opposant au déplacement de la

masse : IR

2 v
f = —umgcos(ax) —
v
En utilisant la coordonnée généralisée q, I’énergie cinétique s’écrit :
1.
T = quz

Le lagrangien s’écrit,
L= %qu + mgq sin(c)

et I’équation de Lagrange a pour expression :

§ (%)% g
dt\dg) dq

d. . 9T
a(mq)—mgsm(oc)— f-a

G — gsin(a) = —u g cos(a)

sciences-physiques.neocities.org 81


http://sciences-physiques.neocities.org

82

Exemple 3.1.6 : Forces de frottements visqueux

Les forces de frottements visqueux (proportionnels a la vitesse), s’écrivent :

—

f=—uv

Nous pouvons les réécrire sous la forme :

f = —grad; (Zuv )
Avec ¢ la fonction de dissipation de Rayleigh, définie par

def 1

— 2
$ = Suv

nous avons : R .
f = —grad (¢)

En partant de la déf. 3.1.1 page 71 de la force généralisée, nous avons :

_ - 01
0 = f.. L
’ ;1 "9
N —
s or ;
= - Y erady () 5!
gi 79,
En utiliant (3.7) page 71 :
S — 3V
G =— erady (90 - S
i=1 9
-y %
i=1 an
o

Les équations de Lagrange s’écrivent alors
: d 6L) oL 0J¢
Vi=1,...,n — | =]-——4+=x=0
/ dr (aqj 3q; T 3

pour lesquelles il reste a préciser les fonctions scalaires £ et ¢.

Soit un mobile se déplacant dans un fluide, dans le champ de pesanteur terrestre. La force
de frottement étant supposée proportionnelle a la vitesse, la fonction de dissipation a pour
expression :

Mo .
¢ = E (Xz + y2)
En prenant le zéro de 1’énergie potentielle au fond du fluide, le lagrangien s’écrit,
m . .
L= 5(x2+y2)—mgy
Les équations de Lagrange donnent :

d(@L) oL 9% _

a\ax)  axta T mi + u% =0
i<a_£)_a_£+a_¢_0 my+uy+mg=20
a\ay) Ty "
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3.1.4 Forces de contraintes généralisées

Soit un systeme holonome a n degrés de liberté, donc a n coordonnées indépendantes. L’emploi
des coordonnées généralisées fait disparaitre les forces de liaison. Cependant, on peut ne pas
les utiliser et conserver n + k coordonnées x; non indépendantes, et trouver I’expression des k
équations de liaison holonome.

Ces k équations de liaison holonome s’écrivent :

Vi=1,..,k filx1, e s Xy t) =0 (3.16)

Imaginons un déplacement virtuel du systeme, donc a temps constant. Si ce déplacement virtuel
est compatible avec les liaisons alors les équations de liaison (3.16) sont encore valables dans
cette nouvelle position :

Vi=1,...,k filxy +0x1, oo, Xpgk + OXppis t) =0 (3.17)
ou f ne varie pas. Soustrayons (3.16) de (3.17) :

Vi=1,..,k fiGer + 0x1, oo s Xk + OXppser £) — (X1, oo s Xppgkr ) =0
Vi=1,..,k O fi(X1s oo s Xpgis ) =0

qui est la variation a temps constant de chaque f;, et qui s’écrit :

n+k 5f
i — sy, =
Vi=1,..,k Jzzl 3% 5x; =0 (3.18)

A partir de (3.3) page 70, 1’équation de la dynamique valable pour tous types de contraintes et de

coordonnées s’€écrit,
n+k N —
d (af) 8T — (ari)l
— === - F,-|— | |dx;=0
jz=1 ldt axJ axJ ; . 6xJ ; J

ou les §x; ne sont pas indépendants. On suppose sans perte de généralité, que ce sont les n
premieres coordonnées X; qui sont indépendantes. Les expressions entre crochets devant les n
premiers 6x; sont donc nulles :

N —
. d (0T\ 0T <= (3T _

i=1

Les forces généralisées sont (au maximum) au nombre de n, une force généralisée par degré de
liberté : ajouter des coordonnées superflues n’ajoute pas de forces. On suppose donc a nouveau
sans perte de généralité que ces forces s’expriment en fonction des n premieres coordonnées,

supposées indépendantes (cf. rmq 3.1.6 page 85),
; d (0T oT
Vi=1,...,n E(a—xj)—a—xj—Qj—O
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si bien qu’il reste :

n+k
3T
> dt(@x]> ax.]axj_o (3.19)

j=n+1 J

Les n premieres coordonnées €tant supposées indépendantes, les n premiers §x; dans (3.18) sont
indépendants, et leurs coeflicients respectifs sont nuls afin que la somme soit nulle :
ok

6xj

Vi=1,..,k Vi=1,..,n =0 (3.20)

Les équations de liaison ne sont donc pas des fonctions explicites des n premieres coordonnées.

Il reste :
n+k

Vi=1,...k 23 af‘ 5 (3.21)

Jj= n+1

En introduisant k multiplicateurs indéterminés A; entre I’éq. (3.19) et les k éq. (3.21), nous
obtenons :

n+k a.T n+k af
> |%(5)- axj] -3 S Lo

j=n+1 i=1 j=n+1
k
> |4(Z)-2-5a
~ dt \ 0%; ax ] ' 6
Jj=n+1 J J o i=1
Les conditions sur les multiplicateurs A4; pour que chacun des k termes soit nul sont les suivantes :

k
d (6T\ 6T 3f,
a(a—%)———ZA-—_o

4
A=
Les équations de la dynamique sont données par le systeéme d’équations suivant :

Vji=1,...,n i(a;’T) a——QJ—O

Vi=n+1,...,n+k

de \dx;) 9x;
k
N d (a7 o7 o _
Vi=n+1,...,n+k &(a_xj)_a_xj_;/lia_ﬁ_o

(3.20) de la présente page permettent d’écrire ce systeme d’équations sous la forme :

. d (0T
Vi=1,..,n+k E(a_xj) 3%~ Z/lla (3.22)

Ces équations montrent que les 1, f sont homogenes a des forces généralisées. On les appelle
forces de contraintes généralisées.

Lorsque toutes les forces dérivent d’une énergie potentielle indépendante des vitesses généralisées,
d’apres la définition (3.1.1) page 71 de la force généralisée et (3.11) page 73 :

N = 6?1 aV(XJ, t)

ZFi' ox; T ax;

On peut ajouter le terme nul dV/0Xx;, et avec la déf. 3.1.3 page 74 du lagrangien :

d(d_z) L & af

ai\5%) " ax " LM ay O

Vji=1,..,n+k
i=1

84 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

Exemple 3.1.7 : Cylindre roulant sans glisser sur un plan incliné

Un cylindre de masse m et de rayon r, roule sans glisser sur un plan incliné. Quelle est
I’équation de son mouvement ?

FiG. 3.5 — Cylindre roulant sur un plan incliné

Soit 6 I’angle de rotation du cylindre. En 1’absence de glissement, la distance r6 sur le
cylindre est égale a celle parcourue x. La condition de roulement sans glissement est
I’équation de liaison

ré—x=0 (3.23)
de la forme,
f(x,0)=0
avec, 57
ax = !
of
% =r

En choisissant x — r8 = 0 les signes seraient inversés. Il n’y a qu’un seul degré de liberté

mais nous utilisons les deux coordonnées x et O reliées par I’équation de contrainte (3.23).

L’expression de I’énergie cinétique comporte un terme en translation et un terme en rotation,
1. 1.4
J = me2 + E] 92

dans laquelle on conserve les deux variables x et 6. En choisissant I’origine de 1’énergie
potentielle au sommet du plan incliné, le lagrangien s’écrit :

L= %mxz + %Jéz + mgx sin(a)

Remarque 3.1.6

On peut aussi choisir indifféremment de prendre :

L= %m}'cz + %Jéz + mgr0sin(cr)
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Les équations de Lagrange s’écrivent,

d (55) oL _ ,of

a\ax) " ax = ax a(mfc)—mgsin(oc)=—/1
=
d /0L oL ., af d o
mi —mgsin(a) + 1 =0
N ..
-
"

L’équation de liaison (3.23) page précédente donne,

ré=x
r =i
d’ou

A=Tkrr = X¥=r*A/J

¥ (mr? +J) — mrigsin(a) = 0

mix — mg sin(a) + J_ch =0
r N {

mred _ mgsin(a) + 1 =0 A(mr? +J) = mJgsin(a) = 0
J
X — m_rz sin(a) =0
N mrz+ 7% B
J .
A= m mg Sln(a)

Pour un cylindre plein, de longueur [, le moment d’inertie s’écrit,

7= ///V rrzdm

=p/ r? 2zrrldr
0

_1 4
= Spnr l
= L2
2
et I’on obtient,
X — ggsin(oc) =0
A= § mg sin(a)

Les forces de contraintes généralisées s’écrivent,

def , 0
f =2 % fe = —é mg sin(x)
= 1
f def 1 % fo= JTmg sin(a)

f est la force de frottement sur la ligne de contact du cylindre avec le plan incliné. fy est
le moment de cette force de frottement par rapport a I’axe du cylindre, qui provoque la
rotation du cylindre sans glissement.
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Pour un cylindre creux, de longueur [, le moment d’inertie s’écrit,

J=r? /// dm
14
J = mr?
et I’on obtient,
.o 1.
X — Egsm(oc) =0
A= %mg sin(a)

b

Les forces de contraintes généralisées s’écrivent,

fe = —smgsin(@)
fo = %rmg sin(a)

On vérifie que ’on obtient le méme résultat en utilisant directement 1’équation de contrainte
(3.23) page 85 dans I’expression de I’énergie cinétique. Par exemple pour le cylindre plein :
12, 1 242
T = SmX + —mr 6

3.
= Zmx?
4

Le lagrangien s’écrit :
3 .
L= mez + mgx sin(a)

’équation de Lagrange s’écrit :

4Ly,
dt\ox) ox
% (me) — mgsin(a) =0

X — ggsin(oc) =0

3.1.5 Liaisons non-holonomes

Lorsque les liaison sont non-holonomes il n’existe pas de méthode générale pour éliminer les
coordonnées superflues. Cependant, dans le cas particulier ou elles sont données sous forme
différentielle non intégrable, on peut éliminer les équations de la dynamique dépendantes grace
aux multiplicateurs indéterminés de Lagrange.

Considérons un systeme a n degrés de liberté, et a n + k coordonnées dépendantes x;, dont les k
liaisons non-holonomes sont données sous la forme

n+k
Vlzl,,k Zaijdxj+aitdt=0
=1

ou les a;;j et les a;; sont en général fonction du temps et des x;. Ces €quations différentielles sont
supposées non intégrables, car sinon on se ramenerait au cas de liaisons holonomes.
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Exemple 3.1.8 : Equation de liaison sous forme différentielle intégrable

La condition de roulement sans glissement de 1’ex. 3.1.7 page 85 est intégrable. Qu’il y
ait glissement ou non, dans le référentiel galiléen 1i€ au plan incliné, la vitesse d’un point
quelconque du cylindre est la composition vectorielle d’une vitesse de rotation autour de
I’axe du cylindre, et de la vitesse en translation du cylindre. En I’absence de glissement, la
vitesse en rotation et la vitesse en translation des points au contact du plan incliné sont
égales en norme (et de méme direction mais de sens opposé) :

r = x
Cette liaison s’écrit sous forme différentielle,
rd@ —dx =0

Les coeflicients a;; et a;; s’écrivent donc (une seule liaison donc k = 1) :

Qg =7r
a, =-1
at =0
Elle s’integre en une équation holonome
r6—x=0

ou les constantes d’intégration 6, et x, sont choisies nulles.

Lorsque les équations différentielles sont non intégrables, les déplacements virtuels ayant lieu a
temps constant, nous avons

n+k
Vi=1,...,k Zau5x]=0
j=1

Par analogie avec (3.22) page 84 du § précédent, en introduisant k multiplicateurs de Lagrange,
les n + k équations de la dynamique s’écrivent

. d (0T
V]—l,...,n+k d—t(a—xj) aXJ Z/‘L alJ—O

et lorsque toutes les forces dérivent d’une énergie potentielle indépendante des vitesses générali-
sées :

| d (0L
Vi=1,..,n+k a<6_xj) axj igll1

Exemple 3.1.9 : Equations de liaison sous forme différentielle non intégrable

Reprenons I’ex. 1.7.4 page 22 du disque roulant sans glissement sur un plan horizontal. Ce
systeme se déplace dans le plan, il est a n = 2 degres de liberté. Les k = 2 équations de
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liaison du disque avec le sol s’écrivent :

(3.24)

dy + rcos(p)dd =0

dx — rsin(p)df =0 - a;10x; +a;36x3 =0
a215x1 + a235x3 = 0

(x,y,6,¢9) sont les n + k = 4 coordonnées dépendantes. Soient M la masse du disque, A
son moment d’inertie par rapport a son axe et B son moment d’inertie par rapport a un axe
qui lui est perpendiculaire et qui passe par son centre. Le lagrangien a pour expression :

— a2 vy Lag2 o 1ps2
L= -M(x*+y?) + SA0” + - B¢
Les équations de Lagrange s’écrivent :

0L 0L
( ) 6 —(han+Aa5 + 4303 +44a4) =0

—(hann +Aa5 +A3a53 +44024) =0

d—( 5%
‘d(az)
(= Aay;+4,0, +A3a31 +A404;) =0
i\ 38 - (4 an 2 Ao 3a31 4 Q41)
d /oL
d_ (%) —_—_— = (/11 an + AZ an + /13 (058} + /14 a24)
MxX—-1,=0
N My—2,=0
Ab + Arrsin(p) — Ayrcos(p) =0
Bp=0

Les six variables (x,y, 6, ¢, 4;,1,) sont déterminées a partir de ces quatre équations et
des conditions de liaison (3.24). Il faut également fixer les valeurs initiales de deux des
variables X, y, 8, ¢, ainsi que leurs dérivées par rapport au temps.

3.2 Propriétés du lagrangien et des équations de Lagrange

3.2.1 Equivalence avec la relation fondamentale de la dynamique

Montrons d’abord que les équations de la dynamique de Newton impliquent celles de Lagran
Les équations du mouvement de 1’une des parties mobiles s’écrivent sous forme vectorielle

—

ST0-F
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ou le membre de gauche est la somme des forces extérieures exercées sur la partie mobile étudiée,
et p est son vecteur quantité de mouvement. Cette relation vectorielle qui regroupe trois relations
scalaires est appelée relation fondamentale de la dynamique. L’ égalité n’est pas stricte car les
i
f ,Ee) sont des modeles de forces exercées sur la partie mobile. Remplagons la somme des forces
par une unique force : N
F=p
Si chaque modele de force exercée sur la i partie mobile dérive d’une énergie potentielle, cette
relation devient :
. -

—grad(V) = p

P est un modele d’énergie potentielle. Si la masse m de la partie mobile étudiée est constante :
e
—grad (V) =ma

En coordonnées rectangulaires (X;) :

Vji=123 m¥= —g—: (3.25)
j

Pour retrouver les équations de Lagrange, introduisons I’énergie cinétique totale du systeme :

En coordonnées rectangulaires :

Pour I’une des parties mobiles (valeur de i fixée) :

; N . ; d (0T .
Vji=1,2,3 6_)'cj_mxj => Vj=123 &<a—xj)—mxj

Remplacons dans les équations de Newton (3.25) de la présente page, pour la partie mobile
étudiée :

. d (0T ov
Vi=123 a(a—xj)— ax;
En soustrayant le terme nul 077/9x;
. d (0T oT ov
vi=L23 g (a—xj) R (3.26)

nous trouvons les équations de Lagrange (3.12) page 74 en coordonnées rectangulaires. Pour
comprendre I’origine de ce terme nul a soustraire, effectuons quelques changements de coordon-
nées.

a) Transformation des coordonnées rectangulaires (X, y, z) en coordonnées obliques (recti-
lignes non orthogonales) (x',y’,z") :

x' = x — y/tan(a) x =x"+y cos(a) X =Xx"+ Y cos(a)
y' = y/sin(a) = dy =y sin(a) = {y =y sin(a)
z' =z z=7z z =7z
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L’énergie potentielle totale du systéme est indépendante du systeme de coordonnées dans

lequel on I’exprime :

V(x,y,z) =V(x',y',z")

— Vl(x/,yl,zl)

De méme, I’énergie cinétique totale du systeéme est indépendante du systeéme de coordonnées

dans lequel on I’exprime :

1

[\

—
z I

—i (x +yl +zz)

== Z m; [(x] + Y} cos())* + (¥} sin(a))? +

[\

i=1

=7

()]

Ce n’est pas une fonction explicite des nouvelles coordonnées (x’,y’, z"). L’absence du
terme 7°/0x; n’est pas due au caractere orthogonal du systeme de coordonnées choisi.

b) Transformation des coordonnées rectangulaires en coordonnées cylindriques (curvilignes

orthogonales) (o, ¢, z) :

p=1x2+y2 x = pcos(¢) X = pcos(p) — pe sin(¢)
¢ = arctan(y,x) = ¥ = psin($) =V = psin($) + ppcos(¢)
z=2z z=2z z=2z

p =0, < ¢ < 2m, —00 <z < +00

L’énergie potentielle totale du systeme est indépendante du systeme de coordonnées dans

lequel on I’exprime :

V(x,y,z) = V(p,$,z)

L’ énergie cinétique totale du systeme est indépendante du systeme de coordonnées dans

lequel on I’exprime :

Tz—Zml(x + Y7 +z7)

N
= Z mi | (61 cos($) — pidisin($p)” + (61 5in(@0) + pigrcos(9)” + (2]

z_\r
= Z 1 (67 + P77 + 27)

C’est une fonction explicite de la coordonnée p. Pour I’une des parties mobiles :

Uy fi(
ap e de
oTr 5 d
T
9T s 4
\9z \dt
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9
8T

o
oT
oz

=)=

) = 2mppd + mp>¢p et

) g

(0T
dp

E4

= p¢?

=~ =0

o¢
0T

\3z
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Le terme 077/0x; est donc dii au caractere curviligne des coordonnées.

Cherchons les équations du mouvement en coordonnées cylindriques. Les vecteurs unitaires
de la base cylindrique ont pour expression :

E’p = cos(@)l + sin(¢)J
E)qb = —sin(@)T + cos(¢)]
K

€,
Le vecteur position s’écrit :
F(0.$.2) = peos(@) i+ psin(@) j + 2K
= o(cos(¢p) T+ sin(@) ) + zK
=p€,+2€,

Nous avons besoin de la dérivée des vecteurs de base pour exprimer la vitesse et 1’accélé-
ration :

Ep = —sin(¢) P14+ cos(d) p ] gp =¢¢€,
Ep=—cos@)PT—sin@)$] = |E€s=-¢2,
gz = E gz =0

Le vecteur vitesse est la dérivée premiere du vecteur position par rapport au temps :
d
—> — —>
V= E(pep+zez)
=pE€,+pe,+z¢€,
=p€,+p6€g+2€,
Le vecteur accélération est la dérivée premiere du vecteur vitesse par rapport au temps :
—> _ d «—> ;| —> «—>
a = E(pep +pp€y+2¢€,)
=pe,+pe,+ppey+ppey+ppéyt+ie,
=B€,+pPpeCy+pPpey+ppey —pPp> €, + 7€,
= (p—p6?) €, + (2066 + p8) € + £¢€,
En coordonnées cylindriques le vecteur gradient s’écrit :

( ov
"%
_Lov
p 0¢
v
2=

En coordonnées cylindriques les équations de Newton s’écrivent :

<F¢=

mp — mpg? = -2

. i 10V
12mp¢ + mpp = =53

mz——a—v
\ 0z
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En remplacgant les termes présents dans les équations de Newton ci-dessus, nous retrouvons
les équations de Lagrange :

(d (aT\ 8T _ AV
&(Tp)‘%“%

¢£<5_7)_3_7=_5_V & Vi=1 .. .n g(a_f)_a_f__a_v
dt\ag) 3 3¢ J= L drt\dq) " 3~ aq;
d (a7\ a7 _ av

E(E)_E__a_z

Dans (3.26) page 90, il reste a remplacer les coordonnées rectangulaires (;) par des coordonnées
généralisées (qj) :
{Vj =1,...,n qj = qj(X1, - s X, 1)
Vji=1,...,n X = xj(ql, oo sQpst)
La dépendance explicite en t permet le passage a des référentiels en mouvement (voir § suivant).
L’énergie cinétique totale du systeme s’écrit :

1 N
— 2
TJ = 5 Z m;v;
i=1
Cherchons les équations du mouvement de 1’une des parties mobiles :

N =)
o7 1 ov;
Vi=1,...,n — == m—=—

Avec (3.7) page 71 :

Nous retrouvons les équations de Lagrange (3.10) page 72 en coordonnées généralisées.

Montrons a présent que les équations de la dynamique de Lagrange impliquent celles de Newton.
En coordonnées rectangulaires dans 1’espace, le lagrangien de 1’une des parties mobiles s’écrit :

L= %m(x2 + Y2 +2%) = V(x,y,z,1)
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Nous avons alors

’i(a_ﬁ)_a_‘?_o (d 9V _ (dpx _ 0V
dt\ax) oax g (mH) =5 =0 dr ~ ox
d (0L\ 0L d .= 9V _ dp, ov
@(5)-5-0 = jam-5-0 > 1F-5F
d (L) oL d, - v _ dp, 9V
a(a) 5z =0 G "D~ =0 TR

dp —
=> s —grad (V)

qui est I’équation fondamentale de la dynamique de Newton dans le cas de forces conservatives
(forces dérivant d’un potentiel de force, aussi appelé énergie potentielle).

Remarque 3.2.1

En coordonnées rectangulaires, les équations de Lagrange peuvent s’écrire sous forme vectorielle :
42y 2t
dt \ ox ax ~
d(sEy_sE_, . 43y L
dt\ady) ay ~ dt\av) ar
4 (%) _9%% _,
de \ dz 0z

Remarque 3.2.2

Par dérivée d’une grandeur scalaire par rapport a un vecteur, 9y.£ et 3£, on entend un vecteur dont les composantes sont égales aux
dérivées de cette grandeur par rapport aux composantes correspondantes du vecteur.
Le vecteur 8 £ de composantes 8xL, 9L, 9L, est le gradient du lagrangien.

3.2.2 Covariance par changement de référentiel galiléen

a) Soit R un référentiel galiléen de systeme de coordonnées rectangulaires (X, y, z, t), et soit
R’ un second référentiel galiléen de systeme de coordonnées rectangulaires (x',y’, z’,t")
de méme orientation, en mouvement a vitesse relative uniforme v selon 1’axe des x. La
transformation de Galilée des coordonnées spatio-temporelles permet le passage d’un
référentiel a I’autre :

x =x—ut L.
Y=y X'=x-v
: = V=Y
Z = Z ./ -
z'=2z
t'=t
L’énergie potentielle totale du systeme ne dépend pas du référentiel dans lequel on I’ex-

prime :

V(x,y,z) =V'(x',y',z")
Les équations de Newton sont covariantes par changement de référentiel galiléen, par la
transformation de Galilée. Cela signifie qu’elles sont invariantes de forme fonctionnelle,
la fonction reste la méme mais les variables changent. Autrement dit, par changement de
référentiel galiléen par la transformation de Galilée, les équations de Newtons s’écrivent
pareil, en remplagant x par x’. Dans R’ :

Vji=1,23 m&=- (3.27)
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L’énergie cinétique totale du systeme dépend du référentiel dans lequel on I’exprime :

| N
T=§Zmi(xi2+yi2+zi2)
i=1

N

- %Z m; [ (%] = v + 3,2 + 2]
) l]_\Jl
= 5 Z m; (x;z — 2x;U + U2 + ylfz + Z:Z)
i=1
=T+ %Zmi(—zxgv+vz)

i=1

Dans le référentiel R’, pour 1’une des parties mobiles :

' r 4 '
r%zm}k’+mv %(g?)zmx’ f%zo
oT”’ . d (o7’ . oT”’
‘a—y,=my = ‘&<a—y,)=my et 'a—y,=0
0T’ ., d (o7’ ) 0T’
oz~ ™ E(az'f)z z 9z ~

En remplacant dans les équations de Newton (3.27) page ci-contre, nous retrouvons les
équations de Lagrange dans R’ :

- AN
=123 dt(d)&j) 5% o]

Les équations de Lagrange sont covariantes par changement de référentiel galiléen, elles
conservent la méme écriture.

b) Changement de coordonnées du référentiel galiléen R au référentiel R’ en mouvement de
rotation uniforme a la vitesse angulaire cw dans le sens trigonométrique autour de 1’axe des
Z:
x = x" cos(wt) — y' sin(wt)

y = x'sin(wt) + y’ cos(wt)

z=2z

X = X' cos(wt) — y' sin(wt) — w[x sin(wt) + y’ cos(wt)]
=> y = X' sin(wt) + ¥’ cos(wt) + w[x’ cos(wt) — y' sin(wt)]
z=12z

(%% = [X' cos(wt) — Y’ sin(wt)]? — 2w[x’ cos(wt) — ¥y’ sin(wt)][x’ sin(wt) + y’ cos(wt)]
+ w?[x’ sin(wt) + y’ cos(wt)]?

1% =[x’ sin(wt) + Y’ cos(wt)]? + 2w[x’ sin(wt) + ¥’ cos(wt)][x’ cos(wt) — ' sin(wt)]

+ w?[x’ cos(wt) — ¥’ sin(wt)]?

2 2

. ./
z° =2z
AP+ =%2492+ 22+ (X2 +y?) + 200'x — X'y
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L’énergie cinétique totale du systeme s’€crit :

| N
T=§Zmi(xi2+yi2+zi2)
i=1

z

1 ! ! !/ ! !
EZmi[fc2+y2+z'2+co2(x2+y2)+2co(y’x’—x’y’)]
=
1 1 N
=7+ 3 Z m; [wZ(x 2 +y 2) + 20(y'x' — x/y/)]
i=1

Pour I’une des parties mobiles :

' r 4 '
(aa% =mx' + mwy' %(aa‘z; ) =mx + mCUy, (aa% = —mw?x’ — mcoy’
] T _ my' — mowx' = 1 4 (67’) =my’ — mwx' et 3 T _ —ma?y’ + mwx’'
oy’ dt \ 9y’ oy’
oT”’ ., d (0T . oT”’
oz~ M2 E(az">=mz 3z = °
Le terme 077/0x; est donc aussi dil au caractere non galiléen du référentiel.
rd (0T’ o’ - 2. ./
E(aw)‘ E = mX + mw°x + 2mwy
14 <6T> _T my’ + maw?y' — 2mwx’
de \ oy’ oy’
d (97’ oT”’ .
E(az'f)_ gz~ "

mw?x', mw?y’, 0 sont les composantes de la force centrifuge, 2mawy’, —2mwx’, 0 celles de la force
de Coriolis. Toutes les forces fictives, pas seulement centrifuge et de Coriolis, sont comprises dans
I’expression de I’énergie cinétique totale du systeéme exprimée dans le référentiel en mouvement.

3.2.3 Similitude mécanique

Les équations du mouvement sont invariantes lorsque 1’on multiplie le lagrangien par une
constante :

d[a(esexL)] d(cs**xL) ~o

d (613) oL 0
Cette circonstance permet la similitude mécanique. Soient k, a, 3, ¥ des constantes. Supposons la
transformation suivante :
—> —
r -ar, t—-ft, m-ym
L’énergie cinétique se transforme alors ainsi
Imv? = Lym « v
2 Y B2
ya?

2
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Si I’énergie potentielle est une fonction homogene des coordonnées

V(C(?l, 0(?2, cee s C{?n) = akV(?l, ?2, cee s ?n)
alors X
a
TV oy
B2
Pour que le Lagrangien soit multiplié par une constante il faut et il suffit que
2
Y& _ gk
B2
)/sz_k — 52
On a alors
L - aks

Exemple 3.2.1

Dans un champ de force homogene, p. ex. en restant proche de la surface de la Terre,
I’énergie potentielle est une fonction linaire de la hauteur, du type mgh. Donc y n’intervient
pas puisque m est présente linéairement dans T et V, etk =1:

a=p?

Les carrés des temps de chute sont dans le méme rapport que les hauteurs de chute.

Exemple 3.2.2

Pour de petites oscillations mécaniques, 1’énergie potentielle est quadratique en x, du type
1
Ekxz, donck =2:

— B2
y=8
La période des oscillations est indépendante de leur amplitude, mais varie comme la racine
carrée du rapport des masses oscillantes.

Exemple 3.2.3

Dans le cas de I’interaction newtonienne, I’énergie potentielle est linéaire en m et est une
fonction inverse de la distance, donc k = —1 :

a3:ﬁz

Pour les orbites elliptiques, les carrés des temps de révolution sont proportionnels aux
cubes de leurs dimensions. C’est la troisieme loi de Kepler.

Si I’énergie potentielle est simplement multipli€ée par une constante
VY - kV

alors

2
T—V—Jﬁiz:r—kv
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Pour que le Lagrangien soit multiplié par une constante il faut et il suffit que

2
ree _ .
2

On a alors
L - kL

3.2.4 Caractere scalaire du lagrangien

Les quantités considérées sont toutes des scalaires, et non plus des vecteurs comme en mécanique
de Newton. La mécanique analytique exploite directement le fait que la plupart des modeles de
force en physique dérivent d’une énergie potentielle :

F = —grad (V)
tot F = —rot grad (V)

—

0

soit,
OyF, (x,,2) = 0,F, (x,,2) = 0

azFx (x,y,z) - asz (x,y,z) =0
axFi)(x’y’Z) - ayF;c (x,y,z) =0

N
Les trois composantes de la force F sont reliées entre-elles par trois équations, ce qui explique
pourquoi on peut les remplacer par 1’unique scalaire V.

3.2.5 Additivité du lagrangien

Soient deux systemes physiques indépendants, d’énergies cinétiques respectives J et %, et
d’énergies potentielles respectives 1] et 15. Pour le systeme global nous avons :

T=%+5

V=+%
T=V=FH+%H)-M+MN)
= -N+&H-N)

L=L+L,

La fonction de Lagrange est donc additive.

3.2.6 Invariance de jauge du lagrangien

Le lagrangien est défini a la dérivée totale par rapport au temps d’une fonction f des n coordonnées
généralisées q(t) et du temps pres. Autrement dit, le lagrangien,

L(q(t),q(t),t) = L(q(t),q(1),t) = % (3.28)
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donne les mémes équations du mouvement que le lagrangien £ seul. Nous pouvons aussi écrire
I’équivalence suivante :

£(q,4,t) = £(q,4,t) + dfgi, £)

Remarque 3.2.3

Le choix d’un signe positif ou négatif est bien entendu affaire de convention.

En effet, montrons que :
o d|od df(q,t)] d [df(q,t)] _
Vi=L...n dt{aqj[ dt gl ar |70

Ecrivons la dérivée totale de f par rapport au temps :

Soit donc a prouver que :

n 2 2
> af.qi+ f):o (3.29)

Ecrivons la différentielle de df/ dqj puis sa dérivée totale par rapport au temps :

()~ 2 o (5o (55

n
o*f o*f
=> -dg + 3t9q dt

La variable muette k peut étre remplacée par i, et (3.29) est bien nulle. Le lagrangien subit une
transformation de jauge ou est dit invariant de jauge.

sciences-physiques.neocities.org 99


http://sciences-physiques.neocities.org

Exemple 3.2.4
Soit la fonction f(qy,qa,t) = q1G% + @3t

f _f of
af _ af f af
ar aq Dtz Rt

= 3G, + 33241 + 24,914, + 2tq3

Les lagrangiens £(qq, @2, t) et L(qq, 2, t) = £ + G341 + 363124, + 2q2q14» + 2tqs sont
équivalents pour décrire 1’évolution d’un systeme.

3.2.7 Condition nécessaire et suffisante pour avoir un lagrangien

Une condition nécessaire et suffisante pour qu’une fonction F(q(t), q(t), t) soit un lagrangien est
qu’elle soit la dérivée totale par rapport au temps d’une fonction des coordonnées et du temps :

F(G(), q(0), 1) = %

Autrement dit F(q(t), q(t), t) est un lagrangien si et seulement si F = dF(q(t), t)/dt.

« condition suffisante

Soit a démontrer que si F = dF(q(t), t)/dt alors F(q(t), q(t), t) est un lagrangien.

Par hypothese :
_dF(q,t)
7= dt
F
- ar Z dq] a
5F (g, 1) i dF(q,t)
=1 aqj J ot

F(q,t) n’étant pas fonction des g on en déduit :
0F OF

V.=1,...,n — = —(q,t
J 54 " 3q (g, 1)
0F\ < O°F 82F
d{=—1|= ———dg; + =——dt
(aqj> =1 99:9q; @ 9tdq;
g(a_gr> _ < O°F Gt 9°F
dt dqj 01 6qjaql ! 5qjat
D’autre part :
, 0F « O*F .  O°F
Vi=1,..,n -— q +
oq; aqlaqj dq;0t

Z": 62F
- qjaql 6qj6t
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En comparant ces deux résultats,
. oF oF
V]—l,...,l’l a(a—qj)—a—q]

F est donc bien un lagrangien quelle que soit sa forme fonctionnelle et quelle que soit la
dépendance temporelle des coordonnées q;(¢).
condition nécessaire

Démontrons que F(q(t), q(¢), t) est un lagrangien seulement si F = dF(q(t), t)/dt, autre-
ment dit si F(q(t), q(t), t) est un lagrangien alors & = dF(q(t), t)/dt.

Par hypothese :
. d (0F\ oF
Dans le cas général 05/9q; est une fonction de g, gj, ¢
OF\_x O°F . o 8T OF
d (—> q + + ——dt
9q; Z  96;94; % Z 9q94; 8ql dtdq;
d (5_?) Z”: PF Z”: 3°F i L7
dt \ dq; = dq 6ql 4 0q; 8ql dtdq
si bien que (3.30) devient :
n n
2F 92T P2F  9F
Vi=1,...,n —g; + .+ -
2 3455 7+ 2 3q55, 9+ 506, ™ oa
07(q, g, t)/0q; n’étant pas une fonction des §j
n
9%F
Vi=1,..,n - =
jzzl 0q;04;
et F est donc une fonction linéaire des ¢, de la forme :
n
F(q.4.1) = Y, Gla. )¢ + H(q. 1) (3.31)
j=1
Nous avons alors d’une part,
Vji=1,...,n a?—G(q,t)
ad;
F " 6GJ 6Gj
(%) TR
d (oF G an
a (a_) Z 3 4 o
et d’autre part :
" 9G;
Vi=l..on  Z - g oH
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Injectons ces deux résultats dans les équations de Lagrange (3.30) prisent pour hypotheses :

n 6G OH
Vi=1,...,n
/ Z 5ql Z aqj aqj
(% a_G) a_G _on
~\dq; Iq; P ot aq;

dH(q, t)/dq; n’étant pas fonction des ;

0G; OH
- -2
Vi=1,...,n 3 aqj (3.32)
0G; 3G
Vi,j=1,..,n = =—1!
/ 9q; an
Par exemple :
56, _ 3G,
dq, dq
Cela implique
. dF(q,t)
Vi,j=1,...,n Gi(q,t) =

car on a bien :
8%F(q.t) _ 0%*F(q,1)

0q20q1 99104,
Les équations de Lagrange (3.32) donnent alors :

8°F(q,t) _ 0H(q,t)

V=L L
0F(q,t)
T H(q,t)

D’apres (3.31) la fonction F doit donc €tre de la forme :

n
: 0F(q,t) . JF(q.t)
F(q,q,t) = :
_ dF(q,t)
dt

3.2.8 Covariance des équations de Lagrange par changement de coordonnées

Lorsque nous avons établi les équations de Lagrange (3.10) page 72, nous n’avons pas fait d’hy-
pothése sur le systeme de coordonnées généralisées utilisé. Par conséquent les équations de
Lagrange sont valables dans tout systéme de coordonnées généralisées. Elles sont covariantes
(invariantes de forme fonctionnelle) par changement de coordonnées. Nous pouvons démontrer
cette covariance. Soit L(Q, Q(q, g, t), t) le nouveau lagrangien exprimé dans les nouvelles coor-
données (Q(q, t), Q, t). A chaque instant ¢ les lagrangiens nouveau et ancien sont égaux puisqu’il
ne s’agit que d’un changement de coordonnées :

L(Q, Q1) = £(q,¢, 1)

102 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

Dans le cas d’un seul degré de liberté (une seule coordonnée généralisée) :

dL(Q]’ Qj’ t) = dL(q’ q’ t)
dg dg dg
= d_qd q+ d—qd q+ Edt

_cw 84 4\ 9€ (34 40, % 4o, %4, 4 9€

(anQ dt) (an 690+ 3 dt)+dtdt
(4 dg 48 ) (48 30) 1y (420 , 421 o)
_(dq 30 T 4g 6Q>dQ+(dq aQ) Q (dq 3t Tagor Tar)Y
gL . AL .. oL

=EdQ+a—QdQ+§dt

Or nous avons également

dq = ang+aq
6QQ+

99 _ 9q

30  9Q

Si bien que nous avons les trois relations

(9L _dt dq  dL 4g

50 = dq 3Q * 14 30 (333
oL d£ dq

JOL _dL 9q 3.33b
0Q dq dQ ( )
dL _dLdq dLdq  dL

3t Tdgar Taga T @ (3.33¢)

Donc

i(ai)_ai_i(d_ﬁa_q)_(d_ﬁa_hd_ﬁ%)

t\aQ/ 9JQ dt\dg dQ dg 0Q  dq 9Q
_0dq d (dL dC d (dq d dg d£ dq
_%ﬂ_) d_qE(E)_d_q%_d_q%
_0q[d (oL ds
-3l2()-%

Ainsi, la nullit¢ du membre de droite implique celle du membre de gauche. Si le systeéme possede
plusieurs degrés de liberté

i(a_L>_0_L e EY AN

dt an 0Q 47 0Q; | dr\dqgx dqy

Les équations de Lagrange se transforment comme les composantes covariantes d’un vecteur de
I’espace de configuration.

Contrairement aux équations de Lagrange, les équations de Newton ne sont pas covariantes par
changement de coordonnées. En effet, soit un mobile soumis a une force dérivant d’une énergie
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potentielle V, les équations de Newton de la dynamique en coordonnées rectangulaires (x, y)
s’écrivent :

e _3V(y)
0x
. 0V(xy)
En passant en coordonnées polaires (p, 6), nous n’avons pas :
i = oV (ps
.. 0V (o5
mo=—""%6

3.3 Intégrales premiéres du mouvement

Les intégrales premieres sont des fonctions des coordonnées généralisées q et des vitesses
généralisées ¢, qui se conservent au cours du mouvement. Une intégrale premiere est donc de la
forme :

flq.q) =c**

Ces équations différentielles sont du 1¢" ordre en ¢ (dérivée premiere par rapport au temps des
variables q), alors qu’en mécanique de Newton les équations diftérentielles du mouvement sont
du 2 ordre en t par les termes d’accélération. Ces dernieres sont intégrées une premicre fois.

La résolution de I’équation du mouvement d’un systeme mécanique ayant n degrés de liberté
nécessite n conditions initiales sur les coordonnées et n sur les vitesses, soit 2n constantes.
Les coordonnées généralisées et les vitesses généralisées sont des fonctions du temps et de ces
constantes :

Vi=1..,n  q=q(tq},....q0.4 ....4%)

Vj=1,...,n q]=qj(t,q(1)99ql(’)l’q?’q%)

Dans I’ex. 2.4.3 page 64, nous avions trouvé q(t) = % gsin(a) t2 + ot + qo. 11 est toujours

possible d’effectuer une translation dans le temps, qui correspond a un changement d’origine du
temps :
T=1 + to

Cela permet de supprimer 1’une des constantes (ex. 3.3.2 page 106), constantes que 1’on note C
dans ce qui suit :

Vji=1,..,n qj =qJ~(T,C1,...,C2n_1)
V] =1,..,n qj' =C1j(T,C1a---:C2n—1)

En inversant ces relations, nous avons :
Vi = 1,...,2n—1 Ci = Cl(q,Q)
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Nous pouvons par conséquent former au plus 2n — 1 intégrales premieres du mouvement pour un
systeme a n degrés de liberté. Cependant, toutes les intégrales premieres sont loin de jouer un
role d’égale importance en mécanique .

Exemple 3.3.1 : Masse glissant sans frottements sur un plan incliné

Une masse m glisse sans frottements sur un plan incliné. Quelle est I’équation de son
mouvement ?

q(t) B

ol

FiG. 3.6 — Masse glissant sans frottements sur un plan incliné

A n =1 degré de liberté correspond 2n — 1 = 1 intégrale premiére. La force de pesanteur,
seule force extérieure, dérive d’une énergie potentielle, donc 1’énergie mécanique est une
intégrale premiere. Elle nous fournira une équation, pour une variable, donc la solution
q(t). En prenant I’origine de 1’énergie potentielle de pesanteur au sommet du plan incliné,
I’énergie mécanique s’ écrit

def

E=T+7V
1. .

= quz — mgqsin(a)
— cste
C’est une équation différentielle du 1° ordre par rapport au temps, qui s’integre par
séparation des variables. Pour une énergie potentielle quelconque :

“mg? = & - V(q)

dg 2
T ;[3 - V(q)]

t=\/E/—dq + cste
2 ) \e-v(g

Remarque 3.3.1

Vérifions que £ est bien une intégrale premi¢re des équations différentielles du 2" ordre par rapport au temps, du mouvement.
En la dérivant nous devons retrouver 1’équation différentielle (3.14) page 75 :

d&
ar =°
d . .
I [%qu - mgq sm(oc)] =0

mqq — mgqsin(a) = 0

§—gsin(a) =0

1. L. Landau, Mécanique (Editions Mir Moscou, 1982).
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Exemple 3.3.2 : Pendule mathématique, simple, plan, gravitationnel

Le pendule mathématique, simple, plan, gravitationnel (voir fig. 3.2 page 76), n’a qu’ un
degré de liberté, I’angle 6 avec la verticale, donc une seule intégrale premiere, 1’énergie
mécanique :

émpzé2 + mgp[1 —cos(0)] = €

Pour de petites oscillations, cos(6) ~ 1 — %92 :
%mpzéz + émgp@z =&

L amplitude est maximale, 6 = 6,4, lorsque 8 = 0 :

_mgpe};nax =&
2E
=+ _
emax - mgp
Nous avons alors
8P P A2 _ mgop .,
28 g 0 2& 0
E( : )2-1-< : >2
g max max
_ =4+./1—
max max

On pose & = 68/, S0it & = 6/6,0y

go'cz-i_-\/l—ocz

t a
/ df = + \ﬁ / _da
t g [2%) Vl—OCZ
_ P[ . ( 6, ) . ( 6 )]
t, —t; = *+, / — | arcsin — arcsin
2 ! \/; emax eI’}'lCl.X,'

La période T est le temps de quatre fois le trajet de 6; = 02 6, = 6,4y :

T= 4\/5 [arcsin(1) — arcsin(0)]

= 271'\/E
8

Posons qu’a I’instant initial t; = 0, I’angle est maximal 6; = 6,,,4 :

t, = +\/7 [arcsm — arcsm(l)]
max
+\[ arcsm( d ) T
B g emax 4
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On suppose 6 et 6,4, de méme signe :

e}

G)T

t = — arcsin(
emax

3.3.1 Energie généralisée
Dans le cas général, le lagrangien dépend des coordonnées généralisées, des vitesses généralisées

et du temps explicitement, £ (q, g, t) :
. 0L oL .. 0L
d£(q.4,1) —ga—%dqﬁzj’,a—%dqﬁ 37 4t

dg oL . oL 0L
IR AN i

En utilisant les équations de Lagrange (3.13) page 74,

do
EZ;“(%) +Zaq J+

a_'E'. +6_L
J ot

si bien que,
0L

dt(z ag ~ )=_§

Définition 3.3.1 : Fonction énergie

On définit I’ énergie généralisée  par :

def
H(q7 qa t) Z qj q ‘c

a. Notée H par Lagrange en 1’honneur de Huygens

Nous avons alors :
dH 0L
de —  at
Lorsque le lagrangien ne dépend pas explicitement du temps, I’énergie généralisée se conserve
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au cours du mouvement :
d .
a H(q,q) =0
H(q,q) = c**¢

Remarque 3.3.2

Disons de suite que 1’énergie généralisée n’est pas 1I’énergie mécanique, méme si souvent elles ont méme valeur. Nous verrons que
lorsqu’elle est exprimée avec les variables q et p, on I’appelle hamiltonien du systeme (cf. rmq 4.2.3 page 132).

Exemple 3.3.3 : Masse glissant sans frottements sur un plan incliné

Une masse m glisse sans frottements sur un plan incliné. Quelle est I’équation de son
mouvement ?
Le lagrangien a pour expression :

£_1

= quz + mgq sin(a)

Il ne dépend pas explicitement du temps, donc 1’énergie généralisée se conserve :

H=¢Z -
= mg? — %qu — mgqsin(a)
= %qu — mgq sin(a)

Ste

=C

Nous retrouvons 'intégrale premicre de 1’énergie mécanique de 1’ex. 3.3.1 page 105.

3.3.2 Coordonnées cycliques

Définition 3.3.2 : Coordonnées cycliques

Une coordonnée généralisée q; qui n’apparait pas explicitement dans le lagrangien (mais
dont la dérivée par rapport au temps apparait), est dite cyclique ou ignorable :

g; est cyclique ssi a—L =0
j dq;

Soit g; une coordonnée cyclique, en partant de I’équation de Lagrange pour cette variable,
ERELANETIN

d /9L

a(a—q)—‘)
oL _
aqj

aqu est donc une intégrale premiere du mouvement.

Ste
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Exemple 3.3.4

En coordonnées rectangulaires, si la coordonnée x est cyclique :

Ste

3L

ax ¢

Si de plus I’énergie potentielle ne dépend pas de la vitesse :

0L
ax 6vx =M
L
B dv,
= mu,
= Px

Remarque 3.3.3

Notez que muv,, est bien du 1°" ordre en ¢ par rapport a la variable x.

3.4 Impulsions généralisées

D’apres I’ex. 3.3.4 précédent, p, étant la composante du vecteur quantité de mouvement (ou
impulsion) selon I’axe des x, nous posons la définition :

Définition 3.4.1 : Impulsion généralisée

Les dérivées partielles du lagrangien par rapport aux vitesses généralisées forment les
composantes du vecteur impulsion généralisée P :

def 0L
p] aqj

Remarque 3.4.1

Historiquement le terme « impulsion »désignait une variation de quantité de mouvement. Par extension elle désigne la quantité de
mouvement elle-méme.

Prenons le cas d’un mobile libre (ou isolé) dans le plan.

« en coordonnées rectangulaires (x, y) dans la base rectangulaire normée (1, J), le vecteur
quantité de mouvement a pour expression :

P = mxi+ myJ
Les composantes du vecteur quantité de mouvement sont donc :
Px = mx
by = my
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Les composantes du vecteur impulsion généralisée ont pour expression :

1 . .
[J:Em(x2+y2)
p =
X — 3o — v
ox = Px mx
p :a—L py =my
y ay

En I’absence de champ magnétique, les vecteurs quantité de mouvement et impulsion
généralisée sont confondus :

-> o

p=Pp
Les vecteurs ayant une existence propre, ils sont indépendants du systeme de coordonnées
et de la base dans lesquels ont les exprime. Une égalité vectorielle vraie dans un systeéme

de coordonnées est vraie dans tout systeme de coordonnées. Vérifions-le en passant en
coordonnées polaires.

» (2.3) page 57 donne I’expression de la vitesse en coordonnées polaires dans la base polaire
orthonormée (_e)p, E)e). Le vecteur quantité de mouvement a alors pour expression :

P =mp€,+mpde,
Les composantes du vecteur quantité de mouvement sont donc :
{pp =mp
pe = mpd

Les composantes du vecteur impulsion généralisée ont pour expression :

L= %m(p2 + 0262%)

_9%
Pe = 35 {pp=mp
= 2 A
S pe = mp’6
36

Elles ne sont pas identiques a celles du vecteur quantité de mouvement, pour autant les vec-
teurs sont égaux. Dans la base polaire naturelle (§ 3.4.2 page ci-contre), le vecteur quantité de
mouvement a pour expression :

—> . 3
p = mge, + mbeg
Les composantes contravariante du vecteur quantité de mouvement dans la base polaire naturelle
sont alors :
p° =mp
p® =mé

Ses composantes covariantes dans la base polaire naturelle sont données par :

{pp =7 - € N {pp = (mpe, + mpéee) "€p N {pp = mp

Po=17D-es po = (mpe, + mpbey) - peg po = mp6

. . 2.z sz >
Nous retrouvons les composantes du vecteur impulsion généralisée p.
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Remarque 3.4.2

Notez que Py, et Pg ne sont pas de méme dimension, et que Pg est le moment cinétique par rapport a ’axe Oz.

Pour trouver I’expression des nouvelles impulsions généralisées par changement de variables,
utilisons (3.33b) page 103 :

B=%
9Q
_Zaﬂa_‘:
k 0Q; 9qy
9qx
= 3~ Pk
259

Les B sont donc les composantes covariantes du vecteur quantité de mouvement P (en ’absence
de champ magnétique).

3.4.1 Présence d’un champ électromagnétique

En présence d’un champ électromagnétique de potentiel scalaire ¢ (T, t) et de potentiel vecteur
A(T,t), d’apres (3.15) page 79 le lagrangien s’écrit

1
L= 5m()'c2 +3?2) —q(p — Ak + Ayy)

Les composantes du vecteur impulsion généralisée ont pour expression :

_aL
px_a Dx = mX + qAy
= .
py = a_L py =my + qu
T
En présence d’un champ magnétique
P=7+qA

Nous verrons au ch. 4 page 125 que I'impulsion généralisée est a la base de la mécanique de
Hamilton.

3.4.2 Base et repére naturels

Définition 3.4.2 : Base naturelle

Soit (xl, X2, ., x”) un systeme de coordonnées quelconques, curvilignes ou rectilignes.
En un point M, les vecteurs tangents aux lignes de coordonnées définissent une base locale :
—
Vi=1,..,n e; d=ef 5OM
oxt

(e;) est la base naturelle du systeme de coordonnées (Xx;) au point M, et (M, e;) est le
repére naturel au point M.
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En coordonnées curvilignes les e; forment un champ de vecteurs fonction de la position de la
base. En général les vecteurs de la base naturelle ne sont pas de norme unité et n’ont pas la
méme dimension physique. La transformation des vecteurs de base est due a un changement
de coordonnées ou a un déplacement de 1’origine de la base dans un systeme de coordonnées

curviligne.
. oM
V] ej/ = m
i o
~ Oxt dxJ’
i
VJ ej/ = m e; (334)

Cette relation n’est valable que pour un changement de base naturelle a base naturelle. Les
transformations inverses s’écrivent :

. oM
Vi e = @
_ oM ox'
~ 9xJ' Oxt
, axJ'
Vi e = W ej/ (335)

Exemple 3.4.1

Exprimons les vecteurs de la base naturelle polaire (e, eg) en fonction des vecteurs de la
base rectangulaire (ey, ;). Commengons par donner la transformation des coordonnées

polaires en rectangulaires :

x(p,0) = pcos(6)
, >0et 0<0<2m (3.36)
{wm@=mm@ g
ep=(aO_M) , _ 9OM ox GOM dy
% J, N P dx dp 9y dp
.. _ (90M o, _ 9OM dx  6OM dy
0 50 ) 7 "ox a6 ay a6
o0x oy

A {ep = cos(O) e, +sin(O) ey (3:37)

dx oy eg = —psin(0) e, + pcos(d) e,

892%8354'%63)

Les vecteurs de la base naturelle polaire ont pour norme :

leoll =/ cos2(6) + sin(e) :{Mkl
lesll = \/p2 sin%(6) + p2 cos2(6) lesll = o
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La base naturelle polaire n’est pas normée. En revanche elle est orthogonale :

e, - eg = (cos(0) e, +sin(0) e),) - (—psin(6) e, + pcos() e))
= —cos(0)p sin(6) + sin(6)p cos(6)
=0

p ayant la dimension d’une longueur, les vecteurs e, et eg n’ont pas la méme dimension.
Il s’en suit que les composantes des vecteurs physiques exprimées dans la base naturelle
ne sont pas des composantes physiques. Par exemple, dans la base naturelle polaire les
composantes du vecteur vitesse ont pour dimensions m s~lets!,

3.4.3 Composantes contravariantes d’un vecteur

Un vecteur peut étre projeté de deux fagcons dans la base naturelle : parallelement ou perpendicu-
lairement aux vecteurs de base.

— en projetant parallelement on obtient les composantes contravariantes du vecteur
— en projetant perpendiculairement on obtient les composantes covariantes du vecteur

Remarque 3.4.3

Dans les bases orthonormées, les composantes contravariantes et covariantes sont confondues.

Se donner une base et se donner des composantes (contravariantes ou covariantes) est équivalent
a se donner un vecteur. Réciproquement, dans une base donnée tout vecteur peut se décomposer
en composantes contravariantes ou en composantes covariantes. Un vecteur est donc la donnée
d’une base et, de composantes contravariantes ou covariantes. Lorsque ’on décrit un vecteur en
composantes covariantes on parle de covecteur ou vecteur covariant. Ceci est un abus de langage,
il n’existe qu’une seule sorte de vecteur, que I’on peut exprimer de deux facons différentes dans
une base donnée.

Exemple 3.4.2

Soit (xl, xz) un systeme de coordonnées rectilignes obliques dans lequel le point M a pour

coordonnées (x};, x3/).
[ [ [/ ] ] ]
g2 L) S]] )]
[ [ )] ] ] ]
[/ )] ] ] ]
el

xi=3

FiG. 3.7 — Systeme de coordonnées cartésiennes

A ce systéme de coordonnées nous associons le repere (O, ey, e,) tel que la base (e, e,)
soit normée et les vecteurs de base pris le long des droites de coordonnées.
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O (2] ul

Fic. 3.8 — Composantes contravariantes du vecteur u
Dans cette base, le vecteur U = OM a pour composantes contravariantes u® et u® :
U = ule; +u’e,
La base étant normée, u! = xj, et u? = x3,.

Définition 3.4.3 : Composantes contravariantes

Soit (eq, e,, ..., e,) une base d’un espace vectoriel E,,. On appelle composantes contrava-

. b d
riantes du vecteur U dans cette base, les nombres ul, u?, ..., u" tels que :

=l
Il

ule; + u’e, + -+ + u'e,
n
i=1

Elles sont représentées au moyen d’indices supérieurs.

Les vecteurs ont une signification absolue indépendante de la base dans laquelle on les exprime,
mais les nombres (les composantes) qui les décrivent dépendent de la base utilisée :

. .
— 1
u/ ej/ =ue;

A partir du changement de base naturelle (3.35) page 112 :

!

uer=u all 21}
J axl J

Les composantes contravariantes se transforment par changement de base naturelle selon les
relations :

. v axj/ :
Vji u = Ix u' (3.38)
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3.4.4 Composantes covariantes d’un vecteur

Le produit scalaire permet de définir les composantes covariantes. A partir d’un systeme de
coordonnées rectilignes obliques (xl, xz), construisons une base normée (e;, e,). En projetant le
vecteur U perpendiculairement aux vecteurs de base, nous obtenons ses composantes covariantes :

1

X

F1G. 3.9 — Composantes covariantes du vecteur u

Nous avons :

=
I
sl =y
> o

<
)

I

Q
N

Remarque 3.4.4

A chaque axe de coordonnée on associe un vecteur de base tangent normé, sur lequel on définit deux composantes, I’une contravariante,
I’autre covariante. La variance, c.-a-d. le fait d’étre covariant ou contravariant, ne s’applique qu’aux composantes.

Définition 3.4.4 : Composantes covariantes

Soit (e;) une base d’un espace vectoriel euclidien E,,. On appelle composantes covariantes
—-> .
d’un vecteur u, les n scalaires u; tels que :

. def
Vi u, = 1—1) © €

Elles sont représentées au moyen d’indices inférieurs.

Remarque 3.4.5

Lorsqu’un vecteur de base est multiplié par deux, la composante covariante correspondante 1’est aussi, d’oli son nom.
Bien que la base (e;, e,) soit normée :

—
u ?é u;e; + uze,
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A partir du changement de base naturelle (3.34) page 112 :

V] uj/ = C—)ﬁ~ej,

dxt

=OM'mei
oxt —

Par changement de base naturelle, les composantes covariantes se transforment selon :
i

V] uj, = mui

3.5 Applications de la mécanique de Lagrange

3.5.1 Masse sur une trappe

Reprenons I’ex. 2.4.5 page 66 résolu par la mécanique de Newton et par le principe des travaux
virtuels. Une masse m est posée sur une trappe qui s’ouvre d’un angle 6(t) donné en fonction du
temps. Quelle est I’équation du mouvement de m ?

FiG. 3.10 — Masse sur une trappe

Le lagrangien a pour expression :

def
LTy

= ;m [6% + p26%()] + mgp sin[6(1)]

Le lagrangien est ici une fonction implicite du temps par I’intermédiaire de 6(¢) et de 6(t). Il
est en fait une fonction explicite du temps car 6(t) et 6(t) sont connues. Supposons p. €x. que

. . , : 1 . .
O(t) = mt?/20, qui donne une vitesse d’ouverture 6(t) = Eﬂ'rad/ s. Le lagrangien est maintenant
une fonction explicite du temps :

= Ll e? zﬂ_t)z o (7E
L—Zm[p +p0 (20 + mgp sin 20
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O(t) n’est pas une coordonnée généralisée car elle est donnée a priori, p est la seule inconnue que
puisse résoudre 1’équation de la dynamique de Lagrange :

d /oL oL
dr (6_p> “% 0
% (mp) — mpé2(t) + mg sin[6(1)] = 0

g — p6(t) — gsin[6(£)] = 0

3.5.2 Pendule double, plan

Trouver I’équation du mouvement du pendule double, plan (3.11).

Fic. 3.11 — Pendule double, plan

Cherchons I’expression du lagrangien, donc de I’énergie cinétique et potentielle, en fonction des
coordonnées généralisées. Il y a deux coordonnées généralisées, 6, et 6,, associées aux deux
degrés de liberté du systeme. Cela suggere de passer en coordonnées polaires :

X1 = p16; cos(6y)

x1 = pysin(6;)
Y1 = —p1cos(6;)
X, = p18in(6;) + p; sin(6,)
» = —p1c08(6) — p; cos(6,)

1 = —p16; sin(6;)
Xy = P16 cos(6)) + 0,6, cos(6,)
), = p161 8in(6;) + p26, sin(6,)

Les vitesses au carré des masses m; et m, s’écrivent en coordonnées rectangulaires :

2 w2, w2
{Ul—x1+)’1
2 w2, w2
LV =X+

En coordonnées polaires nous avons :
2 _ 242 o2 242 ¢in2
vy = P16 cos*(6,) + p16; sin“(6,)
_ 242
= p16]

sciences-physiques.neocities.org 117


http://sciences-physiques.neocities.org

et,
v3 = P67 cos?(6,) + P363 cos?(6,) + 2016 cos(6;)p,6; cos(6,)
+ 167 sin®(6)) + 363 sin*(6,) + 20,6, sin(6;)p,6, sin(6,)
= 167 + P363 + 20161026, [cos(6,) cos(6,) + sin(6;) sin(6,)]
= P16} + 365 + 201026,6; cos(6; — 6,)
Nous en déduisons I’expression de 1’énergie cinétique :
T = %mlvf + émzvg
= %mm%éf + %mz [P16F + 363 + 20102616, cos(6) — 6,)]
= %(ml + my)p0f + %mz [P%ezz + 20,026,6, cos(6; — 92)]

On prend le point de suspension du pendule double comme origine des énergies potentielles :

V =migy + mygy,
= —mgp; cos(6;) — myg [p; cos(6;) + p; cos(6,)]
= —(my + my)gp, cos(6;) — m,gp; cos(6,)
Le lagrangien a pour expression :
L= %(Wh + my)p167 + ; m, (0365 + 20102616, cos(6; — 6,)]
+ (my + my)gp; cos(6;) + mygp, cos(6,)

(6_5) _%
56,/ 96

4
dt
d (L) oL
dt

Les équations de Lagrange s’écrivent :

Z)-Z =0
662 a62
Or:
0L 24 .
38 = (my + my)p16, + myp10,6, cos(6;, — 6,)
1
oL S A .
30— —M,010,6,6, sin(6; — 6,) — (my + my)gp; sin(6,)
182 . .
— = M50, + My010,6 cos(6; — 6,)
96,
oL CA .
La—ez = My0102616, sin(6; — 6,) — m,gp, sin(6,)

Les équations de Lagrange donnent :
(my + my)p36) + Myp10,6, cos(6; — 6,) — Myp1026, (él - 92) sin(6; — 6,)
= —m,010,6,6, sin(6, — 6,) — (m; + m,)gp sin(6;)
My036, + Myp1026; cos(6) — 6,) — MyP1026 (91 - 92) sin(6; — 6,)
= My01026,6, sin(6; — 6,) — m,gp, sin(6,)
{(ml + my)p6; + Myp1026, cos(6; — 6,) — Myp10,65 sin(6y — 6,) = —(my + m,)gp; sin(6y)
My036, + Myp1026; cos(6y — 6,) — Myp1 0,67 sin(6; — 6,) = —mygp, sin(6,)

118 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

3.5.3 Pendule simple plan, dont le point de suspension est libre horizontalement

Une masse m; attachée a une tige de longueur p oscille dans le plan. La tige est fixée a une masse
m,, libre horizontalement. Quelles sont les équations du mouvement des masses m, et m, ?

FiG. 3.12 — Pendule simple, plan, dont le point de suspension est libre horizontalement

Le systeme a deux degrés de liberté et aucune liaison holonome. Il existe donc deux coordon-
nées généralisées, x et y, ou la distance [ et I’angle 6 du pendule. Ecrivons le changement de
coordonnées cartésiennes a polaires :

x =1+ psin(6) N v, = [+ pBcos(6)
y = —pcos(6) vy, = pP sin(0)

L’énergie cinétique a pour expression
1 1
T=-m (vz+uvp)+ Emzlz
= %ml [12 + 0267 cos?(6) + 2016 cos(6) + p*6% sin*(6)] + %mzi2
= ; (m; + my)i% + éml [026% + 26 cos(6)]
et I’énergie potentielle s’écrit :

V =mgy
= —m; gp cos(6)

D’ou le lagrangien :
L= é (m; + m,)I% + éml [0%6% + 2pi0 cos(6)] + mygp cos(6)
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Les équations de Lagrange s’écrivent :

i (5_[;) — a_L =0 d i ]
d (3L\ 0L d s o
5 (£> 55 =0 my = [026 + plcos(6)] + mypl6 sin(6) + m,gp sin(6) = 0
(my + my)l + myp6 cos(6) — m;p6? sin(8) = 0
028 + pl cos(6) — pisin(6) + pl6 sin(8) + pgsin(8) = 0
(my + my)l = myp [6?sin(6) — G cos(6)]
06 + gsin(6) = —Icos(8)
Lorsque

« 0=cS c.-a-d. lorsque 8 = 8 = 0, la 1" équation donne le principe d’inertie [ = ¢t

o 1 =c%€ c.-a-d. lorsque [ = [ = 0, la 2¢ équation devient I’équation du pendule simple,
plan.

3.5.4 Pendule simple plan, dont le point de suspension oscille horizontalement

Une masse m attachée a une tige de longueur p oscille dans le plan. La tige est fixée a un bloc de
masse négligeable, qui oscille horizontalement. Quelle est I’équation du mouvement de la masse
m?

FiG. 3.13 — Pendule simple, plan, dont le point de suspension oscille horizontalement

Le systeme a deux degrés de liberté et aucune liaison holonome. Il existe donc deux coordonnées
généralisées, x et y, ou 1’allongement [ et I’angle 6 du pendule. Ecrivons le changement de
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coordonnées :
x =1+ psin(0) N v, = [ + pB cos(6)
y = —pcos(6) vy, = p sin(0)

L’énergie cinétique a pour expression

1
T=-m (v +v})
= ém [2 + 262 cos?(0) + 2pi0 cos(6) + p262 sin*(0)]
= %m [iz + p%62 + 2016 cos(@)]

et I’énergie potentielle s’écrit :

V= %kl2 + mgy
= %kl2 — mgp cos(6)

D’ou le lagrangien :
L= im [2 + p262 + 2pi6 cos(0)] — %kl2 + mgp cos(6)

Les équations de Lagrange s’écrivent :

d (9L)_0L _ d

alar) o= m g |1+ O cos@] + ki =0

d (0L\ oL dyoag, in(0) =
a <_ae'> T3 m = [0 + plcos(6)] + mpl®sin(6) + mgp sin(6) = 0

m [l + pBcos(0) — p&?sin(6)] + kI = 0
028 + pl cos(6) — pifsin(6) + pl6 sin(6) + pgsin(8) = 0

ml + kl = mp 6% sin(6) — & cos(6)]
{pé + gsin(8) = —Icos(6)

Lorsque 6 = c¢*¢, c.-a-d. lorsque 6=0=01la premiere équation devient I’équation de
I’oscillateur harmonique.

Lorsque [ = ¢5%€, c.-a-d. lorsque [ = [ = 0, la seconde équation devient I’équation du pendule
simple, plan.

ste

3.5.5 Pendule simple, plan, dont le point de suspension se déplace verticalement

Soit une masse m attachée a une tige de longueur p constante, oscillant dans le plan (x, y) et dont
le point de suspension se déplace verticalement selon la fonction h(t). Quelle est I’équation du
mouvement de la masse m ?
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Fic. 3.14 — Pendule simple, plan, dont le point de suspension se déplace verticalement

Le systeme posseéde deux dimensions x et y,

x = psin(6)
{y = —h(t) - pcos(6)

et une liaison holonome rhéonome :

x cos(0) = psin(6) cos(6)
{y sin(8) = —h(t) sin(6) — p cos(B) sin(H)

ysin(0) = —h(t) sin(6) — x cos(6)
y+ xcotf = —h(t)

Il n’y a donc qu’une seule coordonnée généralisée, 6. Le potentiel a pour expression :
V = —mglh+ pcos(9)]

La vitesse s’écrit : )
X = pBcos(0)
y = pBsin(8) — h
L’énergie cinétique a pour expression :
_ 1! S RY)
T =-m(i*+y?)
= %m [0262 cos?(6) + p26? sin*(0) — 2hpB sin() + h?]
= ém,ozé2 + %ml/iz — mhp8 sin(6)
Le lagrangien s’écrit

L= émpz@'2 + émhz — mhpBsin(6) + mgh + mgp cos(6)
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il dépend explicitement du temps par la fonction h(t). L’équation de Lagrange s’écrit :

a(2£) 2
dt\ g6/ a6
4 [mp%6 — mhp sin(6)] = —mhp0 cos(6) — mgp sin(6)

dt
08 — hsin(6) — h8 cos(8) = —hB cos(8) — g sin()

p6 + (g —h)sin(6) =0

C’est le comportement d’un pendule simple plan dans un champ de gravitation g — h. Si momen-
tanément h(t) = gt alors h = g, le pendule est en chute libre :

pé =0
é — cSte
Sa vitesse angulaire est constante ou nulle autour du point d’encrage. L’ équation du mouvement

h(t) = gt® n’est pas tenable longtemps, le point d’encrage doit changer de sens. Si momentané-
ment h(t) = —gt? alors h = —g, le pendule est dans un champ de pesanteur 2g.

3.5.6 Pendule simple, plan, dont le point de suspension décrit un cercle

Soit une masse m attachée a une tige de longueur p constante, oscillant dans le plan (x, y) et
dont le point de suspension décrit un cercle de rayon r dans le plan vertical, avec une pulsation w
constante. Quelle est I’équation du mouvement de la masse m ?

FiG. 3.15 — Pendule simple, plan, dont le point de suspension décrit un cercle

Le systeme n’a qu’un degrés de liberté, 6, car I’angle wt est imposé au systeme. Nous avons :

{x = rcos(wt) + p sin(6) {vx = —rwsin(wt) + pB cos()

y = rsin(wt) — p cos(6) vy, = rocos(wt) + 06 sin(6)
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L’énergie cinétique a pour expression
1
T=-m (V2 +v3)
= %m [r2? sin®(wt) + p?6? cos?(8) — 2rwp6 sin(wt) cos(6)
+r2w? cos?(wt) + p26? sin*(0) + 2rwp6 cos(wt) sin(6) |

= %m {r2w? + p262 + 2rwpd [cos(wt) sin(8) — sin(wt) cos(0)]}

= %m [r2w? + p26% + 2rwpd sin(6 — wt)|
et I’énergie potentielle s’écrit :

V = mgy
= mg[rsin(wt) — p cos(0)]

D’ou le lagrangien :

L= imrzco2 + %mpzéz + mrwped sin(@ — wt) — mgr sin(wt) + mgp cos(6)

dcos(6 — wt)
dt

= émpzéz + mrw?p sin(6 — wt) + mgp cos(6)

mgr d cos(wt)

+ wsin(6 — wt) | + T

= émpze'z + mrawp + mgp cos(6)
= ipe'2 + re? sin(6 — wt) + g cos(6)
[’équation de Lagrange s’écrit :
¢ (o) o,
a\3s) @~
%(pé) — raw? cos(6 — wt) + gsin(6) = 0
08 + gsin(8) — rw? cos(6 — wt) = 0

Lorsque la vitesse angulaire w est nulle, on retrouve I’équation du pendule simple.
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LA MECANIQUE DE HAMILTON
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4.1 Transformation de Legendre

La transformation de Legendre permet d’exprimer une fonction grace a 1’enveloppe de ses
tangentes.

4.1.1 Equation de la tangente en un point d’une courbe

Soit M (xp, Yar) un point d’une courbe € d’équation y = f(x). Cherchons 1’équation y = ax+b
de la droite D tangente a C au point M, autrement dit cherchons les parametres a et b de I’équation
D y=ax+b.



y ey =)

yM___ ....................

FiG. 4.1 — Tangente a une courbe

Par définition, la dérivée de la fonction f au point M est égale a la tangente de 1’angle a que fait
la droite 2D au point M avec I’horizontale :

JfOep+h) = fxm)

f'xn) = ;111_1% A

= tan(a)

Au point M (xpz, ypr) 1’équation de la tangente yys = a xps + b donne

a:yM_b et b=yy—axy
XM
= tan(a) = f(xp) — axy 4.1)
= f'(xm) = fOem) — f'Cen)xn

Ayant les deux parametres a et b, nous pouvons écrire 1’équation de la tangente en M :

y =[x + flxm) — f'Gen)xm

4.1.2 Equation de I’enveloppe

Cherchons 1’équation de toutes les tangentes, c.-a-d. b en fonction de a. Repartons de (4.1) :
b(a) = f(xp) —axy

Le point M parcourt maintenant toute la courbe C, et x,, devient une variable. La transformée de
Legendre de f(x) est donc la fonction b(a) telle que :

b(a) = f(x) —ax 4.2)

Comme a est la nouvelle variable, il nous reste a exprimer f(x) et x en fonction de a. Pour cela
il nous faut I’expression explicite de la fonction f.
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Remarque 4.1.1

La nouvelle variable « a »ne doit pas repasser par une méme valeur dans la fonction b(a). La fonction de départ y = f(x) ne doit
donc pas avoir deux tangentes paralleles (méme « a ») dans I’intervalle considéré. Elle doit avoir une concavité de méme signe sur
Iintervalle, étre concave f”(x) > 0 ou convexe f”(x) < 0.

Exemple 4.1.1

Trouver la transformée de Legendre de f(x) = x2. La nouvelle variable s écrit,

a=f'(x)
=2x
soit,
xo @
2
On exprime f(x) en fonction de a :
fx)=x?
o>
4

La transformée de Legendre de f(x) est alors la fonction b(a) donnée par (4.2) :

b(a) = f(x) —ax
a? a
ZZ—(IXE

On retiendra que dans toute transformation de Legendre, la nouvelle variable a est la dérivée de
la fonction de départ f(x) par rapport a 1’ancienne variable x.

4.1.3 Involution de la transformation de Legendre

Si I'on applique deux fois la transformation de Legendre, on retombe sur la fonction de départ.
En effet, la transformée de Legendre de la fonction f(x) est donnée par :

b(a) = f(x) —ax

Si I’on applique de nouveau la transformation de Legendre, la nouvelle variable, notée n, est telle
que

_db(a)
"= Tda
_ df(x) dx

da X ada
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et la transformée de Legendre de b(a) est la fonction g (n) telle que :
g(n)=>bla)—na

=f(x)—ax—[

=f(x)—[%(ax)—a%]a

df(x) dx
TR —x—a%]a

Avec a = df(x)/dx:

gn = 100 - | L2 - LH H

= f(x)

On en conclue que la transformation de Legendre ne perd ni n’ajoute d’information a la fonction
de départ.

Remarque 4.1.2

Nous pouvons choisir de prendre b(a) = a x — f(x) pour transformée de f(x). Le signe est affaire de convention.

Exemple 4.1.2

Poursuivons le premier exemple et cherchons la transfomée de Legendre de b(a) = —a?/4.
La nouvelle variable n s’écrit,

n=>b'(a)
__a
2
soit,
a=-2n
On exprime b(a) en fonction de n :
2
a
b(a) = —Z
= —n2

La transformée de Legendre de b(a) est alors :

g(n)=>b(a)—na
= —n? + 2n?

=n2

On retrouve la propriété d’involution de la transformée de Legendre.
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4.2 Equations de Hamilton

4.2.1 Introduction de nouvelles variables indépendantes

Les n équations de Lagrange sont des équations différentielles du 2™ ordre par rapport au temps.
N’importe quelle équation différentielle du 2™ ordre peut étre remplacée par deux équations
différentielles du 1°f ordre, en introduisant une nouvelle variable indépendante.

Exemple 4.2.1

Soit a résoudre 1’équation différentielle suivante :

X=0
def | N c . L S 4
En posant v = X nous avons le systeme de deux équations différentielles a résoudre :
v=0
X=v

Ces équations différentielles sont résolues indépendamment I’une de 1’autre, et les variables
v et U sont donc traitées comme indépendantes :

U= Cl
X=v
X = Clt + C2
Appliquons cette remarque aux équations de Lagrange :
4(%) -
Vi=1,..,n de \dy; ) 9g;
by =g

ou le lagrangien devient une fonction des nouvelles variables v et des anciennes variables q.
Peut-on simplifier I’écriture des équations de Lagrange ?

Nous avons,

oL (q,v, t)] z ( 3L 32L ) 02L
d| =22 - S (2 duy + - dgy | + o dt
[ au; kZﬁ ooy kT Bqeay k) T Bray,
d[oL(quv.t)]_ = ( 3L . %L 0%L
|~ oy ]‘ szl duedy; & F aqiay ) T Gray,
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Nous obtenons le systeme d’équations différentielles du 1¢ ordre par rapport au temps :
- ( L o 0L U)+62L _L_,
Vi=1,..,n {&\dvdy “" dqady *)" dtdy g
b = gj

L'introduction des nouvelles variables v; n’apporte pas de simplification.

4.2.2 Transformée de Legendre des vitesses généralisées

Dans les n équations de Lagrange,

; d (9L 0L
Vi=1,...,n E(a—%)—a_%_

apparaissent les dérivées partielles du lagrangien par rapport aux vitesses généralisées : 0£/9(;
Cela suggere d’effectuer la transformation de Legendre du lagrangien pour les vitesses générali-
sées (, en posant,
_9dL
b= 6_qj
qui est la définition 3.4.1 page 109 des impulsions généralisées. Les équations de Lagrange
deviennent le systeéme suivant :

d % _,
Vi1 ali~5g =
J=1..,n
0L
7o
soit,
pjza—L (4.3a)
Vi=1 n aqj

La premiere relation est 1I’équation de la dynamique. La seconde correspond a la création des
nouvelles variables p pour la transformation de Legendre du lagrangien pour les vitesses généra-
lisées. Par rapport aux relations obtenues a la fin du § 4.2.1 précédent, on remarque leur grande
simplicité.

Les n équations diftérentielles (4.3a) sont résolues indépendamment des n équations différentielles
(4.3b), les variables p et q sont donc traitées comme étant indépendantes 1’une de I’ autre.

4.2.3 Expression du hamiltonien

Il nous reste a effectuer la transformation de Legendre du lagrangien car dans les équations (4.3)
de la présente page nous n’utilisons pas les mémes variables de chaque co6té des égalités. Com-
mencons par ne transformer que la premiére vitesse généralisée ¢;, et notons J(; la transformée
de Legendre du lagrangien :

F1(q, P13 925 - Gns t) = Prda — £(q, G, )
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Remarque 4.2.1

Ou bien H; = £ — p141, le signe de la transformation de Legendre est affaire de convention.

Transformons maintenant la deuxieme vitesse généralisée g, :

H(q> P1> P23 G35 -+ Gns ) = P2G2 — H1 (4> P13 G2s -+ 3 t)
= p1G1 — P24 — £(q, g, 1)
En transformant toutes les vitesses généralisées, on pose la définition suivante :

Définition 4.2.1 : Hamiltonien

La fonction des n coordonnées généralisées q, des n impulsions généralisées p, et du
temps

n
def . .
H(q. p:t) = D, pidj — £(q. 4, 1)
j=1

est appelée fonction de Hamilton ou hamiltonien du systéme.

Le hamiltonien est la transformation de Legendre du lagrangien pour I’ensemble des vitesses
généralisées. Réciproquement, le lagrangien est la transformation de Legendre du hamiltonien
pour I’ensemble des impulsions généralisées.

Remarque 4.2.2

Méme remarque que pour le lagrangien : le modele de force de la relation fondamentale de la dynamique, devenu modele d’énergie
potentielle, puis intégré au lagrangien, est maintenant intégré au hamiltonien. Il faudra donc trouver un modele de hamiltonien adapté
au probléme a résoudre. La « physique »du probléme est donc contenue dans le hamiltonien. De plus, on note que par I’intermédiaire de
I’énergie potentielle, le hamiltonien dépend du choix de I’origine des énergies potentielles.

Dans I’exemple qui suit nous allons voir que les ¢ sont exprimées en fonction des p en inversant
la déf. 3.4.1 page 109 des impulsions généralisées.
Exemple 4.2.2 : Masse glissant sans frottements sur un plan incliné

Une masse glisse sans frottements sur un plan incliné, quelle est I’expression du hamilto-
nien ?
Reprenons I’ex. 3.1.1 page 75. Nous avions trouvé le lagrangien suivant :

L= %qu + mgq sin(c)

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée q. Le
moment conjugué de la variable g a pour expression :

0L def . D
G -P = iy (4.4)
Le hamiltonien s’écrit :
def
H = pg—-~L
2 2
_b_p i
=5~ mgq sin(a)
p? :
= 5~ msq sin(a)
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Remarque 4.2.3

Le hamiltonien F(q, p, t) et 1’énergie généralisée H(q, g, t) déf. 3.3.1 page 107 ont méme valeur, mais elles ne s’expriment pas dans
les mémes variables.

4.2.4 Les équations de Hamilton

Ecrivons la différentielle totale exacte du hamiltonien :

n
d#(q, p.t) =d )] pjg; — dL(q. 4. 1)

j=1
n

S 0L .. oL
Z ClﬁZquPJ Z jzla_qjdqf_ﬁdt

En injectant I’équation de la dynamique (4.3a) et la transformation de Legendre du lagrangien
(4.3b) page 130,

oL

d¥(q, p,t) = Z pjdg; + Z qdp; — Z pjdg; — Z pjdg; — ar de
Jj=1 j=1 j=1
8 o S oL
Z o I 4q, +Z dpJ > dt=qudpj—ijdqj—Wdt (4.5)
9 =1 j=1
nous obtenons les 2n équations canoniques de Hamilton :
g = 93¢ (4.6a)
: g 9aq;
Vi=1,...,n 59

G = — (4.6b)

Ces 2n équations différentielles du 1¢" ordre par rapport au temps sont équivalentes a la relation
fondamentale de la dynamique lorsque tous les modeles de force dérivent d’un potentiel. Par
involution de la transformation de Legendre, le rdle des p et des g est symétrique (au signe
pres) : remplacer p par —q et q par p redonne les mémes équations. La premiére équation reste
I’équation de la dynamique. La seconde est la réciproque de (4.3b) page 130, elle correspond a la
création des nouvelles variables g pour la transformation de Legendre du hamiltonien pour les
impulsions généralisées.

Les n équations différentielles (4.6a) sont résolues indépendamment des n équations différentielles
(4.6b), les variables p et q sont donc traitées comme étant indépendantes les unes des autres.

Les n équations différentielles du 2™ ordre de Lagrange sont devenues 2n équations différentielles
du 1¢" ordre. On peut noter que les n changements de coordonnées de ¢ a pj ne sont pas posés
mais sont des équations différentielles qu’il faut résoudre.

Définition 4.2.2 : Variables canoniquement conjuguées

Les variables g; et p; sont dites canoniquement conjuguées, ou simplement, conjuguées.
L'impulsion généralisée p; est aussi appelée moment conjugué de la coordonnée g;.
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Remarque 4.2.4

Lantisymétrie des équations de Hamilton, elles restent inchangées lorsque 'on remplace g; par pj et pj par —qj, est un exemple de
transformation qui sont étudiées au ch. 5 page 145.

Exemple 4.2.3

Poursuivons I’ex. 4.2.2 page 131 et cherchons les équations du mouvement de la masse.
Les équations de Hamilton s’écrivent :

p__a% ) ‘
3q R p = mgsin(a)
. OH qzﬁ

La premicre équation est I’équation de la dynamique. La seconde est bien équivalente a
(4.4) page 131. Nous obtenons deux équations différentielles du 1¢ ordre.

Remarque 4.2.5
En dérivant ¢ par rapport au temps, nous retrouvons I’équation différentielle du 2" ordre du mouvement :
. _ D
9= m
= gsin(a)

4.3 Cas ou le hamiltonien se conserve

(4.3a) page 130 et (4.6a) page ci-contre, ainsi que la comparaison des derniers termes de (4.5)
page précédente, donnent les deux relations suivantes entre hamiltonien et lagrangien :

(a_w) __ (5_5) (4.72)
dq] pit 6qj -
Vj=1,...,n > 4
), (&)
q;j;Pj q;,4;

Dérivons le hamiltonien par rapport au temps et utilisons les équations de Hamilton :

dF¢ N 0F SN A
n n
=D —Dd+ D 4B+ ot
Jj=1 Jj=1
dH oK
ot (4.8)
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Si le hamiltonien n’est pas une fonction explicite du temps, 0J(/0t = 0, alors il est constant,
dF/dt = 0. 11 se conserve dans le temps.

Avec (4.7b) page précédente :

dH oL
FTERrT (4.9)

De méme, si le lagrangien n’est pas une fonction explicite du temps, alors le hamiltonien est
constant, et réciproquement.

4.4 Hamiltonien et énergie mécanique

Cherchons les conditions pour avoir H = & :

j=1
n
oL
—q¢—(T-V=T+7V
Jzﬂa‘b '
n
Z%quzf
j=1 q]

Si le potentiel V(q, t) n’est pas une fonction explicite des vitesses généralisées :
n
oT .
Z g 1= (4.10)
j=1"14

Cette relation est appelée identité d’Euler. D’apres le théoréme d’Euler, elle est vérifiée ssi
I’énergie cinétique est une fonction homogene de degré deux des vitesses généralisées.

Définition 4.4.1 : Fonction homogene de degré n

Une fonction d’une ou plusieurs variables est homogene de degré n ol n € Z, si en
multipliant les variables par un méme scalaire non nul 4, la fonction est multipliée par ce
scalaire puissance n :

VA#0, TGy ... Adn) = T (G .., Gn) 4.11)
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« ’homogénéité de degré deux de la fonction J implique I’identité d’Euler :

VA #0,
oT

T(/lql, ,)l,qn) == /‘1,27(6.11,

»qn)

T4y + - + =L dag,) = d(227)

0(A41)
oT

—— a1+ +
3gy 1

0(4gn)

or . d(7)
gy " T Tax

oT
— ;i = 24T
]Zzld(/lqj) !
5 oT
Jzﬂa‘b '

 I’identité d’Euler implique 1’homogénéité de degré deux de la fonction :

0T (q1, -+ »qn) . 07 (q1,..-»qn) . _ : :
aql ql+'“+ aqn Qn—Z-T(ql,---’qn)
0T (Aq1s .. s Ady) . . 0T (Aqy, ... s Aqy) , . . . .
: A6:) + - + - A =2T(Aqq, ..., 4
0T (Aq, ..., Aq,) . 0T (g, ..., Aq,) . . .
(441, ..., Aqn) PR 44y, ..., Aqn) i = 27(Adys ... Ad)
oG, 9qn
Posons
T(AGq, ..., Aq
97 d(Aqy) , 87 d(dn)] 2 . .
dg(d) [auql) da 30d,) dA ]’1 TGy, -, Aqn)24
1 4
| ST ln) g, .. g b)) 27 (s, .0, A
q1 9qn
= I
=0
g(A) = c*'°
= g(1)
= T(Ql’ ’Qn)
d’ou
/lzf(ql’ ’qn) = ‘T(/Iql’ ﬂu’ln)

Ainsi, nous cherchons les conditions sur I’énergie cinétique qui impliquent (4.11), qui a son tour
implique (4.10), et a son tour £ = £. L'énergie cinétique a pour expression :

N
def 1 2
i=1

S’il existe une liaison rhéonome (voir les applications 3.5.1 page 116 et 3.5.5 page 121), ou pour
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un référentiel en mouvement, le vecteur position dépend explicitement du temps :

Vi=1,..,N T;=T;(q.sqnt)
L, w07 dr
dri:Z ld —; de
dT; i dq, oT;
— 0q; dt ot
L’énergie cinétique s’écrit alors
N n > - \2
1 or or
T=—Zmi(2 Lg+ )
24 = aq; ot
N —> 2 n N - n n N — —
1 or; or; 6rl or; odr; . .
= mi( ) + m ——- m—=— - 3—(qjqk
=\ o ,Zzlgl o Zk;; 9q;  Oqx

ou Jp est indépendante des vitesses généralisées, J est une fonction linéaire des vitesses générali-
sées et J, est une fonction quadratique des vitesses généralisées. J n’est donc pas une fonction
homogene quadratique des vitesses généralisées : T (1q) # A2 7(§). S’il n’y a pas de contraintes
rhéonomes, le vecteur position ne contient pas explicitement le temps,

3T,

Vi — 1, . ,N ?l = ?l (ql’ cee ,qn) : W = 0

ou I’on a posé

deflz\]:m ar; 9T,
~ 1 0gq;  Oqx

L’énergie cinétique est alors une fonction homogene quadratique des vitesses généralisées :

: L loew o
T (Aqy, ..., Aqy) = 3 DY) ajicAdj Adi

j=1k=1
1 n n

= Ezzaijij
J =

=2 T(qq, . »Gp)

Si le systéme est holonome scléronome et si le potentiel V(q, t) ne dépend pas explicitement des
vitesses généralisées, alors le hamiltonien se confond avec I’énergie mécanique :

H=E (4.12)
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(4.9) page 134 donne alors :
dH oL

At~ ot
0
=-3 [T —V(q, )]
_ 0v(q,t)
T ot

Si de plus le potentiel ne dépend pas explicitement du temps 6;V(q) = 0, alors I’énergie mécanique
se conserve dans le temps et le systéeme est dit conservatif :

‘h_ifzo o ==t (4.13)

Si V(q, t) dépend explicitement du temps alors le systéme est non conservatif :
J =& # cste

Dans le cas ou le systeme est rhéonome, nous pouvons avoir J constant, différent de 1’énergie
mécanique E.

Exemple 4.4.1 : Masse glissant sans frottements sur un plan incliné
D’apres I’ex. 4.2.2 page 131 le hamiltonien s’écrit :
p?

H = >~ M8d sin(a)

Le hamiltonien n’est pas une fonction explicite du temps, d’apres (4.8) page 133 il se
conserve. Le potentiel n’est pas fonction des vitesses généralisées et les contraintes sont

holonomes scléronomes, par conséquent H = E.

Lorsque H = & I’équivalence avec les équations de Newton est presque immédiate. En coordon-
nées rectangulaires, le premier groupe d’équations de Hamilton donne

(o8 (Y
px— ax px— ax

. 0K -4 dp —
<py——W => {Dy= 3y => E——grad(V)
) 0F ) oV

LPz=—a—z LPz=—a—z

qui sont les équations de la dynamique de Newton pour des forces conservatives. Le second
groupe d’équations donne la définition de la quantité de mouvement :

(. 0K (. oT (= L 9px
* = ops * = 3y 2m 9py o =

2 —px
5, Y75, Y= 2m 3p, =Py
Z = zZ = Z=— pZ
\ apz \ apz \ 2mapz
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4.5 Coordonnées cycliques

La relation de passage (4.7a) page 133,

&) (&)
aq] pj9t aq] Cli,t

montre que si une coordonnée est cyclique (d’apres la déf. 3.3.2 page 108 elle n’apparait pas
dans le lagrangien) alors elle n’apparait pas non plus dans le hamiltonien.

Supposons que q,, soit une coordonnée cyclique. Le lagrangien reste fonction de g, :

L =L qn-15q15 > qn>t)
[’équation de Lagrange (4.3a) page 130 donne :

pn=§7£=0 =4 pn=CSte=pn(t=0)=a 4.14)
n

ou la constante « est la valeur initiale de p,,. Le moment conjugué de toute coordonnée cyclique
est une intégrale premiere du mouvement. La résolution complete du probleme passe par la
mécanique de Hamilton car elle utilise les moments conjugués p. Le hamiltonien s’écrit :

H = F (s e Qs Pro oo s Pro1s O 0)

Le probléme ne fait plus intervenir maintenant que 2n — 2 coordonnées et le temps. En intégrant
I’équation de Hamilton (4.6b) page 132

_ 0K
OPnl, —o

dn

nous obtenons le comportement de la coordonnée cyclique.

4.6 Théoreme de Liouville

Soient (qy, --- , q,) un ensemble de parametres définissant la configuration spatiale d’un systeme
dynamique §. Ces parametres peuvent étre vus comme les coordonnées généralisées d’un point
représentant la configuration spatiale de 8. Les n coordonnées généralisées sont reportées sur
un systeme d’axes rectilignes orthogonaux et forment ainsi un espace euclidien a n dimensions,
appelé espace de configuration de §. Tous les points de 1’espace de configuration de § ne sont en
général pas accessible par S.

Le mouvement d’un point matériel unique est un probléme a trois dimensions, dont I’espace de
configuration est par conséquent aussi a trois dimensions. Le mouvement de deux points matériels
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est équivalent au mouvement d’un point matériel unique dans un hyperespace de configuration a
six dimensions. Plus généralement, un probleme a N points matériels est équivalent a un probleme
a un point matériel unique dans un hyperespace de configuration a 3N dimensions.

L'espace des phases est un espace euclidien a 2n dimensions, dont les g et les p sont les coordon-
nées. Le sous-espace des q est I’espace de configuration, le sous-espace des p est appelé espace
des moments. A chaque instant, 1’état d’un systéme dynamique est représenté par un unique point
ayant 2n coordonnées dans 1’espace des phases.

A tout ensemble de conditions initiales [q, po], les équations de Hamilton donnent une solution
unique (2 un départ, une seule arrivée) sous la forme de 2n équations paramétriques :

g = q;[qos Po- t]

Vi=1,..,n {
pj = Pj[qos Pos t]

Ces équations étant réversibles dans le temps, a toute solution correspond un ensemble unique de
conditions initiales (a toute arrivée, un seul départ).

Le point représentatif du systeme décrit donc au cours du temps une courbe unique, appelée
trajectoire de phase, donnée par les fonctions q;(t), ..., q,(t) et p;(¢), ..., p,(t). Par exemple,
pour le pendule simple plan, nous avons directement 1’équation en coordonnées rectangulaires a
partir de la conservation de 1’énergie donnée par (11.5) page 293 :

2

_ bs
H= Mo mgp cos(6)

Pe = i\/2mp2 [FH + mgp cos(0)]

Lunicité de solution des équations de Hamilton implique que deux trajectoires de 1’espace des
phases ne peuvent se croiser. Si ¢’était le cas, a deux ensembles de conditions initiales différentes
correspondrait un méme état au point ou elles se croisent. Par conséquent, le nombre d’états
dynamiques initial se conserve. De mé€me, une trajectoire ne peut se couper car on aurait un
mouvement perpétuel, le point de coupure servant de conditions initiales.

Les conditions initiales d’un systéme dynamique ne sont pas connues avec une précision infinie.
On considere donc un hypervolume V de I’espace des phases, assez grand pour que la probabilité
d’y trouver le systeme a ’instant initial soit proche de un. Cet hypervolume se déplace et se
déforme au cours du temps. Prenons un élément d’hypervolume dV de cet hypervolume, et
étudions comment varie la densité d’états p dans cet élément d’hypervolume. Considérons la
projection de dV dans le plan de la coordonnée gy, et de I’impulsion conjuguée py :

Pk
D C
dpx
A B
dq

dk

FiG. 4.2 — Projection de I’hypervolume élémentaire dans le plan g, pi
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Nombre d’états entrants par AD en un temps dt :

p qxdt dpy

Pour des raisons de lisibilité, nous n’indiquerons plus les indices k dans ce qui suit, mais a la fin
de la démonstration nous sommerons sur tous les k. Nombre d’états sortants par BC en un temps
de:

(0 +8gp) (4 + 84q)dtdp = (pq + 8404 + pS4q + 8408,4G) dt dp

ou 5qp est la variation de densité p selon la coordonnée ¢, c.-a-d.,

En négligeant les éléments différentiels d’ordre deux devant ceux d’ordre un,

. . op ag
(o +8q0) (4 + 84q)dtdp = (pq + a—qdqq +p 63 dq) dtdp

La différence entre ce qui entre et ce qui sort de 1’élément de volume par les faces AD et BC en
un temps d¢ vaut donc :
op . aq>
—| == — |dtdpd
( 3q q+p 3q paq
De méme, la différence entre ce qui entre et ce qui sort de I’élément de volume par les faces AB
et DC en un temps dt vaut :

dp op
<6p p+p ap)dtdqdp

Puisqu’il n’y a ni création, ni annihilation d’états, la différence entre ce qui entre et ce qui sort
crée une variation locale du nombre d’états en un temps dt dans le volume considéré :

o . 4G dp . dp
5tpdqdp=—(a—gq+pa—q+—pp+p£)dtdqdp

q 0p
dp op . oqg OJp . 6p)
atdt (aqq+paq+app+pap dt

ce qui donne, en remettant les indices,

%P 44 P

dp _ 9]y apk)
a4+ 3 ( + dt

dg, + =—dp, = —
dk 6p Pk % 34 " 3pk

et en considérant I’élément d’hypervolume :
n

) ) d oq;  9p
a‘:dt+2(pdqj dej) pZ( 7 4+ ’)dt

j=1 an ap]
n 4 35
=) (ﬁ + ﬁ) dt
J:l p]
P__, Zn: (aqj apJ)
]:1 an apf
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Quel que soit le hamiltonien, les équations de Hamilton s’écrivent :

5 0F(¢ op; 'K
T~ " 3qg: dp: _ dp.da:
Vi=1,...,n U => I.JJ zpj U

4= 9 _ o

! op dq;  9q;9p;
Les dérivées partielles étant continues :

RH  PK opi _ 94

= => —_— = =
opjdq;  9q;9p; ap; ag;
Nous en déduisons le théoréme suivant :

Théoréme 4.6.1 : Théoreme de Liouville

—
Pour tout systeme dynamique qui suit les équations canoniques, quel que soit le hamiltonien,
la densité d’états se conserve au cours du mouvement :

dp

=0 — pSte
ar = p=c

4.7 Applications de la mécanique de Hamilton

4.7.1 Masse sur une trappe

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée p. Le moment
conjugué p de la coordonnée généralisée p a pour expression :

def 9L N D
= % mp o= -
Le hamiltonien s’écrit :
def
H =po—-XL
2
_P" 1 o5 1 24 .
= [Zmp +>mp 0°(t) + mgp sm[@(t)]]
p2 1 2A2 .
=o5m 3P 0°(t) — mgp sin[6(¢)]

Le hamiltonien est une fonction explicite du temps (remplacer 6(t) et 6(t) par leurs expressions).
Il ne se conserve pas car ces deux fonctions peuvent prendre n’importe quelle valeur au cours du
temps. En particulier le moteur qui actionne la trappe peut fournir de I’énergie au systéme en
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la refermant. Les équations de Hamilton donnent les équations du mouvement du 1¢* ordre par
rapport au temps :

. 0H .

P=-3- p = mp63(t) + mgsin[6(¢)]
PS5

O p=L

[’énergie mécanique a pour expression :

def
E=T4+7V

= %m [6% + p?6%(1)] — mgp sin[6(1)]

L’ énergie mécanique ne se conserve pas car la liaison rhéonome 6(¢) et sa dérivée 6(t) prennent
n’importe quelle valeur en fonction du temps.

Le vecteur position de la masse m a pour expression :

T = pe,
= pcos[8(t)]T — psin[8(1)]]

C’est une fonction explicite du temps (remplacer 6(¢)), c’est pourquoi le hamiltonien et 1’énergie
mécanique ne sont pas confondus :
P’ 1 5
&= >m +-mp 0°(t) — mgp sin[6(t)]
= H + mp203(t)

4.7.2 Pendule simple, plan, dont le point de suspension se déplace verticalement

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée 6. Le moment
conjugué de la coordonnée généralisée 0 a pour expression :

p derol _ mp?6 —mhpsin(6) = 6=

: p 4 hsin(6)
96

mp? P

Le hamiltonien s’écrit :

def .
H= pb—L

= mp262 — mhp6 sin(6) — Empzé2 + %mhz — mhpBsin(6) + mgh + mgp cos(@)]
= %m,ozé2 — %mlfiz — mgh — mgp cos(0)

2 o
P 1o ) phsin(6) 1 .., B
= omp? + th sin“(0) + ————= 2mh mgh — mgp cos(6)

Le hamiltonien est une fonction explicite du temps par I’intermédiaire de h(t) et de h(t), il ne se
conserve pas.
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Les équations de Hamilton s’écrivent :

p= _aaie( p = —mh? sin(6) cos(6) — pthos(@) — mgp sin(0)
. OK = -
=22 6 p + h sin(6)

op mp2 0

p = —mh?sin(8) cos(8) — hcoTs(Q) [mp?6 — mhp sin(6)| — mgp sin(6)

P2 + h sin(0) + h8 cos(6)
mp P o
p = —mphé cos(8) — mgp sin(6)
> 5 _hfcos(8)  gsin(6) N h sin(8) N h6 cos(6)
P P P o

p6 + (g—h)sin(®) =0

6 =

L’énergie mécanique s’écrit :

def
EST+V

= %mpzéz + %mhz — mhp8 sin(6) — mgh — mgp cos(6)
= H + mh? — mhp6sin(6)
L énergie mécanique est une fonction explicite du temps par I’ intermédiaire de h(t), elle ne se

conserve pas. Du fait de la liaison rhéonome, le hamiltonien et I’énergie mécanique ne sont pas
confondus.
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LES TRANSFORMATIONS CANONIQUES
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Dans ce chapitre sur les transformations canoniques nous ne considérerons que les systemes
holonomes (cf. § 1.7.3 page 19).

5.1 Transformations de coordonnées

Partons d’un exemple.

Exemple 5.1.1

Un mobile se déplacant dans le plan a n = 2 degrés de liberté. La description de son
mouvement nécessite donc 2 coordonnées généralisées, p. ex. :

« les coordonnées rectangulaires X, y notées q;, q;
« les coordonnées polaires p, 6 notées Q;, Q,

I1 correspond la transformation de coordonnées, ou changement de variables, des anciennes
variables q;, q, vers les nouvelles Q;(q1,q2), Q>(q1,q2) :

Q1=\/CI%+CI§

Q, = arctan <ﬂ)

qQ



Réciproquement, des anciennes variables Q;, Q, vers les nouvelles q;(Q;, Qy), 42(Q;, Qy) :

{‘h = Q; cos(Q,)
g2 = Qy sin(Q,)

Soient T, V, L respectivement 1’énergie cinétique, 1’énergie potentielle et le nouveau la-
grangien exprimés dans les nouvelles coordonnées. A chaque instant ¢ nous avons :

JT-VY=T-V
£(x,y,%,,t) = L(p,0,6,06,1)
Dans le cas d’un mouvement a force centrale, a chaque instant

m. ., 2 k _m. - 2\, K
5 (£ +5%) + x2+y2—2(p +,oe)+p

ou k > 0 pour une force dirigée vers le centre. Nous voyons que 6 est une coordonnée
cyclique alors que ni x ni y n’est cyclique. Le nombre de coordonnées cycliques dépend
donc du choix des coordonnées généralisées.

De facon générale, les lagrangiens nouveau et ancien sont égaux a chaque instant lorsque
la transformation de jauge ne dépend pas explicitement du temps (cf. § 3.2.6 page 98) :

'C(q’ qs t) = L(Q’ Qa t)

5.1.1 Cas de la mécanique de Lagrange

L’exemple précédent montre que les nouvelles variables Q sont des fonctions des anciennes
variables g, et éventuellement du temps. En mécanique de Lagrange, tous les changements de
variables réversibles sont possibles.

Définition 5.1.1 : Transformations ponctuelles de I’espace des configurations

Les changements de coordonnées généralisées
Vji=1,...,n Q= Q(q1,---»qn>t)
sont appelés des transformations ponctuelles de I’espace des configurations (q).
Ce changement de coordonnées généralisées implique celui sur les vitesses généralisées :

Vj:l,...,l’l Qj:(.Qj(qla-"aqn9q1""’qn’t)

Nous avons vu au § 3.2.8 page 102 que les équations de Lagrange sont covariantes par trans-
formation des n coordonnées généralisées (elles s’écrivent sous la méme forme fonctionnelle).
Apres un changement de variables, le lagrangien dit transformé s’écrit :

L(Q,Q,1)
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5.1.2 Cas de la mécanique de Hamilton

En mécanique de Hamilton nous pouvons envisager une classe plus large de transformations. En
effet celles-ci peuvent s’ appliquer sur I’ensemble des 2n coordonnées de I’espace des phases :

Définition 5.1.2 : Transformations ponctuelles de I’espace des phases

Les changements de coordonnées généralisées et d’impulsions généralisées

Vi=1..,n Q =0Q(q->qn P1>---»Pn>t) €t B=BE(qq,-sqn; P1> - Pp>t)

sont appelés des transformations ponctuelles de I’espace des phases (q, p).

Toutes les transformations ponctuelles de I’espace des phases ne sont pas valables, en effet les
anciennes variables g et p sont canoniquement conjuguées (déf. 4.2.2 page 132). Les nouvelles
variables doivent également étre conjuguées, elles doivent satisfaire les équations de Hamilton
pour le hamiltonien transformé, qui s’écrit :

HQ.P.)) S 3\ B - L(Q. 0,1)
i=1

Définition 5.1.3 : Transformations canoniques

On appelle transformation canonique une transformation ponctuelle de I’espace des phases
qui préserve la forme fonctionnelle des équations de Hamilton (4.6) page 132.

5.2 Fonctions génératrices d’une transformation

5.2.1 Fonctions génératrices de type 1

Considérons un systeme a deux degrés de liberté, de coordonnées généralisées q;, q,, et de
lagrangien £(q;, q2,q1, 2, t). Soient les quatre équations (inversibles) de transformation de
variables suivantes :

Q1 = Q1(q1, 92> P15 P25 1) R = K(q1,92, P1> P2- 1)
et (5.1

Q; = Qx(q1, 925 P1> P2, 1) B = B(q1, 92 D1, P2: 1)

Le lagrangien transformé s’écrit L(Q;, Q;, Qy, Q,, t). D apres (3.28) page 98 les lagrangiens sont
invariants de jauge.

Remarque 5.2.1

D’apres le § 3.2.3 page 96 ils sont également invariants d’échelle, mais on ne considerera pas les changements d’échelle.
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Les lagrangiens

df(qla q2, t)

Ll(ql’ q2> 91> Qzat) = 'C(ql’ q2> 1> QZ’t) + dt

et

- L detonon
L(Q1. Q2 @1, 02 1) = L(Q1, @y, @y, Oy, 1) + B Q)

sont équivalents pour décrire I’évolution d’un systeme. D’apres I’ex. (5.1.1) page 145, les lagran-
giens £ et L sont égaux a chaque instant. Nous avons alors :

dFi(qls 92, Qla QZ’ t)
dt

’C,(qls q2, ql’ (bst) - L/(Ql’ QZana Qzat) = (52)

Remarque 5.2.2

Pour un systéme a n degrés de liberté, nous avons 2n anciennes variables q et p, 21 nouvelles variables Q et P, et le temps, soit 41 + 1
variables. Comme nous avons également 21 équations de transformations, seules 21 + 1 variables sont indépendantes. Les fonctions F
auront donc toujours au plus 2n + 1 variables indépendantes. Elles doivent contenir a la fois des anciennes et des nouvelles variables
pour que I’on puisse effectuer le changement de variables.

Remarque 5.2.3

F; est fonction des anciennes variables g et des nouvelles variables Q, elle permet de passer de I’ancien lagrangien £ au nouveau
lagrangien L. Nous allons voir que le rdle de cette fonction est équivalent a un changement de coordonnées.

On omet les primes sur les lagrangiens. (4.3b) page 130 montre que la transformation du lagran-

gien implique celle des impulsions généralisées, et d’apres la déf. 4.2.1 page 131 du hamiltonien,
ona:

: : dE (g1, 0.0y, O,
[(p1dy + P2Ga) — H] - [(BQy + BQy) — H] = 1(q Cléth Qy, 1)

p1dq; + p,dq, — RdQ; — BdQ, + (H— H)dt = dF(qy, 42, Q, Q2. 1)

Pour un systeme a n degrés de liberté :
oF, 0K 6F
2 p;dg; — ZPdQl +(H-H)dt = Z 1 d Z ! dQl =L - dt (5.3)

Remarque 5.2.4

Les coefficients devant les €léments différentiels sont égaux ssi on peut faire varier les gj, les Qj et le temps indépendamment, c.-a-d.
ssi les variables q;, Qj et t sont indépendantes. Le temps étant indépendant (il n’est pas transformé dans une transformation ponctuelle
de I’espace des phases), le déterminant suivant doit donc étre non nul :

} 8%F,
9q;9Q;
raFi B
a—qi = Di (548.)
. 0K
Vi=1,..,n 1 __p .
130, =R (5.4b)
<3
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La relation (5.4c) montre que le hamiltonien n’est pas modifié par la transformation si la fonction
génératrice ne dépend pas explicitement du temps. La condition (5.3) (chaque membre de 1’égalité
est une différentielle totale exacte) est suffisante pour que la transformation soit canonique. Nous
pouvons simplifier cette condition car une transformation est canonique indépendamment du
systeme considéré, en particulier indépendamment du hamiltonien de départ. Une transformation
canonique s’applique a tout systéme ayant le bon nombre de degrés de liberté. De plus le temps
n’est pas transformé par une transformation canonique. La condition (5.3) devient la condition
suffisante :

n n n n
oF, 0K
2. pidg; — D RAQ; = 3 = dg; + ) <o dQ; (5.5)
Les conditions de Schwarz pour que dF soit une différentielle totale exacte s’écrivent :
’F _ &R op; _ Ok

= o = ——
Exemple 5.2.1
Soit la fonction suivante appelée transformation d’échange :
F(q1,G2:Q1, Q) = 1Q1 + 42Q,

dF est bien une différentielle totale exacte, la transformation est canonique :

dE(q1, 92, Q1, Q2) = q1dQ; + Qudq; + q2dQ, + Qxdq,
Avec (5.4a), (5.4b) et (5.4¢) :

(0K

—1=0

oq !

o) (D, —
6_1 =Q, p1=Q
6(11:% p2=Q;

A ﬁ =(q; = 1—h = 0
aFl _PZ =
-1 _ _
aQZ qz \H =%
0F; _

(5 =©

A partir d’une fonction du type F;(q, Q), nous obtenons la transformation des coordonnées
grace aux équations aux dérivées partielles (5.4a) et (5.4b) : K est génératrice de la
transformation canonique des coordonnées.

La transformation considérée est appelée transformation d’échange. Cet exemple montre
que I’on peut échanger la coordonnée généralisée q; avec son moment conjugué pq, les
équations de Hamilton étant invariantes sous la transformation p; — Q; et q; — —F. La
distinction entre les variables g; et p; n’est plus qu'une question de nomenclature, c’est
pourquoi en mécanique de Hamilton on les appelle simplement variables conjuguées, sans
préciser lesquelles sont des coordonnées ou des impulsions.

Pour appliquer cette transformation aux »n coordonnées, on prend la fonction génératrice

F(q,Q) =D, qiQ;
i=1
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et on obtient :

Q= p
Vj=1,...,l’l sz—q]
H=%H

Réciproquement, étant donnée une transformation de coordonnées du type (5.1) page 147, I’inté-
gration des équations aux dérivées partielles (5.4a) et (5.4b) donne la fonction génératrice.

Exemple 5.2.2

Soit la transformation de coordonnées :

Q=pi e RB=-—gq
(0F
= =0
oq
oK _ Q, (B = Qg + ...
?3611:2 B =00+ ...
1i—=—=q, = 1E=qQ+.. = FE=qQ+qQ
9Q F =q,Q, +
ﬁ:q 1= T -
an 2 LH=%
6 _
LW‘O

Les fonctions génératrices qui sont fonction uniquement des coordonnées (anciennes et nou-
velles) sont dites de type F(q, Q,t), I’indice 1 servant a les distinguer des fonctions génératrices
E(q,P,t), B(p, Q,t), et E4(p, P,t) que nous allons voir aprés quelques exemples.

Exemple 5.2.3 : Loscillateur harmonique

(cf. ex. 6.7.3 page 183)
La fonction génératrice

F(q1, Q) = smaqi cot(Qy)

génere la transformation canonique suivante :

maq; cot(Q;) = py 2B .

) 4 =/ — sin(Q))
_moqi  _ N me
2sin®(Qy) py = \2mawB, cos(Q;)
O=H-H H=%

F est appelée fonction génératrice de 1’oscillateur harmonique simple a une dimension.

Exemple 5.2.4 : Accélération constante d’un mobile

L’équation du mouvement et la vitesse d’un mobile de masse m ayant une accélération
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linéaire constante a selon I’axe des x s’écrit :

x(t) = % at? + vyt + x, v(t) = at + vy

def
En posant p = mv la quantité de mouvement :
1
x(t) = Eat2 + p—n;’ t + X, p(t) = mat + p,
1. Montrons que la transformation des coordonnées initiales x,, py aux coordonnées fi-

nales (et nouvelles) x, p est canonique en trouvant la fonction F (X, X, t) génératrice
de cette transformation.

Pour une transformation de type 1 les variables indépendantes q et Q sont ici x, et
X, et les variables dépendantes p, et p sont données en fontion de x et x par :

1
Po = ?(x — Xo) — Emat et p= %(x — Xo) + mat
Ecrivons la condition suffisante (5.5) page 149 pour avoir transformation canonique :

Podxo — pdx = [%(x — Xg) — émat] dxy — [%(x — Xg) + %mat] dx

OF, m

E = T(x — xo) — -mat
oF  m

Tx = X Xo) — gmat

R = _g(x —Xo)? — imatxo + f(x) + g(t)
=
F = —%(x —Xo)? — %matx + f(x0) + 8(¢)

1
F(xp,x,t) = —%(x —x0)? — Emat(xo + x) + g(t)

ou g(t) est une fonction arbitraire du temps. Cet exemple montre qu’une fonction
génératrice permet de faire évoluer le systeme des coordonnées initiales x, py aux
coordonnées finales x, p. Au § 5.3 page 164 nous chercherons la transformation
infinitésimale qui fait évoluer le systéme entre I’instant ¢ et I’instant d¢. La succession
de ces transformations infinitésimales fera évoluer le systeéme entre deux instants
quelconques.

2. Cherchons la fonction génératrice F(x, X, t) des coordonnées finales x, p aux coor-
données initiales (et nouvelles) xg, po.

[’équation du mouvement s’écrit :

1
xo = x(t) — 2 at? — vyt, vy = v(t) —at
def
En posant p = mv :
1
Xo=x(t)— tarr — By B _ PO _ 4
2 m m m

= x(t) + ~at? — ¢
2 m
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Pour une transformation de type 1, les variables dépendantes p et p, sont données
en fontion des variables indépendantes x et x :

1 1
p= %(x — Xo) + Smat et Do = ?(x - Xg) — Smat
Ecrivons la condition suffisante (5.5) page 149 pour une transformation canonique :

pdx — podxy = [%(x - Xg) + %mat] dx — [?(x — Xg) — %mat] dx,

R, X0, 1) = (¢ = x0)° + smat(xo + x) + (1)
= —F (o, x, 1)

5.2.2 Fonctions génératrices de type 2

En effectuant la transformation de Legendre ((4.2) page 126) de la fonction génératrice F pour
les coordonnées Q, nous définissons la deuxieme fonction génératrice F :

oF,
F(q,P,1) = F(q,Q,1) - Z Q an

Avec (5.4b) page 148 :

n
F(q,P,t) = F(q,Q,0) + ), QR (5.6)
i=1
En reprenant (5.2) page 148,
dt
c . - - dFé(q’ P’ t) d
ZPiQi—ﬂ—ZEQi‘FH:T ZQz
i=1 i=1
n n
oF BFZ X
;aqlqﬁzapm ZQ; ;Pi@i

Zpldql+ZQldP+(H 70 dt = Zngd ﬁZaFZdP+aandt

(o8,

34, = p; (5.7a)
; 0FE
Vi=1,.., = =Q :
i n 13 =C (5.7b)
oF
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Exemple 5.2.5 : Transformation identité
La fonction
bk =qR + ;b

est un cas particulier, elle génere la transformation canonique identité :

(B =Dy
B =p,
10 =@
Q@ =0Q
LH = j{
Dans le cas général, la fonction
n
B =) qR
i=1

génere la transformation canonique identité :

I=p
Vi=1,...,n g = Q
H=%X

Exemple 5.2.6 : Mobile dans un champ de gravitation
Le hamiltonien d’un mobile dans un champ de gravitation uniforme g s’écrit :
2
H = 2 + mgq

2m
On souhaite que la nouvelle variable Q soit cyclique et que par conséquent le nouvel
hamiltonien s’écrive sous la forme :

H=aP

ou a est une constante. La fonction génératrice est supposée ne pas dépendre explicitement
du temps, les hamiltoniens ancien et nouveau sont égaux :

2
aP L + mgq

= 2m
2
24 p
- p_
1 mg 2m2g
On pose & = mget A = (2m?g)~!:
q="P—Ap’

La transformation cherchée est de la forme :

Q==+p et P=q+Ap?

ou il reste a déterminer le signe devant p. Montrons qu’elle est canonique en trouvant la
fonction génératrice.
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1. Choisissons une transformation de type 1, F;(q, Q). Les nouvelles variables p et P
s’écrivent en fonction des anciennes g et Q :

p=%Q et P=q+AQ?
La forme différentielle s’écrit :

pdq — PdQ = +Qdq — (q + AQ?)dQ

0K (q,Q)
1aq =*Q F(q,Q) = £Qq + f(Q)
0K , , [ l 3 ’
1§qQQ)=_(q+AQ2) F(q,Q) = —(qQ+4Q%) + f(@
On conserve le signe négatif, Q = —p, car sinon la fonction F(q, Q) = §AQ3 ne

contient pas q :
1
E(¢.Q) = —qQ — ; AQ?
La transformation cherchée est donc :

Q=-p et P=q+Ap?

2. Choisissons a présent une transformation de type 2, F;(q, P).

(a) les nouvelles variables Q et p s’écrivent en fonction des anciennes q et P :

Q==p P=q+Ap?
P—q
— 2 _
1 1
Q=¢—=VP—q p=¢6&—=V\VP—q
VA VA

oF(q, P 1 —2
Zc(aq ) _ & P—q E(qP)=¢, (P— @+ f(P)
q Va N 34
3F(q. P 1 2 ‘
5(q,P) _ e ——+\P—q E(q,P) = ¢ P -2+ f(q
oP N 3VA
Par conséquent €; = —¢, sinon F, est nulle, et :

+2
E(q.P) = ——=(P—q)*?

/A
(b) formons la fonction génératrice F, en partant de F;, grace a (5.6) page 152 :
EK(q,P) = K(q,Q) + QP
1
= —qQ - 2AQ* +Q(q +4Q?)
2 3
3 4Q

- 2 (p-gp

3WA
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On vérifie que ’on retrouve bien (5.7a) et (5.7b) page 152 :

0B +1

2 =-—=+P—q 9B _
o7 /A 3 ~ P

0F, 1 MR
2="=+P—q = =0Q

P \a P
3. Cherchons le changement de variables correspondant a la fonction génératrice de
type 2 suivante :

E(q.P) = —= (P - q)*

3WA

r%=i P—q ( 1

9q  \/a p—ﬁ‘vP—q
<%=_—1 P—-q = <Q___l P —
k%:H—}[ (H = J¢

soit
Q=-p et P=q+Ap?

4. Les équations de Hamilton pour les nouvelles variables canoniques s’écrivent :

. T ,
P=-55 P=0 P=n
Q o . =
Q_ﬁif Q=mg Q = mgt + Qg
~ oP
{P(t) =—-Q {P(f) = —mgt — Q, {Po =—-Q
q(t) =P — Ap? q(t) = B — A(—mgt — Qp)? Qo =R —AQ]

{p(t) = —mgt + po
q(t) = B — A(mgt)* — 2AmgtQy — AQ}

1
2m

2

) = =5 (mgt)* — —-mgtQy + qo

2m2g
1 2
= zgt t Ul + Qo

(—Qqp) est la quantité de mouvement initiale. Que représente Ry ? Lorsque le mobile
atteint sa hauteur maximale la dérivée de la trajectoire par rapport au temps s’annule :

dq®) _

a =0

—gt+vy=0
;=%
8
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v U2
Qmax = ——= + =20y + qo
2g 4
_ 4
= 2 9o
Or
K= AQ(Z) + qo
= g (=mvo)* + qo
= Qmax

Exemple 5.2.7 : Transformations ponctuelles

Soit la fonction
FZ = fl(ql’ q2’ t)Pl + fZ(ql’ q2, t)PZ

ou fj et f, sont des fonctions différentiables quelconques. Elle génére la transformation
canonique :

(0fi a5

— B+ =P =
3q, 1 3q, 2= D1
9fi df
—PB+—=B=
3q, 1 3q, 2 = D>

‘ fl(Ch"bst) = Ql
5(q1,q2,8) = Q,
f1 afz

H(le QZ’H’PZ’t) - %(qla q2> D1, pzst)+ alf PZ

Les deux premieres relations sont une transformation linéaire des impulsions générali-
sées. Les deux relations suivantes sont une transformation ponctuelle de I’espace des
configurations, du type de celles que I’on rencontre en mécanique de Lagrange.

Dans le cas général, la fonction

E =), fi(a.DR
génére la transformation canonique :
(" 3 f
1
Z -k =p
i=1 aqj

HQ PO =5 PO+ 3 5T

a) Translation spatiale
Cherchons la fonction génératrice de la transformation des coordonnées correspon-
dant a la translation spatiale selon 1’axe des x. Soit a une constante :

{x’=x+a
Dx = Px

156
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Avec (5.7) :

o6 _ o _
ax_px N ax_px
E—x’ @—x+a
dpk dpx

F (x, pyx) = (x + a) p%

s 7 . =
Dans le cas général d’une translation de vecteur a'(a,, ay, a,) nous avons :

—

{?’ =T+a

p'=p

B(x,, 2, Py, Py Dz) = (X + ay)py + (v + ay) Py + (z + a,)p;
E(T,p)=(T+3d)-p’ (5.8)

b) Rotation spatiale

Cherchons la fonction génératrice de la transformation des coordonnées correspon-
dant a la rotation spatiale d’un angle 6 autour de 1’axe des z. Pour les nouvelles
coordonnées, nous avons,

x" = xcos(6) + ysin(0)
y' = —xsin(6) + y cos(6)
z' =z

(5.7b) donne

ok _ ., 9B _, . 9B _
dpx © dpy ’ ops

!’ !

d’ou,
E(x, Y, 2, Dk, Py, Pz) = [x cos(8) + ysin(6)] pi + [—xsin(6) + y cos(6)]py, + zp,
Pour les nouvelles impulsions, nous avons,

Pl = pxcos(6) + py sin(6)

Py = —pyx sin(6) + p, cos(6)
Pz = Dz

Inversons ces relations :

{ p’ cos(a) = p, cos?(a) + py sin(a) cos(a) { py sin(a) = py cos(a) sin(a) + py, sin?(@0)

py sin(a) = —py sin®(a) + py cos(a) sin(c) py cos(a) = —p, sin(a) cos(a) + p,, cos?(a)

Px = Px cos(6) — py sin(6)
py = D sin(6) + pj cos(6)
Dz = Pz
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(5.7a) donne

9% _ . 95 _ . 9B _
ox x0T Th 0 G T

et I’on retrouve la méme fonction F, :
E(x, ¥, 2, Py, Py, Pz) = [P cos(8) — pi, sin(0)x + [ py sin(6) + py, cos(E)]y + zp

c) Transformation de Galilée

Soient deux référentiels R et R’ en translation selon I’axe des x 4 la vitesse uniforme
vy, R se déplacgant dans le sens des x croissants. Quelle est la fonction génératrice
de la transformation de Galilée ? La transformation de Galilée s’écrit :

{x’ = X — Vit
p;c = Dx — Mvy

(5.7) page 152 donnent :

(%— r%— '+mV
ax_px ax_px X
<E—x’ => E—x—vt
Opx Opk *
0B .. OR
LW_H—IJL[ kH—ULC+W

{Fé(x, P £) = (P + mv) x + f (p%) + 81(1)
B (X, p» 1) = (X = Vit) Pl + h(x) + g5(8)
soit,

B(x, pl, t) = (X — Vi) pi + mvyx + g(t)
ou g(t) est une fonction quelconque du temps. Nous avons alors :

98(®)
at

3R,
at

= _p;ch +

Dans le cas général, la transformation de Galilée s’écrit,

T'=T-Vt
{ - (5.9)
1Y

—>

p'= v

3

et la fonction génératrice devient,

E(T,p',t) = (x — v t)pl + mvex + (y — Vyt)py + mvyy + (2 — Vt)py + mv,z + g(t)

=(T=VD)-p'+mvV-T+g@) (5.10)
qui donne :
a - P VT g
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Le hamiltonien transformé a pour expression :

H(T,p,t)=H(,P.)— P ‘7_'_6%_(;)

= I+ VL A mY. - 7 + B0

Par exemple la transformation de Galilée appliquée a un mobile libre [?( = p?/ (2m)]
s’écrit en choisissant g(t) nulle :

2
H(T',p’ t)—p——p

_(p +mv)> v

2m — P
p?+2mp -V+m - -
B 2m DR
12 2
_pr o om?
2m 2

5.2.3 Fonctions génératrices de type 3
Définissons une troisieéme fonction génératrice, F(p, Q, t), en effectuant :

« soit une transformation de Legendre de Fi(q, Q,t) pour les q :

n

3F,
F(p.Q.t) = F(q.Q.1) — Zqz =

l

= F(q,Q,t) - Z qiDi
i=1

+ soit une transformation de Legendre de F(q, P, t) pour les P :

o5

E(p,Q.t) = K(q,P,1) - ZP@

i=1
En reprenant (5.2) page 148,

d
£-L=2FR@Q0
n . n . d d n
D piGi—H - BQ;+H= —E(P,Q,t)+ aqupi
i=1 i=1
3F; dF; 0, w . .
253 Z 2Q a—3+ZQiPi+ZPiQi
bi toe i=1
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(0F,
. OF
V = 1, ) 1 —3 = —5 .
i n 50 =" (5.11b)
OF
¥ =H-X (5.11¢)

Exemple 5.2.8 : Transformation identité
La fonction
E(p1, Q) = p1Q

est un cas particulier, elle génere la transformation canonique identité avec changement de

signe :
{Q1 =—0
p1=-H
La transformation F5(p,, Q;) = —p; Q; engendre la transformation identité.

Exemple 5.2.9

Nous pouvons additionner les différentes fonctions génératrices. En reprenant la fonction

génératrice Iy de I’ex. 5.2.1 page 149 et la fonction génératrice F5 de I’exemple précédent,
la fonction

F=FE(q;, Q) + FE(p2, Q)
=q:101 + p2Q;

génere la transformation canonique :

Q=D
q1=—h
Q=—q
p2=—h

5.2.4 Fonctions génératrices de type 4

Une quatrieme et derniere fonction génératrice, F;(p, P, t), est obtenue en effectuant :

« soit une transformation de Legendre de la fonction F;(q, P, t) pour les q :

n

oF
E(p.P.0) =B(qP.t) — Y. qi 52
i=1

dq;

n
= FK(q.P.t) = ). qip;

i=1

n n
= Pi(q’ Q, t) - Z qipi + Z QlPl
i=1

i=1
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« soit une transformation de Legendre de la fonction F(p, Q, t) pour les Q :

0F;

E(p,P,t) = K(p,Q.1) = Z 30

=E(p,Q.0) + Z QR
= F(q,Q,1) - Z qip; + Z QR

i=1

En reprenant (5.2) page 148,
L—-L= iF( Q,t)
Taiete
n . n . d d n d n
D pidi—H - D BQ;+H= &sz(P,P,t)‘l‘ Ezqipi_ EZQiPi
i=1 i=1
= Tpi“LZ_p +qupl+qupl
i=1 pl i 1

—ZQiPi—ZQiPi

i=1 i=1
n
OF, OF,
- H+H= Za pl+z_; +_+qupl ZQl
i=1 7t
fal_',;‘._
op =
. OF,
Vi=1,..., {Z 2 _ 0.
i n 3P Q;
OF,
or =M

Exemple 5.2.10

La fonction Fy(p;, B) = p; B est un cas particulier, elle génére la transformation canonique
d’échange avec un seul changement de signe :

{P1 =—-q
p1=Q

Le fait que la composition successive de deux transformations canoniques soit une transformation
canonique suggere qu’elles forment un groupe. La composition de transformations canoniques
est associative. Il existe un élément neutre qui est la transformation canonique identité. A chaque
transformation canonique il existe une transformation inverse qui est elle-méme canonique.
Les transformations canoniques forment donc un groupe, appelé groupe des transformations
canoniques.
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5.2.5 Crochets de Lagrange

Les crochets de Lagrange permettent de savoir si une transformation est canonique. Dans (5.5)
page 149, injectons (5.4a) et (5.4b) page 148 :
oK
(5]

i@ =3 (5)aa
= ;(pidqi — RdQ))

Les conditions de Schwarz pour que dF soit une différentielle totale exacte s’écrivent :
2 2 . op;
¥ (sq)~ o) = (5)=(50)
9q;9q; 9q;9q; aq; 9q;
2 2 ) oP
v (saz6) = (sea) = ()~ (=)
0Q;90Q; 0Q0Q; 0Q 0Q;
2 2 : oP
Vi, Vj, (51:1):(‘“’1) N (%)z_(_l)

11 existe une unique condition d’intégrabilité valable pour les quatre formes différentielles dF;,
dF, dF; et dF;. En effet, pour dF :

dF(q, Q) = Z picdqy — ZPdQl
k=1

=zpk(za—@doi+za—3de)—zgdoi

k=1 i=1 i=1 i=1

(5 02 n)ao 5 S
= k —P dQ + k P

Z:I kzzzl aQ l l i=1k=1 aB l

S gk L Ak 4p
= — P )dQ; +

z[(z pi ) o+ n S ]

Nous avons fait apparaitre les différentielles dQ; et dB. Les conditions de Schwarz pour que dF
soit une différentielle totale exacte s’écrivent maintenant, pour deux coordonnées Q; et Q; :

o 3’R ) ( 0’ )
Vi, Vj, -
BYJ (aQian 3Q3Q;
o 9q d (v Oqx
s (275 1) a@(zp"a_@"pi)
Opk 9k~ 0%qy kg~ 0% qx
Zan 3Q, Z Pk 3Q0Q ~ Z /'3Q, 3Q; ,épkaq-a@

Z 99k 0Pk 5 0qy Opi
an aQ] k=1 aQJ an

=0
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De méme, pour deux coordonnées E et J :

k=1 k=1
Zn: Opk 9qk Zn: - P _ Zn: Pk 0qk Zn: - 0%qy
k=1 R oF k=1 ORoR k=1 oF OR k=1 OROR
o fam,
k=1 77t 7] k=1 ~7J l

Pour deux coordonnées Q; et B :

3 [« dqx 0w 0q
w(Zr 5 1) =g Lo

L \k=1 1
n n n n
9Pk 9qk *q 9Dk 99k 82q;
T T LI W ol 'L [
om0 " &P amag %= & ag an * P aqan

Nous avons alors :

Z 9k 9Pk _ Z 9k 9Pk _ 5
' 3Q; OF 55 30, ~ U

Ce terme est appel€ crochet de Lagrange de Q; et B pour les variables (qy, py)-

Définition 5.2.1 : Crochets de Lagrange

Soient deux fonctions f(q, p,t) et g(q, p,t) de I’espace des phases, leur crochet de La-
grange pour les variables canoniques (g, p) est la quantité :

{f, gl d_efzn: %%_%%
’gq’P‘jzl 3f 3g _ of og

Les conditions nécessaires et suffisantes en termes de crochets de Lagrange pour qu’une transfor-
mation (g, p) = (Q, P) soit canonique sont donc :

{Q Qj}q,p =0 {B, If}q,p =0 {Q;, ljg}q,p = 5ij (5.13)

De méme, pour la différentielle dF, :

n

dF(q,P) = Z Prdqy + Z QdR

Zm(Z g+, Sk dP) > QdR
k=1 o o im1
n n a n n
=Zzpkac(lgdel+Z(ZPk +Qz>
i=1k= l i=1 \k=1
n n n
9qy 9qx
= do; dP
;llkglpk an Ql+<k§1pk 53 +Ql) ll
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avec la condition d’intégrabilité pour deux coordonnées Q; et  :

ii Oqi _ 0 Z Sk
az;zpkan an Pk'ap ™

k=1 J'
S 3Pk Ok | < 5Pk 5Qk Pa | 99
+ +
£ 3R 3Q; kzlp aPan Z £ 3Q; OB Z "an BT 5Q
zn: 99k 9Pk Z 99k 9Pk _ 5
5Q; OF 5p 3Q; _ °U
{Qia }J)'}q,p = 5ij

De méme pour K et Fj.

Exemple 5.2.11

Montrons qu’une rotation d’angle ¢ dans 1’espace des phases (g, p), définie par la transfor-
mation des coordonnées,

Q = gcos(a) + psin(a)

P = —qsin(a) + pcos(a)

est une transformation canonique.
Montrons que la fonction génératrice est une différentielle totale exacte. Inversons les
relations précédentes :

{Q cos(ar) = qcos?(a) + psin(a) cos(a) Qsin(a) = qcos(a) sin(a) + p sin®(«)
Psin(a) = —qsin®(a) + p cos(a) sin(cx) {P cos(ar) = —qsin(a) cos(a) + p cos?(x)

q = Qcos(a) — Psin(a) et p = Pcos(a) + Qsin(a)

% = cos(a), 9% = —sin(a), op = sin(a), op = cos(a)

dQ oP oQ oP
9q99p _9q9p _ o n2(c0) =
303P _ P30 = cos*(ar) + sin“(a) = 1

5.3 Transformations canoniques infinitésimales

Nous cherchons une transformation pour laquelle les nouvelles variables g et p seront trés peu
différentes des anciennes. L’ex. 5.2.5 page 153 montre que la fonction génératrice i, = ). q;P
génére la transformation identité. Soit € un infinitésimal du 1°" ordre et soit G(q, P, t) une fonction
quelconque. Considerons la fonction génératrice :

n
F(q,P,t) = ), qiB +¢G(q, P, 1)
i=1

Elle génere une transformation proche de I’identité appelée transformation canonique infinitési-
male ou transformation de contact (parce que le déplacement est tres faible), donnée par (5.7)
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page 152 :

(OF, ( dG(q, P,t)
a_qzi=pi Pi+€g—qi= i
OF, dG(q, P, 1)
—_— . # 3 . _—_— .
<5Pl Ql ql+€ aE Ql
K .. 3G(q,P,t) _
37 = H-% \GT =H-%H

Dans ce qui suit nous négligeons les termes infinitésimaux du 2" ordre en €2, devant ceux du 1
ordre en €. La différence entre les nouvelles et les anciennes impulsions généralisées est du 1¢f
ordreen € :
. 0G(q,P,t)

aq;
Or, le terme impliquant G dans F, étant déja du 1° ordre (terme €G), nous pouvons donc remplacer
P par p dans G (cela revient a ajouter ou soustraire un terme du 2" ordre dans F, puisque B — p;
est du 1° ordre) :

R—pi=-

n
E(q.P,t) = ), qiR +€G(q, p.1) (5.14)
i=1
€G(q, p,t), appelé générateur de la transformation infinitésimale. Adoptons les notations sui-
vantes, 6q; = Q; —q; et Sp; = B — p; :

( dG(q, p,t ( 0G(q, p,t
1 4
dG(q, p, t dG(q, p t
1 1
96@p.) _ . 4 96@p.) _ o 4
\ ot \ ot

Exemple 5.3.1

Trois exemples de générateur de transformations infinitésimales.

a) translation spatiale infinitésimale de vecteur 5a
D’apres (5.8) page 157 :

!

E(Y,p)=(Y +63) P’
TP 467
Dans la fonction G nous remplacons P’ par P :
B(F.B) =T 7' +6%3
T - P’ est la transformation identité, et @ - p est le générateur de la transformation
canonique infinitésimale.

b) rotation spatiale infinitésimale d’angle 66

X' =x|1- (36)° + 66
x' = xcos(80) + ysin(50) h 2 Y X' =X
r o 2 [
yl = x —sin(66) + ycos(66) = Y = —x86+y [1 _ (59) ] => y,
zZ =2z 2 z =2z

zZz =2z
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(5.7b) page 152 donne

E — x’ . % — 1/ . % _ Zl
3P Loyt
d’ou,
E(x,y,z, Py, Dy, Dz) = (x + y86) pi + (—x66 + y) py, + zp;
= xpx + yp} + zp; + (y px — X p})30

Dans la fonction G, remplagons pj, par py, et py par py :

Ey(X, ¥, 2, D> Py» P2) = XDk + YDy + 2Pz + (¥ Px — X P50
En notant L, la composante en z du vecteur moment cinétique,
E(T,p)=T: P —L; 80

oll T - P’ estla transformation identité, et L, 50 est le générateur de la transformation
canonique infinitésimale.

¢) transformation de Galilée infinitésimale
Reprenons (5.9) page 158 :

A partir de (5.10) page 158, avec g(t) nulle et en négligeant les termes infinitésimaux
du 2" ordre :

B (T, 5.0 = (T -0V - +mév - T
=T -p —=6Vt-p' +mév-T
=T-p =8V -(tp —mT)
Dans la fonction G remplacons p’ par P :

E(T,p,t)=T-p =6V -(tp —mT) (5.16)

T - P’ est la transformation identité et SV - (tp — mT) est le générateur de la
transformation canonique infinitésimale.

5.3.1 Evolution d’un systéme

Prenons pour fonction G(q, p, t) le hamiltonien F((q, p, t), et pour € une durée infinitésimale dt.
(5.14) page précédente donne

n
Fy(q,P,t) = ), qiB + H(q, p, )dt
i=1
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et a partir de (5.15) page 165 (« 8 »devient « d »car la variation est dans le temps) :

(dpi - _M dr . 0 (q, p,t)
0q; pi = _5—qi
‘dqi=wdt = - 0F((q, p,t)
op; q=—>——
! ap;
\H:%+%dt H = ¢ + d7C

On retrouve les équations de Hamilton. Le hamiltonien est par conséquent le générateur a
chaque instant d’une transformation canonique infinitésimale. C’est une fonction génératrice
qui transforme les coordonnées généralisées et leurs moments conjugués pris a 1’instant ¢, en
ceux a I’instant ¢ + dt. De cette transformation résulte 1’évolution dynamique du systéme dans
le temps, qui correspond au déplacement infinitésimal du point représentatif du systeme dans
I’espace des phases entre les instants ¢ et t + dt. Une succession de transformations canoniques
étant équivalente a une transformation canonique, deux points quelconques de la trajectoire d’un
systeme dans 1’espace des phases sont reliés par une transformation canonique.

Effectuons la transformation de Legendre de la fonction génératrice F, pour exprimer ce résultat
avec la fonction génératrice F;. D apres (5.6) page 152 :

F(q,Q.t) = B(q,P,t) — D, QR
i=1

n
D qiR + H(q, p,t)dt — )" QR
i=1

n
— > Bdgq; + #(q, p, £)dt

i=1

n
— > (pi + dpy) dg; + (g, p, t)dt

i=1

n
=—|>] pigi — #(q. p,0) | dt
i=1

—Ldt

L’évolution temporelle d’un systeme est une succession infinie d’évolutions temporelles infini-
tésimales, chacune pouvant étre décrite par une transformation canonique infinitésimale. Une
succession de transformations canoniques étant elle-méme une transformation canonique, on en
déduit que I’évolution temporelle finie d’un systeme peut étre décrite par une transformation
canonique finie de fonction génératrice — [ £ dt.
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5.4 Transformations invariantes

Apres une transformation canonique (g;, p;) = (Q;, B) les équations canoniques s’écrivent sous
lj> Ej 2%
la méme forme, elles sont covariantes par changement de coordonnées :

5= 9% b 0H
J aqj N J an
. 0K . 9H
LD V75

ou le nouvel hamiltonien est :

OF

C’est la définition méme d’une transformation canonique (déf. 5.1.3 page 147). 1l existe des cas
ou JH et H ont méme forme fonctionnelle, ce qui permet d’écrire :

OF

Exemple 5.4.1

JC = p?/(2m) et H = P?/(2m) ont méme forme fonctionnelle. On a bien H(Q, P, t) =
H(q, p,t), mais on a aussi F(Q, P,t) = F(q, p,t).

Une fois le hamiltonien remplacé par sa nouvelle expression, les équations canoniques ont
alors elles aussi méme forme fonctionnelle. Le systeme est dit invariant sous la transformation,
elle-méme dite invariante.

Supposons que la fonction génératrice infinitésimale F5(q, P, t) ((5.14) page 165) soit une trans-
formation invariante. H et ( ayant méme forme fonctionnelle, (5.15) page 165 donne :

oG
€57 = I(Q.P, 1) = (g, p, 1)

= J(q; + 6q;, p; + Op;, t) — F(q;, pi» £)

= 83 (q;, pi» t)
n n
oOH oOH
=S 5+ S 2 s
=1 94 o =1 opi g

" 0T 9G _ < O3 5G

i=1 aql apl i=1 apl aCIl

G <« (a% 0G 0K 6G>
i=1

=€

T2 5.17
5t 5 3p,  3p; 34, ©-17)

Cette relation nous amene a définir les crochets de Poisson et leurs propriétés.
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LES CROCHETS DE POISSON
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6.1 Introduction

Soit U(q, p, t) une fonction quelconque des 2n variables canoniques et du temps. En utilisant les
équations de Hamilton (4.6) page 132 :

n
ou ou ou
J

dU@.p.0) _ 5 (0UL% , oU IR | oU
dt £i\3g ar " ap;dt )T
$ (e aua) a0



Définition 6.1.1 : Crochets de Poisson

Soient deux fonctions f(q, p, t) et g(q, p, t) de I’espace des phases, leur crochet de Poisson
pour les variables canoniques (q, p) est la quantité :

def « (df dg  Af dg
[f’g]q,p - Z (aqk Opk B opk aCIk)

k=1

On écrira donc :
dU(q, p,t) _ oU

T =[U,H]gp + N (6.1)
6.2 Crochets de Poisson et équations de Hamilton
Reprenons les équations de Hamilton (4.6) page 132 :
_ 9K b=y I 5 Oh o
. b= 9q; 7 & 0qrop & 9pk 9
VJ = ]., A () > n n
G; = ai[ g Z an N an N A
4] . ;= _— L
op; ! & 0qidpk & 9pk Op;
Grace aux crochets de Poisson elles deviennent symétriques :
i = | pj, F (6.2a)
R
4 = [qj Hq,p (6.2b)

6.3 Lien avec les crochets de Lagrange

Soient Uy(q, p, t) 2n fonctions indépendantes des 2n variables canoniques (g, p). Ecrivons les
crochets de Lagrange et de Poisson de ces fonctions pour les variables canoniques (g, p) sous
forme de matrice, et effectuons la multiplication matricielle de la transposée de la matrice des
crochets de Lagrange avec la matrice des crochets de Poisson :

U, U} G0} ... {UUd([U,.U0] [U,0G] .. [U,0,]
{Ul’. UZ} {1]2’ UZ} {[]2n’ UZ} [lJZ’ Ul] [IIZ’ UZ] [IIZ’.UZn]

{Ul, Uzn} {U29 UZn} {U2naU2n} [U2n, Ul] [UZn’UZ] [U2n, UZn]
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Dans la matrice résultat, calculons le terme d’indices ij :

2n n
dq, dp ap Jq oU aU}' U aq
U,U U, < a a a Cl) —
z_:{ k } k ZlaZlel aUkaUl 5Ukan aqbapb 6pb3qb

_ zn: Zn: Zn: aCIa apa aUk aU} _ aQa apa aUk aq _apa aQa aUk 5[5 apa aCIa aUk aU}
- E 2 EZ\0U 90U, dq, Opy Uy AU Opy dqp 90Uy OUj; 9qy, Op, - Uy AU Opy, 9,

Avec
dq dp
Z a dUk et Z 6UZ dUk
nous avons :
dqa aQa aUk aQa aUk apa aUk apa aUk
dqp Z 49Uy Oqp’ Z * 90Uy Opp’ Z “ OUy Oqp’ Z aUk app
Or nous avons aussi Va, Vb,
dqa _ \ d9q _ dpa _ dpa _ ,
dgy dpp dgp, dp,
qui donne :
a a 2n 2n
Z qa OUx _ ZaQaaUk 0 0Pa Ik _ Zaﬁaﬂ:
¢ OU oqy ab ‘ OUx Opp = oUcdqp = 9Uk 9py ab
Nous avons alors :
2n n n
_ 9P aU} 94, aq
kE::l{Uk, UlU, Ul = aZ=:1 2 (5_Ulm ab T 30 30, Sab

Par conséquent :

La matrice résultat est donc la matrice unité. La transposée de la matrice des crochets de Lagrange
et la matrice des crochets de Poisson sont inverses 1’une de I’ autre.
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6.4 Conditions d’intégrabilité et crochets de Poisson

Prenons le cas de quatre variables canoniques (qy, q3, P1, P2)- Utilisons le résultat du § précédent.
Les conditions nécessaires et suffisantes (5.13) page 163 sur les crochets de Lagrange pour avoir
une transformation canonique nous donne la matrice de gauche :

[Q Q1] [Q1, Q] [Q1.R] [Q1,B]
[Q2, Q1] [ Q] [Q2,R] [Q2B]
[Pl’Ql] [Pl?QZ] [Pl’Pl] [Pl’PZ]
[B. Q] [B.Q] [B.R] [B,B]

o = O O
_ o O O
o = O O
— o O O

S O O -
= o~ O
S O O+
S O = O

Si bien que :

R,Q]=1 [RQ]=0, [R,R]=0, [RB]=0
B,Q]l=0, [B,Q]=1 [BA]=0, [BAB]=0
Qi, Q] =0, [Q1, Q] =0, [Q,.R] =1, [Q,B]=0
Q] =0, [Q:, Q] =0, [Q:,R] =0, [Q,B] =1

—_—— — —

En généralisant, on en déduit les conditions nécessaires et suffisantes en termes de crochets de
Poisson pour qu’une transformation (g, p) — (Q, P) soit canonique :

[Qi’ Qj]q,p =0 [l)l’ Ijg]p,q =0 [Qia Ijg]p,q = 5ij (6.3)

Ces conditions d’intégrabilité peuvent étre obtenu d’une autre facon. En appliquant (6.1) page 170
aux fonctions pour I’instant arbitraires P(q, p) et Q(q, p) :

OPOH  OPIH

P=IPHly, _ |""3q0p dpaq
Q=[Q Hlg, g = 9Q9% _ 0QoI
oq op  dp dq

Rappelons un résultat classique de la dérivation des fonctions composées :

d¥(q, p,t) = dH(Q, P, t)
OH OF NN 0H 0H

qu En) dp+ —— 3 dt = anQ+ dP+ ¥ dt
_OH(3Q, QN OH(SP, 0P\ oH
‘aq(aqdq+apdp)+ap<aqd apd>+atdt
_ (9HOQ  JHOP 9HoQ a_Ha_P) 4 9H
_<6Qaq+aP6q)d (6Q6p+6P6p dp+ pdt

D’ou les relations :
OH J0HJQ OJHoP

3q ~3Qdq ' 3P aq
OH _oHoQ  JHOP
dp 0Qdp dPdIp

(6.4)
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Donc :

po2(220, k) apaudq  ouar)
dq\dQdp OJPIp op\dQdq JPIq
0=20 (220 ooy oq(sudq stk
oq\dQdp JPIp op \dQ dqg JP dq
. OPOHOAQ OJPJHIQ A oH
~3q3Qap 9paQaq _ |"=7aq@Ples
, _ 9QOH3P _9QH 3P o= Mo
dq 6P dp dp AP dq op - 4P

Ce résultat est valable quelles que soient les fonctions Q(q, p) et P(q, p). Si nous voulons que P
et Q soient des variables canoniques, nous devons de plus retrouver les équations de Hamilton.
Une condition suffisante est que [Q, P] gp = k, ou k est une constante non nulle car on obtient :

5__ OH _ _0%kH)
T80 T T a0
. OH _ d(kH)
Q_ka_P_ 3P

Prendre k # 1 revient a effectuer un changement d’unités (cf. § 3.2.3 page 96), et nous prendrons
donck =1:

[Q,P]q,p =1

[Q, Py, = k est-elle une condition nécessaire pour retrouver les équations de Hamilton ? Si
nous supposons qu’un hamiltonien K(Q, P) existe, alors

: oK 0K OH
"=75 _ |ag™5q! @ e
. 0K 0K OH
Q=ﬁ ﬁ=ﬁ[Q’P]q,p
Il faut aussi que :
8?K(Q,P) _ 8°K(Q,P)
0QP ~  0dPAQ
d (0H d (0H
56 (5710 Plar) = 55 (5510:Flas)

dHO[Q, Plgp _ oHOIQ, Plgp
3P 3Q  4Q P

Pour que cela soit toujours vrai nous devons avoir

a[Qaf)]q,p — 0 et
aQ oP

0Q.Play _

c.-a-d.
[Q, P]q,p =k
Exemple 6.4.1

Reprenons I’ex. 5.2.11 page 164. Montrons qu’une rotation d’angle o dans I’espace des
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phases (g, p), définie par la transformation des coordonnées,

Q = gcos(a) + psin(a)
{P = —qsin(a) + p cos(a)

est une transformation canonique en calculant le crochet de Poisson des fonctions Q(gq, p)
et P(q, p) pour les variables canoniques (g, p) :

0Q 0Q . op o°P

% = cos(a), _dp = sin(a), 3q sin(a@), _6p = cos(a)
6QOP Q3P _ .,
3qop opdaq cos“(a) + sin“(a) = 1

Exemple 6.4.2

Reprenons I’ex. 5.2.4 page 150. Montrons que la transformation suivante est canonique :
1
x(t) = at’ + ot 4 xg,  p(t) = mat + py
m

Calculons son crochet de Poisson :

dx Jdp dx Jp

[X, Plxo.po = dxo 0py  9po 9o
=1x1-— i x0
m
=1

Exemple 6.4.3

Montrons que la transformation suivante est canonique :

Q =—Insinp
P=qtanp

Premiére méthode en calculant le crochet de Poisson :

9Q 9Q _ cosp oP _ o°P _  q
dq =0 dp  sinp’ dq = tanp, dp cos?p
a_Pa_Q_Qd_Q_ L Xtanp =1

dpdq 9dqdp tanp
Deuxieme méthode en montrant que la fonction génératrice est une différentielle totale
exacte :

d_Q _ _cosp
dp  sinp

dp
dQ = Ctanp
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Etl’'on a:
dR = pdq — PdQ
dp
= pdg+ qtanp @np
= pdq + qdp
= d(pq)

Remarque 6.4.1
F4 n’est pas génératrice de la transformation car elle est constante :

dF4 = —qdp — PdQ

—qdp + qdp
0

6.5 Propriétés

6.5.1 Crochet de Poisson avec une fonction constante

Soient f et g deux fonctions de ’espace des phases. A partir de la définition, nous avons la
propriété suivante :

I
M=

el (a focste  of acsfe)

‘\dqi dpic  Api Iqk

I
°T

6.5.2 Bilinéarité

Linéarité a gauche :

[fi+fngl=D]

k=1

(6(1”1 +H)dg dh+h) 8g>
oqr  Ipk opk  9qx

=i<5fl dg ok 5g>+i<afz g  df 5g)
' \0qx Opx 0Pk 9qx 09k 0Pk 0Pk 9k

k=
=[h, gl + 2 g]

k=1
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o (9(Af) 3g  B(Af) dg
Vi1 e R, = ( - )
,{Z::l dqx 9px  9pk 9qx
n
=AZ<5f dgg  df 38)
=4 \0qx 9pr  Opk Oqx
= alf. gl

Linéarité a droite :

[f,81+ &l =I[f &l+I[f gl
Vu € R, [f>ugl = ulf, gl

6.5.3 Antisymétrie

_i(af dg  of ag)
= \0qx 0Pk 9Pk Oqx
n

__ og of adg of
B k;(aqkapk 5Pk5Qk)
= —[g f]

[f.f1=0

6.5.4 Crochet de Poisson fondamentaux

Les variables canoniques q étant indépendantes les unes des autres, et les variables canoniques p
étant elles aussi indépendantes les unes des autres, nous avons :

n
_ 0q; 99 _ 9a; 99
(9> Gilq.p = kz=:1 (aqk Opr 9Pk 9qx

[qi’ Qj]q,p =0

Zn: dp;i O _ dp; 9
[P: Byl = \9qk Opx  Opx 9qx

[pi> Djlgp =0

n
B dq; O  9dq; 9D
19> Dilqp = Z <6qk Opr  9pk 9qk

= Sk Sk

k=1

:

[qi, Pj]q,p = 5ij
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6.6 Identités

6.6.1 Identité de Leibniz

[fg h]l = flg h]l+glf,hl
Démonstration.

d(fg) oh  d(fg) oh
3h- = [ -
/8. k] 9qx Opk 9Pk 9qx
—i(f dg dh +gaf oh . dg oh g af ah)
9qx 9pk 94k 9Pk 9Pk 9qx Opk 9qx

k=1
" (dg 8h Adg dh “(df dh Af dh
=f2(aga _aga )+ Z(afa _afa )
=1 \94k 9Pk Pk 949k k=1 \99k 9Pk Pk 99k
= flg, h] +glf, h]

6.6.2 Identité de Jacobi

[f.[g hll +[h.[f, gll + [&[h. f1] =0

Démonstration. Le premier terme s’ écrit :

&~ (Of olg,h] _ of dlg hl
Z(a% opk  Opk 9qk )

Lf> g, hl]

n

k=1
ey (eon_2eoh) of o ; (eon_ 2eoh)
21| 99 Opk =1 \99;0p;  9p;0q;)  Opi9qy Z1\9q;9p;  9p;9q;

([ [gh]]‘ii(af o%¢ oh  Of g &h _ Of &% Oh _of dg oh
e =) =1 9 9pidq; Op;  9q) 99;9pkdp;  9qy Opidp;0q;  9qy Op; Opiq;
_Of d%g dh  3f g &h L of d%g oh , of 3 6%h
0Pk 9qx0q; Op; 9Pk 9G;9qKkOp; 9Pk 9qKOp; 9q; 9Pk 9P 0q)Iq;

En effectuant la permutation circulaire des trois fonctions f, g, h, I’ensemble s’annule. Par
conséquent la somme des crochets de Poisson obtenus par permutation circulaire de trois fonctions
est nulle, et le crochet de Poisson n’est pas associatif. [
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6.7 Théoremes

Théoréme 6.7.1 : Crochet de Poisson et intégrale premiere

Si le crochet de Poisson d’une fonction ne dépendant pas explicitement du temps avec le
hamiltonien est nul, alors cette fonction est une intégrale premiere du mouvement.

Démonstration. La dérivée par rapport au temps d’une fonction f(q, p, t) de I’espace des phases

s’écrit : ,
df(q,p.t) =Z(5f . of . >+5f

ar Z Eqk+ﬁpk En

Si les coordonnées et les moments varient selon une trajectoire réelle, ils satisfont les équations
de Hamilton (4.6) page 132 et nous avons :

df(q. p.1) =Z”:<af o3 of ayc)+af

de “~\dqi dp,  dpk dq) "~ ot
df(q.p,t) _ of

T =[f, K]+ 3 (6.5)
Si le crochet de Poisson avec le hamiltonien est nul et si f ne dépend pas explicitement du temps,
alors,

dfa.p) _,
dt

et f(qg, p) est une intégrale premiére. O

Revenons sur (5.17) page 168. Le second membre est le crochet de Poisson de H et G, et 'on a :

oG

Avec la propriété (6.5.3) page 176 d’antisymétrie des crochets de Poisson :

oG
¥ +[G,H]=0
Avec (6.5) cette relation équivaut a :
5 _,
dr

Le générateur d’une transformation infinitésimale invariante est une intégrale premiere du mou-
vement.

Exemple 6.7.1
Reprenons les ex. 5.3.1 page 165 pour le cas d’un mobile libre.

a) lors d’une translation spatiale infinitésimale d’un vecteur & 2, le hamiltonien est
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invariant de forme fonctionnelle :
2 2
P
P - H=

- 2m - 2m
Le générateur de la transformation étant 5@ - P nous en déduisons que le vecteur
quantité de mouvement est une constante du mouvement.

b) lors d’une rotation spatiale infinitésimale d’un angle 66 dans le plan (x, y), le hamil-
tonien est invariant de forme fonctionnelle. Le générateur de la transformation est
L, 66, et par conséquent la composante en z du vecteur moment cinétique est une
constante du mouvement.
¢) pour une transformation de Galilée infinitésimale ((5.9) page 158),
{?’ =T -6Vt
=

p =p-mév

la fonction génératrice (5.16) page 166 s’écrit :

—

ou g(t) est une fonction quelconque du temps. De plus,

H=o+
=%—3-57+8ga—(;)
- —(3, z:avf —(f)”+m5V).5V+aga—(tt)
:§+f’)"57+%mévz—ff’-57—m5v2+aga—(tt)
=%_§m5‘/2+d<§_(tt)

Si I’on choisit, .
g(t) = —Emvzt
alors,

= 2m
et le hamiltonien est bien invariant de forme fonctionnelle. La fonction génératrice a
pour expression :
1
E(T,p,)=T-p =6V -(tp —mT) — Emvzt

et le générateur de la transformation de Galilée infinitésimale s’écrit 5V -(tp — mT).
Le terme entre parentheses est donc une constante du mouvement. Nous pouvons le
vérifier :

mt —pt=m(T — Vi)
=m[T — (T = Tp)]
:m?o

N d o e e .
ol I ( est le vecteur position initiale du mobile.
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Exemple 6.7.2

Reprenons I’ex. 3.1.4 page 78 pour un mobile de masse m et de charge g dans un champ
magnétique uniforme orienté selon 1’axe des z positifs. Son lagrangien est alors :

L=%mvz+g(§x?)-7

0
_1. 5.9
—zmv +2[(0)X(
_By Uy
£=lmv2+g(3x)-(vy)
2 2
0 Uy

1 a0 1 N
= Em(x2 +y% +22) + SqB(xy — yx)

N < =
S~—
e —|
c C C
N < %
v

=)

Les impulsions généralisée ont pour expressions :

Px = 0L/0x = mx — %qu mx = py + équ
py = 0L/0y = my + %qu = ymy=py,— %qu (6.6)
P = 8L/02 = mz ms = p,

Le hamiltonien qui s’écrit

H=pxX+pyy+pz—L
.1 . L1 . o 1 3o 1 S
= (mx — 5qu> X+ (my + Equ)y +mz? — Em(x2 +y*+2%)— ~qB(xy — yx)
1

= Em(xz +y2 + Zz)

est égal a I’énergie cinétique. Exprimons-le en fonction des impulsions généralisées :
1 1\ 1 1 21

H=— —qB — — —qB — p2

Zm(pX+2q y>+2m(py 24 x)+2mpz

Les équations du mouvement sont données par (6.2) page 170 :

%(mfc) = [mx, ]

En utilisant 1a linéarité a droite des crochets de Poisson :

[mx, F]

| m, 2m (22 + 2 + 2)]

= — [mx, (m)*] + — [m, (my)?] + —— [mx, (mz)?]
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Avec I’identité de Leibniz et I’antisymétrie du crochet de Poisson, le premier terme est
nul :

i [mx, (mx)?] = —ﬁ |[(m)?, mx]
= —i {mx [mx, mx] + mx [mx, mx]}
=0

Le dernier terme est également nul car mz n’est fonction que de p, et la coordonnée z
n’apparait pas dans (6.6) :

1 ([ms, (m2)?] = 1 [dmxd(mz)*  dmxd(mz)*  Imxd(mz)*  dmx d(mz)*

2m 2m| 0x Opy op, O0x dy 9dp, dp, Oy
+6m3’c o(mz)*  omxd(mz)*| _ 0
dz dp, op, 0z |
Il reste :

. 1 . .
[mx, 5] = — [mx, (my)?]
1 [dmxd(my)*> omxd(my)> omxd(my)* JImxd(my)?
=— - it - +0
2m| 0x Opy op, Ox dy OJpy op, Oy

1 a(, q¢°B*x*\ ¢B 9 ( , q*B%x?
_ﬁ[o—a<py—pqux+ 1 +7ﬁ py — PyqBx + 1 +0
_ 1 1 o 1o )
= 5m (pqu+ 2q B x+quy 2q B*x
= qBy
De méme,
[my, 3] = [my, %m(x2 +y% + Zz)]
1 ) . 1 ) ) 1 . .
= [my, (mx)?] + — [my, (my)?] + — [my, (mz)?|
Pour les mé€mes raisons que précédemment seul le premier terme est non nul.
. 1 . .
[my, H] = — [my, (mx)?]
1 [dmyd(mx)* dmyd(mx)* dmyd(mx)*  dmyd(mx)?
~ 2m| dx dp, dp, Ox dy dpy dp, Oy
1 [ gB @ quzyz)
4

- | -1=_-_ 2 _
=m| "2 ap, (px PxqBy +

3 , quzyz
0+0 @(px+pquy+ 7

1 1 1
=5 (_qux +5q°B%y — pxqB - zquzy)
= —qBx

. _ . l .2 ) .2
[mz, K] = [mz, 2m(x +y*+z )]
_ 1 [dmzo(mx)> dmzd(mx)*>  dmzd(mx)*> dmzd(mx)*
“2m| ox dp, dp, Ox dy dpy dp, dy
=0
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Les équations du mouvement ont alors pour expression :
d
4 = aBi
dt(mX) qBy
i(m ) = —qBx

Théoreme 6.7.2 : Théoréme de Poisson

Le crochet de Poisson de deux intégrales premiéres du mouvement est une intégrale
premiére du mouvement.

Démonstration.

d

i(af dgg  of ag)
= \0qk 9pr  OPk Oqk

Hf]

Sid;f =0etd;g =0, alors d;[f,g] = 0. O

Il
- &lm

=
1l

Il
M:

=~
Il
—_

Il
M:

II
-

I
,_,w

Ce théoreme permet de trouver de nouvelles intégrales premieres du mouvement.

Théoreme 6.7.3 : Invariance canonique des crochets de Poisson

Une transformation canonique préserve les crochets de Poisson.

Démonstration. Soit la transformation quelconque suivante :

{Q =Q(q.p)
P = P(q, p)

dQ(q, p) = Z aql dg; + Z dpl
dP(q, p) = Z aql dg; + ; a_ dp;

Soient f(q, p) et g(q, p) deux fonctions des variables canoniques, de crochet de Poisson :

_i<af dg _ of ag)
— \0qx Opx  OPk 9qx
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En utilisant le rappel sur la dérivation des fonctions composées (6.4) page 172 appliqué a f et g :

9f 90 5f5Pi) 9899 g oF

LF-glap = 212121[<aolaqk 38 3q) \3Q; 3pe. * 35 3pe
(2o, o on) (229, g d))
0Q;0p  ORdpx/ \0Q;dqx IR dqy

n

[f’g]q,p = Z ZZ

k=1i=1 j=1

0Q; 9q) 9Q; Opy ~ 0Q; 94y 9B py ~ IR 0qx 0Q; I,
of 0B g OB  of 0Q; 9g 9% _ 4f 96Q; dg 9F

<6f 0Q; g 9Q; = af 9Q; dg 9K L Of ok % 9Q,

0B dqy OB dp,  0Q;0px0Q;dqx  0Q; dpy OB dqy
of OB 6g 0Q; Of R dg aP)

aP apk 6QJ aqk 6P 6pk aPaqk
_Sy (8F 9 9f 3g
B ;J;(aq aQ Qi Qlap + oP aP[P“P]
of Jg of og
anﬁ[Qu ]]qp aP aQ [Q]’ l]q p)

Les coordonnées généralisées étant indépendantes par hypothese, on utilise les crochets de
Poisson fondamentaux 6.5.4 page 176. Les deux premiers termes sont identiquement nuls, il

reste :

of a3 of dg

/- 8lap = ;le<aolap_ﬁa_q)5
_ < (O0f dg of dg
—EG@@‘ﬁ%ﬁ

=[f.glop
Le crochet de Poisson de deux fonctions quelconques des variables canoniques est un invariant
par transformation canonique, ou invariant canonique. [

Exemple 6.7.3 : Oscillateur harmonique simple a une dimension
Pour de petites oscillations d’un systeme a un degré de liberté dans le champ de gravitation,
on peut développer le potentiel V de la force gravitationnelle (ou énergie potentielle) autour
d’une position d’équilibre stable §. La position d’équilibre doit étre stable car sinon le
systeéme n’oscille pas. D apres le § 1.10.1 page 25 cela implique V"(§) > 0:
~ 1~ 1oon/~ ~
V(@) = V(@ + V(@ + V(@ - D* +

Comme 1’on utilise toujours qu’une différence de potentiel, celui-ci n’est défini qu’a une
constante pres et I’'on peut supprimer V(§). De plus, I’équilibre est réalisé dans un minimum

de potentiel, et V'(q) = 0. En posant k = V”(q), nous avons :

V(@) = sk(a— 97 +
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On effectue le changement de variable g = q — §. Les oscillations étant petites, q est petit,
et nous pouvons négliger les termes d’ordre supérieur a 2 :

V(@ =5

On suppose le systeme holonome scléronome et d’apres le § 4.4 page 134 puisque le
potentiel ne dépend pas des vitesses généralisées le hamiltonien se confond avec 1’énergie
mécanique :

H(p,q) =&
=T+7V

2 2
_ D k¢
_2m+ 2

Il ne dépend pas explicitement du temps, donc d’apres (4.8) page 133 il se conserve.

L’énergie mécanique se conserve car toutes les forces dérivent d’un potentiel. En posant

def
k = mw? avec w une vitesse angulaire en rad/s, nous avons :

2

nmca
H(p,q) = p—m - q>
1
- 2_(p + m?w?q?) (6.7)

Le hamiltonien est une somme de deux carrés. Nous cherchons une transformation des
coordonnées (g, p) telle que 1’une des nouvelles coordonnées soit cyclique, donc de la

forme
p = f(P)cosQ
f (P ) §in Q

car alors le nouvel hamiltonien a pour expression

H(P,Q) = 5. [ % (P)cos? Q + 2 (P)sin? Q]
_ £

2m

ou Q est cyclique. La fonction génératrice ne contenant pas explicitement le temps :
H=%H

Pour que les nouvelles variables Q et P soient des variables conjuguées, autrement dit pour
que la transformation soit canonique, le crochet de Poisson doit étre égale a I’unité :

_999p 9q0p
[9.Plor = 303 ~ 3P30

= % cosQ - af(P)

9P
_ [P35
mw OP

cosQ +

LD ng- jpysing

oP
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Soit,

GRS
mw 0P
5@ 228 —

f(P) =V 2mwP

La transformation canonique s’écrit donc

p = V2mwP cos Q
6.8)
[2Pp (
q= % Sll’lQ

= 2mwP — WP
2m

Nous obtenons les équations de Hamilton pour les nouvelles variables :

et le nouvel hamiltonien :

. OH ]
"TTa  [Peo ) [Pee 6.9)
Q_a_H Q=w Q=wt+p '
~ oP

Remarque 6.7.1

P = H/w est homogene a une action (en J s), et Q = wt + 3 est homogene a un angle (en rad, c.-a-d. en m/m). Les variables
action et angle sont donc conjuguées.

En utilisant
H=E=H=wP =wx (6.10)

la solution en termes des anciennes coordonnées s’ écrit donc :

p(t) =V 2mwa cos(wt + ) p(t) = v 2méE cos(wt + )

N 6.11)
4(t) = | = sin(ot + ) TOREN % sin(et + B)

La solution q(t) étant sinusoidale, I’oscillateur est appelé oscillateur harmonique.
Comparons les solutions données en termes d’anciennes et de nouvelles variables. Pour
les anciennes variables (p, q), les équations paramétriques (6.11) donnent les courbes
suivantes (fig. 6.1) :
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Fi1G. 6.1 — Oscillateur harmonique, p = p(t) et q = q(t), avec f # 0

Cherchons I’équation en coordonnées rectangulaires dans 1’espace des phases. En prenant

le carré des équations paramétriques (6.11) :

p2

2mé&
mw?q

2€

= cos?(wt + B)

" sin®(wt + B)

P

2

q

2

2mé

t 2 mar) !

qui est I’équation d’une ellipse de demi-axes \/ 2m¢ et L% (fig. 6.2) :
w m

M

IS

2

3R
<

—
N

B
-

F1G. 6.2 — Oscillateur harmonique, p = p(q)

Pour les nouvelles variables (Q, P), les équations paramétriques (6.9) page précédente

donnent les courbes suivantes (fig. 6.3) :

186
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p
¢
w P
B
t + t
0 0 s
w

FiG. 6.3 — Oscillateur harmonique, P = P(t) et Q = Q(t)

Dans I’espace des phases nous avons alors (fig. 6.4) :

p

e lm

' Q

1

ol B

FiG. 6.4 — Oscillateur harmonique, P = P(Q)
0

Déterminons les constantes « et 3 en fonction des conditions initiales g, = q(t = 0) et
po=pt=0):
Po = V 2mwa cos(f)

4o =/ e sin(p)

Avec (6.10) page 185 et (6.7) page 184 at =0:

a=H/w
1

= Sme (ps + m*wqp)

Pour 8 :

Q _ 1

Do Mw tan(g)
do

= arctan [ mw —
P ( Po )
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En remplagant a et 8 par leurs expressions dans (6.11) page 185 :

p(t) = v/ p3 + m2w2q} cos [cot + arctan (mco %)]
0
_ 1 2 20272 o [ ( @)]
q(t) = —mw\/ ps + m2w?qp sin [wt + arctan | mw Do

Cherchons I’expression de la fonction génératrice F (g, Q) de I'oscillateur harmonique.

oK

o ql = p(q, Q)

b (6.12)
1 —_ —

30 "~ P(q,Q)

En injectant (6.10) page 185 dans la solution (6.11) page 185, exprimons p et P en fonction
degetQ:

[ 2mwmwg?
p—VZWlCOPCOSQ {p=WCOSQ R D = mCOSQ

=

q= 2P Q mwq* = 2Psin® Q mwq?

maw P = 2

2sin“ Q
p = mwqco a—q = mwqcot Q F(q,Q) = 5ma)q2 cotQ + h(Q)

= _ _meg’ = \oR mawq? 1 2
P= a0 21 M4 F(q, Q) = smwq* cotQ +g(q)

9Q 2sin? Q

La fonction génératrice est donc :
1
F(g. Q) = mawq*cot Q

La théorie de Hamilton-Jacobi que nous allons voir dans le prochain chapitre permet de
trouver la fonction génératrice qui rend toutes les nouvelles variables Q cycliques.
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LA THEORIE DE HAMILTON-JACOBI
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7.1 Equation de Hamilton-Jacobi

Nous cherchons la fonction génératrice F, de la transformation canonique qui rend toutes les
nouvelles variables Q cycliques. Supposons qu’elles soient effectivement toutes cycliques et
donc n’apparaissent pas dans le nouvel hamiltonien H. Les équations de Hamilton transformées
s’écrivent :

s R A g=ese
- ) , , . OH(B,t
Q= o o 7 Ip=cste

Soient a; = B(t = 0), wj = Qj(t = 0) et §j = Q;(¢ = 0) des constantes :
Vi=1,..,n {13:130:0) {}}:aj

Qj = cSte Qj = wjt + 5}
Les coordonnées étant cycliques et les impulsions constantes, le nouvel hamiltonien s’écrit :

H = H(ay, ..., ap,,t)

Tous les hamiltoniens transformés s’écrivant sous la forme ci-dessus sont solutions de notre
probleme initial. Nous pouvons alors imposer la condition supplémentaire que le hamiltonien



transformé se conserve, d;H = 0. Il ne dépend donc pas explicitement du temps et devient une
constante :
H = cste

Tous les hamiltoniens transformés constants sont solutions, nous choisissons un hamiltonien
transformé nul. Avec H = 0 les équations de Hamilton transformées deviennent

B=0 {5=%
Q=0 Q=5

ou les constantes o et ;61 sont les conditions initiales des IJ’ et des QJ

Vi=1,..,n { (7.1)

7.1.1 Fonction F1

Nous avons le choix parmi quatres fonctions génératrices. Commengons par F(q, Q, t) et repre-
nons (5.4) page 148 en injectant H = 0, B = @;, Q; = §; :

(9F@.Q0 _ (9E@hD _
aqj J 6qj J
. 0F(q,Q,t 0F(q,B,t)
Vi=1,...,n ‘%:_6 = ‘%z_aj
J J
0F(q,Q,t) _ dF(q,B,t) ( oF )_
\T_H_%(q,p’t) \—6t + H q, aq,t =0

ou I’on a reporté la premiere relation dans la troisieme. Dans 1’ex. 5.2.1 page 149, nous avons
noté qu’étant donnée une transformation des coordonnées, 1’intégration des 2n + 1 équations aux
dérivées partielles ci-dessus donne la fonction génératrice.

7.1.2 Fonction F2

Faisons a présent le choix historique de Jacobi et cherchons une fonction génératrice de type 2,
notée S(q, P, t) et appelée action. On I’appelle aussi action de Hamilton pour la distinguer de
I’action de Maupertuis (cf. § 8.5.2 page 234), et fonction principale de Hamilton pour insister sur
le fait qu’il s’agit d’une fonction. Comme précédemment, reprenons (5.7) page 152,

(08(q,P,t) D
dqj J
, 98(q, P, t)
Vi=1,...,n | ——= =0
oF J
d8(q, P, t
et injectons les équations (7.1) de la dynamique de Hamilton H = 0,8 = a;, Q; = §; :
(08(q, o, t)
—2 2 —p (7.3a)
08(q, o, t
Vi=1,...,n <%=Bj (7.3b)
08(q,a,t) + I d8(q,a,t) N=o (7.3¢)
. ot ’ aqj ’ '
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Remarque 7.1.1

88(q,a,t)
aO(j

48(q, P, t)

est un abus de notation pour
P 3P

Pj:Olj

(7.3a) permet de changer de variable dans (7.3c). Celle-ci est une équation différentielle aux
dérivées partielles du 1¢" ordre en q et du 1°" ordre en £, appelée équation de Hamilton-Jacobi
en représentation q, qu’il faut intégrer pour trouver 1’action de Hamilton 8(q, «, t) que nous
cherchons. Nous pourrons 1’intégrer car J( est connu. Elle est a n + 1 variables (q, t), et est
non linéaire car J( est une fonction quadratique des p, donc des d8/dq. Lorsque S(q, a, t) est
déterminée, (7.3b) donnent les équations du mouvement g;(t).

8(q, a, t) sera de fait 1a fonction génératrice de la transformation des coordonnées telle que toutes
les nouvelles coordonnées Q soient cycliques.

L'intégration complete de 1’équation de Hamilton-Jacobi fait apparaitre une constante d’intégra-
tion pour chaque variable g et pour le temps, soit n + 1 constantes d’intégration arbitraires y, si
bien que la solution de 1’équation différentielle est de la forme :

S = S(Q, N5 Tn+1o t)

§ n’apparait pas dans 1’équation de Hamilton-Jacobi, seules ses dérivées partielles sont présentes.
Par conséquent, si § est solution alors S + cSte est aussi solution, et donc 1’une des constantes est
purement additive :

8 =8(q N>+ > Vo 1) + Yo
Mais une constante additive n’a pas d’importance pour une fonction génératrice puisque seules
ses dérivées partielles sont utilisées dans les transformations canoniques (5.7 page 152). Par
conséquent :
S = S(q’ No oo Vo t)
Les B = g et les y €tant des constantes non encore fixées, nous pouvons poser % = a;, et 'on

retrouve .
§=8(q,ay,...,a,,t) = 8(q,a,t) (7.4)

7.1.3 Fonction F3

Faisons le choix d’une fonction génératrice de type 3. Injectons H = 0, F = a;, Q; = f5; dans
(5.11) page 160 :

(0K(p,B:t) _
3, = —qj (7.5a)
L dK(p,B,t) _
Vi=1,...,n aﬁj = —q; (7.5b)
dF(p, B, t) ( 0K(p, B, 1) ) _
\ 3 +H 3p ,p,t] =0 (7.5¢)

(7.5¢c) est une équation différentielle aux dérivées partielles du 1°f ordre en p et du 1°" ordre en ¢,
appelée équation de Hamilton-Jacobi en représentation p. Elle est a n + 1 variables (pj, t), et
son degré dépend du degré de J( en fonction de q.

sciences-physiques.neocities.org 191


http://sciences-physiques.neocities.org

7.1.4 Fonction F4

En injectant H = 0,F = a;, Q; = f; dans une fonction de type 4 nous obtenons un syst¢éme
d’équations similaire au systeéme d’équations d’une fonction de type 3 :

(OF(p,at) _
JEp.aD _ o

aOCj J
—aEl(p’ < t) + j‘f(—aEl, 5 t) =0

\ ot %p

7.2 Séparation des variables

7.2.1 Equation de Hamilton-Jacobi en représentation g indépendante du temps

Dans le cas ou H ne dépend pas explicitement du temps, c.-a-d. lorsque la somme des énergies po-
tentielles ne dépend pas explicitement du temps, 1’équation de Hamilton-Jacobi en représentation
q (7.3c) page 190 devient

98(q,a,t) a8
—ar —ﬂ(q, 3q (q, 05))
o8
S(Cl, a, t) =-H <q’ % (q’ a)) [+ SO(q’ O()

Cette relation n’est pas cohérente : S fonction de (q, «t, t) dans le membre de gauche, et 08/9q
fonction de (g, &) dans le membre de droite. Remplagons 8 par 8, dans le hamiltonien puisque
par hypothese il ne dépend pas explicitement du temps :

08y(q,
8(q,a,t)=—-%H (q, 05—3)> t+ 8o(q, @)

8o(q, o) est appelée fonction caractéristique de Hamilton ou action réduite. (4.8) page 133 indique
qu’un hamiltonien ne dépendant pas explicitement du temps se conserve, et donc n’est fonction
que des constantes d’intégration :

8(q, a,t) = =FH ()t + So(q, @) (7.6)
Dans I’action de Hamilton 8(q, a, t), la variable temporelle est maintenant séparée des variables
q- Au lieu de garder K comme fonction des n constantes a;, il est parfois plus intéressant de

poser simplement H = a;.
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D’apres le § 4.4 page 134, lorsque le systeme est holonome scléronome et lorsque le potentiel
de force V(q) (la somme des énergies potentielles) ne dépend pas explicitement des vitesses
généralisées, le hamiltonien se confond avec I’énergie mécanique et la solution de 1I’équation de
Hamilton-Jacobi en représentation g est de la forme

8(q,a,t) = —=E(a)t + Sp(q, @) (7.7)

dans laquelle H () = E(a). D’apres le § 4.4 page 134, I’énergie mécanique étant constante, le
systeme est conservatif. Nous avons déterminé la fonction génératrice de type 2 qui donnera le
changement de coordonnées

L =aq

Vji=1,...,
e {Q,:ﬁj

avec un nouvel hamiltonien nul :
H=0

En remplagant I’expression de 8(q, «, t) dans les transformations canoniques (7.3) page 190, et
avec 08/9q; = 98,/0q; :

(9So(q, @) _
a—qj =p
Vi=1,..,n —agg)was%(zj’a)zﬁj
Remarque 7.2.1

Dans le hamiltonien, le potentiel ne dépendant par hypothése que des g, seule I’énergie cinétique dépend des 38(/8q.

Nous voyons que nous pouvons utiliser 8§y a la place de § comme fonction génératrice de la
transformation en écrivant :

(950(q.%) _

. 9So(q, ) 0&(a)
Visle.m =R =BTt (7.9b)
_E+ %(q, —58";2’ “)> =0 (7.9¢)

(7.9¢) est I’équation de Hamilton-Jacobi en représentation q indépendante du temps. La fonction
8o génere la transformation qui passe des coordonnées (g, p) aux coordonnées (Q;, B), telles que
((5.7) page 152) :

L =q
0&(a)
Q=p+

t
6ocj

Pour trouver le nouvel hamiltonien H' associé a la fonction génératrice S, reprenons la relation
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générale (7.2a) page 190 :

_ 08(q,P,1)

- ot

_ % [—E(@)t + So(gs )] + F(q, p, 1)
ac‘;O(q’ a)

= —&(a) + —5 t F((q, p,t)

H + 7((q, p, t)

=0

Donc

980(q, )

S+ (4. p. 1) = E@)

Or, la relation générale (7.2a) page 190 appliquée a H' avec Sy(q, ¢) pour fonction génératrice
donne :

= asogct,, %) 4 3(q.p.1

= &(a)

Le nouvel hamiltonien n’est pas fonction des Q, les nouvelles coordonnées sont toutes cycliques.

Exemple 7.2.1 : Masse glissant sans frottements sur un plan incliné

Une masse glisse sans frottements sur un plan incliné. Quelle est I’équation de son mouve-
ment ?
Pour appliquer la méthode de résolution de Hamilton-Jacobi en représentation q ou p, il
faut I’expression du hamiltonien. A partir de sa définition, d’apres 1’ex. 4.2.2 page 131 :
2
%

H(q, p) = >~ M&a sin(a)

Nous pouvons obtenir le hamiltonien d’une autre facon. D apres (4.8) page 133, il ne dépend
pas explicitement du temps donc il se conserve. La liaison étant holonome scléronome et
le potentiel ne dépendant pas des vitesses généralisées, I’énergie mécanique se confond
avec le hamiltonien :

H(q,p)=¢&
=T +V

p?
=5~ mgq sin(a)

Dans cette relation, remplacons 1’impulsion généralisée grace a (7.9a) page précédente :

88\ 1 (38, ,
(o 5q) = 3 (5g) ~msane

L’ équation de Hamilton-Jacobi en représentation q indépendante du temps (7.9¢) page 193
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donne :

—E+IH (q, —88(’;3’ 00) =0
1 (38y\ o
—8+% <E) — mgqsin(ax) =0
98y .
3 J_r\/ 2mé + 2m2gq sin(a)
So(q, &) = =% / \/Zmé' + 2m2gqsin(a)dq + ¢
1 3/2
=t+t—— —(2 2m?gqsi
g sin(@) (2mé& + 2mPgqsin(a))” " + ¢

Nous pouvons oublier la constante d’intégration car seules les dérivées de la fonction
principale de Hamilton interviennent dans la résolution du probléme. (7.9b) page 193
donne 1’équation du mouvement ¢(q) :

5,
o€
1

=—t+ — 2 i
t+ g sin(a) \/ 2mé& + 2m2gq sin(a)

B=—t+

1 28
= —f+ —— —_ i
t+ Zsin(@) \/ + 2gq sin(a) (7.10)

Remarque 7.2.2

Pour trouver (7.10) on peut aussi garder 8 sous forme d’intégrale et dériver sous I’intégrale :

- 9 200si
B = ti/ag\/2m€+2m gq sin(a) dq

/ + 2
t+tm

. @%/___EL__
11 " mgs;n(a) q

Effectuons le changement de variable suivant :

!

mg sin(a &
q = gg()q 5 g= q

mg sin(cr) dg =

mg sin(c) dq

qui donne,

g=—t+ /M _¢ dg’
*V 2E mgsn@ | Txq

2 [ & ]

= —t+ —— — !

b+ gsin(ar) V 2m 1+4

_ 1 [2& | mg sin(a)

=t gsin(a) V m 1+ & q
1

% + 2gq sin(a)

=—tt——
gsin(or)

et I’on retrouve bien le résultat (7.10).

sciences-physiques.neocities.org 195


http://sciences-physiques.neocities.org

En isolant la coordonnée généralisée q on trouve I’équation du mouvement q(t) :

a [l + prgsin@r - ]

- 2g sin(a)
1 . &
= g(t + B)?sin(a) — g sin@)
= % gt? sin(a) + gpft sin(a) + %gﬁz sin(a) — m

Exprimons les constantes € et 8 en fonction des conditions initiales g, et g,. La constante
B a méme valeur a un instant ¢t quelconque et a I’instant initial t = 0 :

1 2& .
6 = im\/ﬁ + 2gq0 SlIl(O[)

L’énergie est constante, sa valeur est celle de I’instant initial :
2
p .
&= ﬁ — mgq, sin(a)
Avec (4.4) page 131 :
) 2& .
45 = - + 284o sin(«)

Si bien que

&

28 +2 sin(oc)) -
m &do mg sin(a)

_ L2 + \/E i —<
q=7; gt*sin(a) + m +2gqo sin(a) ¢ + 2g sin(a)

_ 1 2. @
=-gt sin(ar) £ mt+q0

Nous gardons le signe positif car si g et g, sont nuls alors g croit avec le temps lorsque g,
est positif :

q=§gt2sin(oc)+%°t+q0

Exemple 7.2.2 : Oscillateur harmonique simple a une dimension
D’apres I’ex. 6.7.3 page 183, le hamiltonien est constant et se confond avec 1’énergie
mécanique :
LA 7.11
H(g,p)=E=—+= .
(q: p) T34 (7.11)
Remplacons I'impulsion généralisée grace a (7.9a) page 193 :

380\ 1 (38 Kk ,
%(Q’E>‘%<E> t34

L’équation de Hamilton-Jacobi en représentation q indépendante du temps (7.9¢c) page 193

donne : 5
1 (38, k 5
“9+ﬁ<m) t3a =0
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Sy JImE —mk
3q +v2mé — mkq
So(q, &) = £V 2Em / 1— —— (7.12)

ou la constante est choisie nulle. Effectuons le changement de variable suivant :

r_ k IZ_kq2
Q—Q\/ﬁiq =2 et q= q\/ =>dq \/ dq

qui donne,

SO(Qag, t) = iv2€m, / % /\/1_—qrqul
- 128\/ % (Q'W + arcsin q’)

8o(q, €, 1) = +23\/7[ qQ\/ @+ arcsm( q\/ zkg)]

= xq\/2méE — mkq? + 2&, / arcsin (q %)

(7.9b) page 193 donne 1’équation du mouvement t(q) :

38,
=t 5

—t+ an i2,/ﬂarcsin q\/L F2& qu—k/z
\2m& — mkq? k 28 k= e\ag —2q2k

=—t=* Earcsin £
TV % N 2¢

Remarque 7.2.3

On peut aussi garder 8 sous forme d’intégrale et dériver sous I’intégrale :

B=-—t + == /1/2m8 mkq? dq (7.13)

_ mdq

Effectuons le méme changement de variable que précédemment, nous avons

- E i

=—t+,/ F arcsin q’
=—t*x m arcsin | g4 / £
NV ko 2&

et I’on retrouve le résultat.
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En isolant la coordonnée généralisée g, nous trouvons 1’équation du mouvement q(¢) :

arcsin (q\ / %) = i\/g (t+pB)
q =1/ %sin[\/g(t+ﬁ)

En posant,
{w:VMm
®o = wp (7.14)
nous avons :
1 2E .
q=%—\ / — sin(wt + ¢p) (7.15)
08,
p= a—q

= +4/2m& — mkq?

= i\l 2mé — 2mé sin? [\/g(t + )

= +V2mé cos(wt + ¢g) (7.16)

Déterminons les constantes € et ¢, en fonction des conditions initiales q, et py :

1 [ae , 28
qo = ia m sin(¢po) N {CIO = w2 S ¢o

2 _ 2
Po = £V 2mE cos(gy) Py = 2mé& cos” @g

2mé& (cos? gy + sin @) = p§ + m?w?q}
2
_bP ko,
€=om T2

Nous retrouvons (7.11) page 196. Pour ¢, nous avons,

qo 1
=2 = —tan
P %o

Po
@y = arctan (mwqy/po)

et a partir de (7.14) nous avons 1’expression de la constante 3 :

B = golw
= arctan (mwqqy/pg) /@
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7.2.2 Equation de Hamilton-Jacobi en représentation p indépendante du temps

Dans le cas ou HH ne dépend pas explicitement du temps, I’équation de Hamilton-Jacobi en
représentation p (7.5¢) page 191 devient :

) , B, o)
RGOS0 __y sc(-25 0u.0)
F(p.B.t) = —% ( " (8.8):p)t + Fop. )

Remplacgons F; par F5, dans le hamiltonien puisque par hypothese il ne dépend pas explicitement
du temps :

E(p,B.1) = _%(_M

ap ,p)t+on(p,6)

(4.8) page 133 indique qu’un hamiltonien ne dépendant pas explicitement du temps se conserve,
et donc n’est fonction que des constantes d’intégration :

F(p,B,t) = =F(B)t + F5o(p, B)

D’apres le § 4.4 page 134, lorsque le systeme est holonome scléronome et lorsque le potentiel
de force V(q, t) (la somme des énergies potentielles) ne dépend pas explicitement des vitesses
généralisées, le hamiltonien se confond avec I’énergie mécanique et la solution de I’équation de
Hamilton-Jacobi en représentation g est de la forme

FE(p,B,t) = —=E(B)t + Fo(p, B)

dans laquelle F(B) = E(B).

En remplagant I’expression de F(p, 8, t) dans les transformations canoniques (7.5) page 191, et
avec OF3/9p; = 0F;/dpj :

(0F0(p, ) —
. OB(p.B.1) _ _
Vji=1,..,n 3 8,81 a
OF,
—& +&(( -2 >=0
k B) ap P

(7.18c¢) est I’équation de Hamilton-Jacobi en représentation p indépendante du temps. Nous
voyons que nous pouvons utiliser K, a la place de F5 comme fonction génératrice de la transfor-

mation :
ral%g(g B _ g (7.182)
Vi=1,..,n <%}é5’0=t—aj (7.18b)
- EP) + %( a;;" p) =0 (7.18¢)
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Exemple 7.2.3

Reprenons I’ex. 7.2.1 page 194 d’une masse glissant sans frottements sur un plan incliné.
Le hamiltonien a pour expression :

2
_eo_ P .
H(q,p)=E= ™ mgq sin(a)

Remplagons la coordonnée généralisée grace a (7.18a) :

0Fo(p,B) \ _ P 0F(p, B)
() e

> D sin(a)

L’équation de Hamilton-Jacobi en représentation p indépendante du temps (7.18c) donne :

—8(5)+%(—aai;°,p) =0

2

_es P OB . oy _
€+2m + mg 3p sin(a) =0
OB _ 1 & — p_2
dp  mgsin(a) 2m

e foo 2
307 mgsin(a) 2m P
1

p?
mg sin(@) (V B @) e

B mg sin(x)
p = mgsin(a) (¢t — o)

Notons pg la condition initiale sur I’impulsion :

po = —mgsin(a) oy
(7.5a) page 191 donne I’équation du mouvement q(t),

_ 95
- -5

b (e_ )

~ mgsin(a) 2m

= - € 1 252 ainl _ 2
~ mgsin(a) i 2m2g sin(a) [m?g? sin®(a)(t — a;)?]
&

mg sin(a)

= - gt — oy sin(a@) —
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7.2.3 Cas des coordonnées cycliques

Nous parlons ici des anciennes variables, les nouvelles étant toutes cycliques. Supposons que q;
n’apparaisse pas dans le hamiltonien. D’apres le § 3.3.2 page 108, si g; est cyclique alors son
moment conjugué p; est constant :

o8 o8
j[(qz, e sqpns D15 a—qz, vee s W, t)
n

Dans I’équation de Hamilton-Jacobi en représentation q dépendante du temps (7.3c) page 190, la
coordonnée q; n’apparaissant pas dans le membre de droite elle ne peut apparaitre dans celui de
gauche :

a8 a8 )
L

8
E(qz, oo s Qs P15 gy wee s Ay ) = =FC (qz, e B a—qz, s E

Par conséquent
8(q1s > Qs 015 e s Ay ) = P1G1 + S1(qs o5 Qs D1 Ay oo 5 Ay )
et I’équation de Hamilton-Jacobi en représentation q dépendante du temps se réécrit :

08 S oS
E(qz, vee s Qs D1y Xy wee s Oy b)) = —}((qz, w3 Qns> D1s 1 L )

dq;’ "’ 9qy
Les équations de Hamilton-Jacobi permettent la séparation des variables cycliques.

Exemple 7.2.4 : Balistique

Etudions le mouvement dans le plan (x, y) d’un projectile dans le champ de gravitation
terrestre en I’absence de frottement de 1’air. La force de pesanteur dérivant d’une énergie
potentielle, le hamiltonien se conserve et est égal a 1I’énergie mécanique :

%z%(x2+y2)+mgy

1
= 5 (i +p}) + mgy
=&

Le temps est cyclique, I’équation de Hamilton-Jacobi en représentation q indépendante du
temps (7.9c) page 193 s’écrit :

98,(q, OC)) _
E+ %(q, 3q =0

1 [[880\* [38,) B
am (W) +(W) tmgy=¢

La variable x étant cyclique, appliquons la séparation des variables :

So(x, ¥, &, a5, t) = arx + 8;(y, &, ay, t)
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L’équation de Hamilton-Jacobi devient :

1, asl>2 _
o oc2+<ay +mgy==¢&
881\ _ 2 2
(W> =2mé& —2m-gy — a5
8 =i/\/2m8—2m2gy—oc§dy+c
_ 1 3/2
= 3 (2mé& —2m?gy —a3)" " +c

L’action (de Hamilton) s’écrit,

1
m2g

3/2

§=—Et+amxF g (2mé& — 2m*gy — a3)

définie a une constante additive pres. (7.3b) page 190 donnent d’une part 1’équation du
mouvement £(y) :

o8
Pr= 3z

_ 1 3 1/2
=—t+%x §(2m8—2m2gy—oc%) X 2m

1
=—tF m—g\/Zmé‘ — 2m2gy — a3

Pour trouver la valeur de la constante 8;, prenons I’instant initial (¢t = 0) :

1 \/
P1 = F—A/2mE — 2m? -3
1 mg 8Yo 2
On inverse la relation pour trouver I’équation du mouvement y(t) :

[mg (t + B)]* = 2m& — 2m*gy — o3
2m2gy = —m2g2 (t + B,)° + 2mé& — a3

__8 2, & _
y= =SB

_ 8 & @
Vo= +mg 2

Nous pouvons exprimer 3; en fonction des conditions initiales :

. . b
y=—gt+p) = y=-gb = 51=—EO
D’autre part, (7.3b) page 190 donnent 1’équation de la trajectoire x(y) :
a8
B = dat,
— — 1 2 2 3/2
= 7 Et +ax F 3mig (2mé — 2m?gy — a3)
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1 3

1/2
B =x7F g X3 (2m& —2m*gy — a3) " X (=2)a,

a
=x=+ m—jg\/zme—zngy—a%

Pour trouver la valeur de la constante 3,, on considére 1’instant initial :

By =X £ r:—zzg\/ZmE — 2m2gy, — a3

P
=Xg—
m
05} y
= Xp + i
mg

On inverse la relation pour trouver I’équation de la trajectoire y(x) :

[’”gu%z x)] = 2mé — 2migy — o

4

2m?gy = 2 (62 x)? +2mé& — a3
2

2

_ g )2 4+ )

m b7
= zzg(ﬁz—zﬁzx+x2)+y0+ =1
o

J’O

= 2—g (B3 = 28, + x%) + yo + 2 (7.19)
2

Notons xg la condition initiale sur la position horizontale :

m m-g Y%
= 20x0 + X5) + Yo + 5=
Yo 20(2 (;82 B2xo o) Yo 2g
.2
Yo
28" 22 — (52 2,0 + X§)

En remplacant y3/ (2g) puis 3, dans (7.19) :
2
m’g m-g
y=—-——7 (B3 — 2Bx + x*) + — (B3 — 2B2%0 + X§) + Yo
205 205

m?’g mig, ,
=—28(x—xy) — —=(x% = x3) +
oc% Ba( 0) 20(% ( 0) Yo

ng 2.')’0>
= —= + X—X X“ —Xx5) +

oc% ( Xo mg ( 0 2 2( 0) Yo
_ m?g(x — xo)[ A2 Yo (x+x0)]+

mg 2

m? (x Xo) [ xX—X
_ 8 0 2J’0 ( _ 0) + %%

m

- f (r = %) + 2 (x Xo) + Yo
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Avec (7.3a) page 190,

_3s
px - ax
me =Q,
nous avons 1’équation de la trajectoire :
y = (x — x)? + (x Xo) + Yo (7.20)

2 2

7.2.4 Equation de Hamilton-Jacobi et forme du hamiltonien

Lorsque le hamiltonien est de la forme
08, 08, t)

08
H= J[( , )+}(< e Qus s ee s —
1|4 3q, qz 4n 3q, 3q,
nous supposerons que q; est une variable séparable la fonction principale de Hamilton :
S(qa,t) = 8a(qas - s Qs A2, -, Uy 1) + S1(qy, 1)
L’équation de Hamilton-Jacobi en représentation q dépendante du temps (7.3c) page 190 devient

08(q2s -+ s Q> Ay oo » Ay 1) 38, 08, 08, _
ot + ‘7{1 (Ch’ aq1> + ‘7{(1 (qz, R aqz g eee sy aqn,t> =0

J(; étant la seule fonction de g, nous obtenons le systeme suivant :
ds,(qy, a1)
I ,—— | =
1 (Cll dq, ) A

08,(qs vv s Qyys Azy ooe Ay t)
a\q2 qgt 2 n +j{a<¢l2a~-w‘1na

a8 o8
st =
aCI2 aQn
La premiere équation différentielle, du 1°f ordre en q; et du second degré en dS;/dq;, permet
d’obtenir §;. De méme, si le hamiltonien est de la forme

B o)

o8 ds,
1\ 41 aql q> dq b\ 43 dn aq3 aqn
nous supposerons q; et g, séparables dans la fonction principale de Hamilton :

8(q, a, 1) = 8p(q3s -+ s Q> A3 -+ Ay 1) + 81(q1> A1) + 85(q2, A2)
L’équation de Hamilton-Jacobi en représentation q dépendante du temps (7.3c) page 190 devient

68b a8, ds, a8, a8y )_
¥T3 %l(q aq1)+}( (qz, 0, >+I}Cb(q3,...,qn, aq3""’6qn’t =0

Nous obtenons le systeéme suivant :

( ds$,(qy, ay)
J <CI1’$) =
dS,(qz, a3)
aSb(q3""’qn’ aZ’--"arpt) ( aSb aSb ) _
L at +-7_(b Q3’---’ n» aq aqnyt - (061+O(2)
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Les équations de Hamilton-Jacobi permettent parfois la séparation de variables non cycliques,
selon comment elles apparaissent dans le hamiltonien.

Exemple 7.2.5 : Coordonnées sphériques
En coordonnées sphériques (7, 6, ¢), la vitesse a pour expression,
V = Fe, + rfeg + rsin(6)de,
et I’énergie cinétique s’écrit :

def 1
J = Emv

1, : o
= -m (2 + 126 +r’¢? sin®(0))

2

On considere un mobile dans un champ de force d’énergie potentielle V(q) indépendante
des vitesses généralisées . D apres la déf. 3.4.1 page 109 les impulsions généralisées ont
pour expressions

pr = mr

po = mr2@
pp = mr?sin*(6) ¢
et le hamiltonien s’écrit

1 o 259
— 2 6
= 2m (Pr + r2 * r2 sinz(e)) FVn6.¢)

et les variables pourront €tre séparées si,

©, @)

V(r.0,¢) =a(r) + br2 r2sin®(6)

ou a(r), b(0) et c(¢) sont des fonctions arbitraires, car alors le hamiltonien aura la forme
vue au § 7.2.4 page ci-contre. La symétrie sphérique étant rompue par le sin(8), le terme

c(¢) est choisi nul :

b(é

V(r,0) = a(r) + %
"

L’équation de Hamilton-Jacobi en représentation q dépendante du temps (7.3c) page 190

s’écrit

08(q, a, t) as \ _
T +H<q,%,t) =0

9 1 (6_8>+ 1(6_8)+;(8_8)

ot  2m |\or r2\ 06 r2sin%(0) \0¢
Nous avons vu ((7.4) page 191) que le nombre de constantes dans S est égale au nombre
de coordonnées généralisées. Le hamiltonien ne dépendant pas explicitement du temps et

I’énergie potentielle n’étant pas fonction des vitesses généralisées, nous cherchons une
solution de la forme (7.7) page 193 :

b(e) _

+a(r)+7 0

8(r,0,¢,E, 0y, a3, t) = =Et + 8y(r, 6,9, E, ay, cX3)
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L’équation de Hamilton-Jacobi devient :

)

2m |\ or r2 \ 06 r2sin®(0) \ 9¢
La coordonnée ¢ étant cyclique (elle n’apparait pas dans J) son moment conjugué py est
constant, d’apres le § 7.2.3 page 201 nous pouvons la séparer :

b(e)

+alr)+ —===¢&

So(r,0,9,E, pg, a3) = ppp + 81(r, 6, &, pg, a3)

L’équation de Hamilton-Jacobi devient :

1 (@)11(681)1 p
2m |\ or r2\ 906 12 sin%(6)

551)2 <as )2 251
r(=—) +2mria 2mri€ + + + 2mb(0) =
< or (r)— 06 sin?(6) ©)

b(@) _¢

+a(r) + —=

D’apres le § 7.2.4 page 204, nous supposons les variables séparables dans 1’expression de
I’action de Hamilton (donc aussi dans 8,) :

81(r,6,9,¢, Pg> az) = 8(r, €, Pg> az) +85(6, €, Pg> as)

’équation de Hamilton-Jacobi s’écrit alors,

1 [7dS,\2 1 (dS;\? Py b(6)
%[(W) +3(®) e | T e =8
1 (dS,\? 1 [/ds;\> p3 ~
(@) 40 5 [( %) * o T ImO)| -
et donne le systeme suivant,
2 ' 2
d83>2 Ps ds P5
+ +2mb(0) =« =3 _ — —
(de sinz(G) ( ) 3 N do + as 2m b(@) Sinz(e)
1 /dS,)\? a ds, _ as
S (8) a4 S = N T

ol a3 est la derniere constante arbitraire (apres py et €). Lintégration donne :

S=—8t+p¢q§i/\ja3—2mb(6)—sz e)de /\/2m —a(r)] —

(7.3b) page 190 donne 1’équation du mouvement t(q) :

a8 o8 o8
P s TP 5w =B
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7.3 Représentation de I’action de Hamilton

Considérons un mobile se déplacant dans un champ de forces conservatives (chaque force dérive
d’un potentiel). Prenons les coordonnées rectangulaires comme coordonnées généralisées :

Q=X q=), q3=2 et P1=DPx» D2=Dy, P3=D;
D’apres (7.3a) page 190 :
o8 a8 _ a8

Px =3 py = B Pz =3 p(r,t)=grad[S(T,1)] (7.21)

Le gradient d’une fonction f quelconque est toujours perpendiculaire aux surfaces équipotentielles
( f= cSte) de cette fonction. Par conséquent les trajectoires sont a la fois tangentes au vecteur
quantité de mouvement p et normales aux surfaces équipotentielles 8, surfaces pour lesquelles
I’action est constante. Les trajectoires sont les rayons des surfaces équiaction.

Supposons de plus que I’énergie potentielle ne dépende pas explicitement du temps (elle dépend
toujours implicitement du temps par I’intermédiaire de la position du mobile). Sous cette condition,
I’énergie mécanique € se conserve dans le temps et devient une constante du mouvement. Nous
cherchons alors une solution de la forme (7.7) page 193,

S(x,y,z,0q, 0, 03, t) = =Et + Sp(X, ¥, Z, Ay, Ay, A3) (7.22)
ce qui implique

gr—aé [‘S(x’ Y,Z,01, 0, A3, t)] = @) [So(x, Y, zZ,01, %), 0(3)]

(7.21) devient :
— 680 _ aSO _ 680 = o - > N
Px=3y PTG P27 p(T) =grad[So(T)]  (7.23)

Réciproquement, a un champ 8§y donné correspond toutes les trajectoires perpendiculaires aux
surfaces équipotentielles de S et nous avons :

A8y = / p(?)-dT (7.24)

Au signe négatif pres, I'impulsion P est analogue a un champ électrique et les surfaces 8, aux
équipotentielles de ce champ.

Les surfaces équiaction § qui dans I’espace de configuration coincident a chaque instant avec les
différentes surfaces équiaction 8, s’identifient aux surfaces d’onde progressives équiphases. Les
surfaces équiaction S sont fixes dans I’espace puisqu’indépendantes du temps. En un point donné
de I’espace, la valeur des surfaces équiaction S évolue dans le temps selon (7.22). Cependant,
nous pouvons aussi considérer que les surfaces équiaction 8§ se déplacent dans I’espace au cours
du temps selon cette méme équation.
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Remarque 7.3.1

Ceci a pour analogue en mécanique des fluides, la représentation de Lagange dans laquelle on suit une particule du fluide, et celle
d’Euler ot I’on se place en un point donné duquel on observe le mouvement du fluide.

Suivons p. ex. le trajet de la surface équiaction S =0 :

At=0,8 =8,. Elle est donc superposée avec la surface équiaction S, = 0.
At=1,8=—-E+8,.Elle est superposée avec la surface équiaction 8y = &.
At=28=-2E+8,.Elle est superposée avec la surface équiaction 8, = 2€.

Les surfaces d’action constantes 8 se déplacent donc dans I’espace au cours du temps a travers
les surfaces S, constantes, dans le sens des S, croissantes si I’énergie mécanique & est positive.

Calculons la vitesse a laquelle ces surfaces S constantes se déplacent dans I’espace au cours
du temps. (7.22) montre que pour rester constante au cours du temps, la surface 8§ doit en se
déplacant de surface S, en surface S, compenser le gain ou la perte de valeur —&t. Ce sont donc
le gradient des 8, et I’énergie mécanique € qui vont intervenir dans la vitesse des surfaces §.
Plagons-nous a bord d’une surface S. D’une part

ds

— =0
dt

car la valeur de cette surface est constante dans le temps pour un observateur qui lui est lié, et

d’autre part :

ds ds,
AR

rso
dt

— d
= —& + grad(S,) -

=—€+f))-750

< = . . . . s
ou Vg, est le vecteur vitesse de chacune des surfaces S, vu depuis 8, donc vers « Iarriere ». Les
- - 7z . . . e s . .
vecteurs p et Vg, €tant perpendiculaires aux surfaces 8, ils sont colinéaires. De plus ils sont de
sens contraire :

—

— ==
P Vs, = —lPllVs,ll

Nous avons donc, vu d’une surface S :

—E—[PIVs,l =0
- =
1V 8ol = =7

1P

Plagons-nous maintenant a bord d’une surface S, pour observer une surface § :

&

— (7.25)
Il

Vsl =

A énergie mécanique & constante, plus la vitesse des particules est grande, c.-a-d. plus || || est
grand, plus les surfaces § sont lentes. Nous reconnaissons I’expression d’une vitesse de phase.
Les surfaces d’action constante sont des surfaces d’ondes progressives dans 1’espace des g, qui
restent les mémes au cours du temps et dont la vitesse de phase est donnée par (7.25).
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Nous obtenons la vitesse de la particule a partir de (7.22) page 207 :

Sy =8 + &t
38

90 _,

3

d
%(dso) = dt
Soit s la distance parcourue par la particule mesurée le long de sa trajectoire :

a8 (a8,
dr = % (W dS)

Avec (7.23) page 207

_op
dt = %ds
dt _dp
ds =~ 9¢&
D’ou:
0&

8] . = —
particule 3
p
Nous reconnaissons 1’expression d’une vitesse de groupe.

Exemple 7.3.1

Reprenons I’ex. 7.2.4 page 201 de balistique, en trois dimensions pour 1I’exemple (bien en-
tendu, la solution est en deux dimensions). L’ équation de Hamilton-Jacobi en représentation
q indépendante du temps s’écrit :

1 <aso>2 (680)2 (aso>2
— + +
2m |\ ox dy oz

Les variables x et y étant cycliques, nous appliquons la séparation des variables,

+mgz==¢&

So(X, ¥, 2, €, Ay, Ays 1) = AxX + Ay + 85(2, €, Ay, ), 1) (7.26)

et I’équation de Hamilton-Jacobi s’écrit :

ds, \?
ﬁa§c+a§,+(d;> +mgz=_¢
1 (dS,\° ay + a3
%(E)*mgz—f‘ am
:az

L’introduction de cette nouvelle constante a, permet de simplifier la résolution du pro-
bléme.

S, = i/\/zm(az—mgz)dz+c
__2 /2 3/2
=F3\ m (a, —mgz)”" " +c
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On pose a, de la forme o, = mgh, avec h constante,
5. = T2 (-2 +c
E= ﬁ(a§c+a§)+mgh
si bien que I’action de Hamilton s’écrit,
S==Ct+ayx+ayy+3,
=— [ﬁ(cxi +a3) +mgh]t+ocxx+ ayy F 2Tm\/2—g(h—z)

3/2

définie a une constante additive pres. (7.3b) page 190 donnent les équations du mouvement,

a8 a8 a8
ﬁx—ﬁ’ ﬁy—ﬁa ;Bz— 50(2
ou,
s a8
da,  9d(mgh)

Nous savons que 08/da, est un abus de notation, nous ne pouvons pas dériver par rapport
a une constante. Dans mgh, seule h est une nouvelle constante car m et g apparaissent déja
dans 8. Donc h est supposée variable pour effectuer la dérivation puis posée constante :

o8 1 08

da, mgdh

B, étant une constante quelconque, on peut supprimer mg et poser 3, = d8/dh.

a,t ayt
Be=x—"X,  By=y--L, B =%m/2g(h-2)—mgt

(7.3a) page 190 donne les impulsions généralisées :

08 o8 o8 /
px:a:axa pyzazocy, pz:a_zzim Zg(l’l—Z)

Nous avons alors,

ps = 2gm*(h — z)
2

Pz _ _
o mgh — mgz
et I’on vérifie que :
E= %(p§+p§,)+mgh

1
= 5 (P + Py + pz) + mgz

mgz est I’énergie potentielle fonction de la hauteur z, et & est la hauteur maximale atteinte
par le projectile. Reprenons les expressions des impulsions :

mx = oy, my = a,, mz = +my/ 2g(h — z)
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La vitesse dans le plan horizontal (x, y) est constante et vaut la vitesse initiale :

mxg = Oy, my, = ay, Zy = +4/2g(h — z,) (7.27)

La fonction caractéristique de Hamilton, (7.26) page 209, s’écrit :
So =axx+ay,y+ 38,

= MXyX + Mmyyy F gmx/z_g (h — z)g’/2

Si I’on pose que la vitesse dans le plan horizontal est nulle
Xog=Yo=0
ainsi que la hauteur maximale atteinte en z
h=0

cela correspond a un tir parfaitement vertical dirigé vers le haut, de hauteur maximale
h = 0. Alors :

8o = F2m\[2g(~2)*"

z < 0 puisque la hauteur maximale est nulle. De plus §, = ¢°*¢ implique z = ¢**¢ : les
surfaces 8, = ¢3¢ sont des plans a z constante inférieure 2 zéro (plans paralleles au plan
(x,¥)).

Enz=0,8,=0

Enz=-1,8§,= 12/3m\[2_g

Enz = -2, 8, = F83m4/g

La fonction principale de Hamilton S se propage dans le sens des S croissantes. D’abord
vers le haut car 8§, est négative et croit pour atteindre 0 en h, puis vers le bas car 8,
est positive et croit vers le bas. Les trajectoires sont donc des demi-droites verticales
ascendantes jusqu’a h, puis descendantes.

Prenons maintenant une vitesse horizontale constante strictement positive, p. ex. :

. . 2

Xy, =0, Yo = g\/2g, h=0
La fonction caractéristique de Hamilton s’écrit :

. 2
So = myoy F gm\/z_g(—z)m
2 2
= gm\/2gy T gmvzg(—z)y2

2
-my2g [y F (-2)*?]

ste ste

8y = ¢3¢ implique,

yF (_2)3/2 = c5te

y= cste + (_2)3/2

qui est I’équation de deux paraboles semi-cubiques, de sommet 1’axe des y, représentées
fig. 7.1 pour une constante égale a 1.
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y =1+ (—z)>*2

y=1-(-2*?
Fig. 7.1 -y =1 + (—z)*/?

Les surfaces 8, = ¢3¢ sont deux cylindres engendrés par une droite qui se déplace
parallelement a I’axe des x, en suivant les deux paraboles semi-cubiques. Lorsque 8,
augmente (S, est la constante qui vaut 1 sur la fig. 7.1), le sommet des paraboles semi-
cubiques se déplace dans le sens des y croissants.

En reprenant (7.20) page 204 avec I’axe z vertical, toujours avec yy = 2\/2_g/ 3 et avec
Yo = 0, nous avons :

g 5, 2o
z=——=y+y+z

zy(z)y yOy 0

9
=——y"+

3
16 2\/2—g

20y + Zy

(7.27) page précédente donne Z :

9 , . 3
Z:—1_6y iz\/—ZOy'i‘ZO

Choisissons un tir vers le haut, Z5 > 0,

9 , 3
Z=—Ey +§\/—Z0y+ZO
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SSec e

— \
20_3 v\

=224 3=
Fic.7.2-z = 4 +2\/ Zoy + 2

Les trajectoires sont des paraboles perpendiculaires aux paraboles semi-cubiques, ayant
pour plus hauts points I’axe des y, le projectile se déplacant selon les y croissants.

7.4 Mécanique ondulatoire

7.4.1 Relation de de Broglie

Au § précédent nous avons obtenu une famille de surfaces équiaction §, orthogonales aux
trajectoires des particules. Cela suggere une analogie entre mécanique et optique géométrique,
ou dans la théorie de Huygens les rayons lumineux sont orthogonaux aux surfaces d’ondes.
Cherchons 1’analogue optique de (7.23) page 207. Les surfaces d’onde de phase constante,
surfaces équiphase, sont les analogues des surfaces équiaction. Elles ont pour expression :

def —
#(T, 1) = K-T—2mnt

— cste

Remarque 7.4.1

La forme de cette relation est analogue a la solution de 1’équation de Hamilton-Jacobi en représentation q indépendante du temps (7.7)

page 193 :
8(q7 a, t) = So(q’ 0() - S(Of)t

La dérivation dans I’espace donne 1’expression du vecteur d’onde :
k(T) = grad [¢(T)]

qui est I’analogue optique de (7.23) page 207. Le vecteur d’onde est I’analogue optique du vecteur
impulsion généralisée.
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La relation de Planck-Einstein, tirée de 1’expérience,
E=hv

fait le lien entre une notion mécanique, I’énergie, et une notion ondulatoire, la fréquence. Elle
permet de sortir de la simple analogie pour établir des relations entre mécanique et optique.
Il nous faut le lien entre action et énergie, et entre phase et fréquence. La dérivée par rapport
au temps de (7.22) page 207 valable lorsque le systeme est conservatif et 1’énergie potentielle
indépendante du temps, nous donne la premiere relation :

a8
T —&
La dérivation dans le temps de la phase donne la seconde relation :
9¢
E = =271V
En remplacant dans la relation de Planck-Einstein :
oS o¢p
ETT
Si on admet la relation
S =h¢

alors on trouve la relation de de Broglie :
P = grad (5)
= hgrad (¢)
= K

7.4.2 Equation de Schrodinger

Cherchons I’équation d’onde qui donnera la fonction d’onde associée a la particule. Pour cela
servons-nous de la vitesse de phase (7.25) page 208 :

2 -
AT - THED

2
PR

ol Ug est la vitesse de propagation d’une onde 3 dans le milieu (vitesse de phase). Le mouvement
du point matériel est associé a la propagation de cette onde. Cherchons une solution de la forme

‘l,b(?, £) = ¢Oei(E-?—2ﬂvt)

— 1,boeiE' f’e—ziﬂvt

— e—Zim/tz’b(?)

—>
ou I’amplitude maximale 7, est réelle, et k est le vecteur d’onde. On utilise la relation de
Planck-Einstein, tirée de I’expérience, liant I’énergie d’une onde a sa fréquence :

E=hvy
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L’énergie étant supposée constante dans le temps :

W(T, 1) = e~2mEtlhy ()

OP(T,t) _ =27E _sizern, -
at - h e '(p( r )

BY(T.1)  —dne?
oz h?

e—2in8t/h¢(?)

Avec (7.25) page 208 donnant I’expression de la vitesse de phase, I’équation d’onde indépendante
du temps s’écrit

N 4m2&%
AYT, 0+ 5 (E.0 =0
202
—ZlﬂVtAzp( )+ 471';; —Ziﬂvt¢(?) =0
Us
Ap(T)+ 2 ¢( T)=0

Lorsque le systeme est conservatif I’équation de Hamilton-Jacobi en représentation q indépendante
du temps d’une particule de masse m et d’énergie € dans un potentiel de force V(q) est donnée
par (7.9¢c) page 193 :

08o(q: @)\ _
(eSS =0
Supposons les conditions remplies pour avoir (4.12) page 136 et remplacons K par T + V

380(q,
—e+:r(q,%“)) +V(q) =0

qui n’est autre que 1’équation de conservation de 1’énergie mécanique. Avec (7.23) page 207 :

s {grad [So@IP = € - V()
B2 = 2mle - V(q)]

Nous trouvons 1’équation de Schrodinger indépendante du temps, d’une particule dans un champ
conservatif :

ClE = V(@IP(T) =0

Cette relation est la relation fondamentale de la mécanique ondulatoire. La mécanique classique !
du point matériel est donc une approximation de la mécanique 0ndulat01re lorsque la longueur
d’onde de I’onde de phase associée au corpuscule (relation de de Broglie p = & k) est considérée
comme tres petite. Le méme lien unit 'optique géométrique et I’optique physique, de ce fait, on
peut appeler la mécanique classique du point matériel, mécanique géométrique.

1. classique signifiant non relativiste et non quantique
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7.5 Action de Hamilton et lagrangien

D’apres (7.1) page 190, les impulsions généralisées P étant constantes dans la fonction principale
de Hamilton 8(q, P, t) :

a8 o8
dS(q,P,t) = a_qj dg; + N dt
Avec (5.7) page 152 et avec H = 0,
ds .
vk Al
S= /Ldt (7.28)

définie a une constante additive pres. L'action (de Hamilton) est donc I’intégrale indéfinie du
lagrangien par rapport au temps.

Exemple 7.5.1

Vérifions le sur I’ex. 7.2.2 page 196 de 'oscillateur harmonique. Reprenons I’expression
(7.15) page 198 de la coordonnée généralisée :

1 /2& 2&
q==x—1/ — sin(wt + @y) = ¢ = 3 sin®(wt + @)

w

d [2€ [2€
d_(z =)o cos(wt +py) = dg== — cos(wt + @y)dt

En partant de 1’expression (7.12) page 197 de I’action de Hamilton, avec k = ma? :

/ 2
S:—Sti\/ZmS/ 1—%q2dq

==&t +V2mé& / \/1 — sin®(wt + ®o) % cos(wt + @g)dt
) 1
=2& [cos (wt + ¢g) — 5] dt

=& / cos 2(wt + ¢q)dt

Reprenons I’expression (7.16) page 198 de I’'impulsion :

p = =V2méE cos(wt + ¢y) = p? = 2méE cos?(wt + @p)
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Le lagrangien s’écrit,

2 2

_ b nmw ,
T 2m 2
2
mw* 2&
= 8 2 t —_— —
cos*(wt + ¢@g) > Te?

=2¢& [cosz(cot +@o) — %]
= & cos 2(wt + ¢p)

S=/£dt

Nous avons bien

sciences-physiques.neocities.org

sin®(wt + @q)
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LE PRINCIPE VARIATIONNEL

Sommaire
8.1 Principe de moindredistance .. . . . . . . . .. ... 0 i e e 219
8.2 Principede moindretemps . . . . . . vt v it ittt et e e e e e e 221
8.3 Passage de I’optique alamécanique . . . ... ... ... ..., 223
8.4 Labrachistochrone . ... ... ... ...ttt tieeeeenns 225
8.5 Principesde moindreaction . ... ... ... .0ttt 233

8.1 Principe de moindre distance

En étudiant la réflexion de la lumiére sur un miroir (D), Héron d’Alexandrie observe 1’égalité des
angles incident i et réfléchi r. La normale au miroir est représentée en traits interrompus.

i B

|
|
| (D)
1

Fic. 8.1 — Egalité des angles incident et réfléchi sur un miroir

Il montre que la lumiere emprunte le chemin le plus court en distance pour aller de A a B.

En effet, si B’ est le symétrique de B par rapport a (D), alors

VM € (D), MB = MB’
AM + MB = AM + MB'



ou AM,MB,MB', ... sont des distances positives ou nulles. Appelons M le point d’incidence et
utilisons les angles complémentaires notés avec une barre :

A ...eB
Xr (D)

"".BI

Fic. 8.2 — B’ symétrique de B par rapport a (D)

AM + MB minimal < AM + MB’ minimal
& Me (AB)

& i=7

&S i

f

¢
~
i
S |

Le trajet le plus court en distance pour aller du point A au point B en touchant le miroir (D)
est donc celui pour lequel les angles d’incidence et de réflexion sont égaux, et réciproquement.
Evidemment, le trajet le plus court en distance pour la lumiére est aussi le plus court en distance
pour un corps quelconque, cette notion est absolue et ne dépend pas de ce qui parcourt le trajet.

B

(D)

FiG. 8.3 — Chemin le plus court en distance

Pour la réflexion, la lumiere suit donc un principe de moindre distance. C’est aussi un principe
de moindre temps si la vitesse de ce qui parcourt le trajet ne varie pas pendant le trajet.
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8.2 Principe de moindre temps

Le principe de moindre distance donne toujours une droite par franchissement d’un dioptre
(surface de séparation de deux milieux transparents d’indices de réfraction différents) et par
conséquent ce principe ne peut expliquer la réfraction de la lumiere. Pierre de Fermat applique
donc le principe de moindre temps et non celui de moindre distance, pour généraliser son
application de la réflexion a la réfraction.

La démonstration qui suit s’applique a tout corps subissant un changement de vitesse par change-
ment de milieu. Un sauveteur cotier courant plus vite sur la plage qu’il ne nage, choisit son point
d’entrée dans I’eau de fagcon a minimiser le temps total jusqu’a la personne a secourir, son angle
r est plus petit que son angle i. En optique le milieu @ est dit plus réfringent que le milieu @,
autrement dit la vitesse de la lumiére est plus petite dans le milieu @.

Soit M le point d’incidence et (D) le dioptre :

A

(D)

Fic. 8.4 — Réfractionen M danslecas v, < v; © r<i

Le temps de trajet est minimal si pour un trajet infiniment proche (représenté en pointillés sur la
fig. 8.4) la variation du temps de trajet est nulle a I’ordre un. Soient ¢; et ¢, les temps de trajets
respectifs dans les milieux @ et @.

(t; + t,) minimal < d(t;+t,)=0
=4 dtl + dtz = O

Soient c, v; et v, les vitesses respectives de la lumiere dans le vide et dans les milieux @ et @.
Autour du trajet de temps minimal, si la longueur du trajet augmente dans un milieu, elle diminue
dans I’autre (voir fig. 8.4), d’ou le signe négatif :

d[AM] d[MB] _
v, v,
cd[AM] c¢d[MB]

0 [MM'] ~ 0,[MM'] — 0

0

(t; + t,) minimal <
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: def def - ( . . -
Soient n; = c/v; et n, = c/v, les indices de réfraction respectifs des milieux @ et @ :

d[AM] d[MB]

(t; + t,) minimal < =0

"] T ]

Fic. 8.5 — Différence de marche danslecas v, < v; © r<i & n, > n

Lorsque M’ tend vers M, I’arc de cercle MN se confond avec sa corde, le triangle MM'N devient
rectangle en N, I’angle en M’ tend vers i et :
d[AM]
MM’
De méme, lorsque M’ tend vers M, I’arc de cercle M'N’ se confond avec sa corde, le triangle
MM'N' devient rectangle en N', I’angle en M’ tend vers r et :
d[MB]
MM’

~ sin(i)

~ sin(r)
Fermat trouve I’équivalence
(t; + t,) minimal < nysin(i) = n,sin(r)

et retrouve donc la loi des sinus de Descartes. On vérifie que si v, < v; alors n, > n; doncr > i
le rayon réfracté se referme sur la normale.

Lorsqu’un trajet est de temps minimum, chacune de ses parties est de temps minimum. Cette
remarque permet de généraliser le principe de temps minimum a une succession de dipotres :

ty+ty + - + t, minimal

Faisons tendre le nombre de dioptres vers ’infini, la vitesse varie de fagon continue :

.. ds ..
dt minimal = —— minimal
trajet trajet U(S)

Pour la lumiere, multiplions par la constante ¢ pour faire apparaitre 1’indice de réfraction. L’inté-
grale sur le trajet passe par un extremum ssi sa variation infinitésimale est nulle :

5/ nds =0
trajet
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Le principe de moindre temps appliqué a la lumiere est appelé principe de Fermat.

Jean Bernoulli est en possession de deux méthodes pour trouver 1’équation d’un trajet de temps
minimal, la loi des sinus de Descartes et le principe de Fermat. Grace a la loi des sinus, il va
résoudre le probleme de la détermination de I’équation de la brachistochrone posé par Galilée en
1633 :

Quelle est la courbe, appelée brachistochrone, joignant deux points A et B du plan vertical, telle
qu’un corps pesant partant au repos du point le plus haut A (x4, y,) et glissant sans frottements
le long de cette courbe sous I’influence d’un champ de gravitation uniforme, arrive au point
B(xg,yg) en un temps minimal ?

En 1696 ayant trouvé la solution, il adresse le probleme aux mathématiciens de son temps.

8.3 Passage de ’optique a la mécanique

Jean Bernoulli applique la loi des sinus de Descartes a un indice variant de facon discontinue puis
passe a la limite pour avoir une variation d’indice continue. Si les milieux sont moins réfringents
a mesure que y diminue, la trajectoire prend la forme suivante :

Fic. 8.6 — Couches d’indices de réfraction danslecasv, > v; © n,<n; © r>i

Au franchissement de chaque dioptre, la loi des sinus de Descartes s’écrit :

Sin(rs1) _ sin(in)

Un+1 Un
Sin(rn+2) — Sin(in+1)

Uny2 Un+1
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Tout angle réfracté devient angle d’incidence
Vn, n,=1i,

si bien que
sin(i,) _ sin(ipg1) _ sin(ipg2) 1

Un Un+1 Un+2 k

ou k est une constante. Faisons tendre le nombre de couche vers I’infini, ce qui revient a une
variation continue de I’indice de réfraction :

sin[i(x)] 1

o[ix)] ~ k

Pour un corps autre que la lumiere, lorsque la vitesse est nulle le sinus doit aussi étre nul pour
que leur rapport donne une constante

v[i(x)] =0 < sinfi(x)]=0

L’angle d’incidence est nul ssi la vitesse est nulle, la trajectoire est alors normale au dioptre. La
vitesse croit avec le sinus. Lorsque le sinus tend vers 1, I’angle d’incidence tend vers 7/2, la
trajectoire devient horizontale et la vitesse atteint son maximum possible (si la trajectoire se
prolonge jusque 1a) :

v(/2) =k 8.1)

Soit y = f(x) I’équation de la trajectoire suivie en un temps minimum. En tout point de cette
trajectoire la dérivée est la tangente de 1’angle que fait cette trajectoire avec I’horizontale :

y'(x) = tan(7)
Or

sin(i) = sin(r)
= cos(7)
1

V1 + tan®(7)

v(x) 1
W) T Y00

Pour résoudre cette équation différentielle il nous faut I’expression explicite de la vitesse en
fonction de x. Prenons le cas d’un corps qui tombe en chute libre dans le champ de pesanteur
terrestre, de vitesse nulle en A. Si I’on néglige les frottements de 1’air, la force d’interaction gra-
vitationnelle étant conservative (elle dérive d’une énergie potentielle, appelée énergie potentielle
de gravitation ou de pesanteur), on peut écrire la conservation de 1’énergie mécanique :

émvz(x) + mgy(x) = %mvf‘ + mgy,

%mvz(X) = mglya — y(x)]

v(x) = 4/28[ya — y(x)] (8.2)
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Effectuons le changement de variable :
y(x) = ya —y(x)
y =-y'()
y2(x) = y™*(x)

L’ équation différentielle devient :

V2gy(x) 1

WE2) Ty

V2@ [1+y2(0)] = v(x/2)
vi(7/2)

y(x) [1+y2(x)] = 2 (8.3)
Revenons a la variable y(x) :
2
[a — @11 +y%(x)] = %g/z)
v3(7/2)

YOO [1+y2(x0)] =ya — 2%

C’est I’équation différentielle d’ordre un non linéaire de degré deux d’une cycloide. La brachis-
tochrone est donc un arc de cycloide de concavité vers le bas, de tangente verticale au point de
départ.

8.4 La brachistochrone

Retrouvons le résultat de Jean Bernoulli en utilisant le calcul des variations. Cherchons 1’expres-
sion de la durée d’une trajectoire quelconque y(x) entre les points A et B. Soit ds un élément
infinitésimal de cette trajectoire. La vitesse (instantanée) a pour expression :

-
~dt
ar=2
0]
B
ds
AtAB :/ 7 (84)
A

Dans un systeme de coordonnées rectilignes orthogonales (x, ), le carré de 1’élément infinitésimal
de trajectoire a pour expression :

ds? = dx? + dy?
Mettons dx ou dy en facteur :

a5 = (14 2 ) ax2 /
sT={1+ dxz | 9% ds =+/1+ y2(x)|dx]|
(8.5)

=

2 dx? 2 _ "2
ds? = d—y2+1 dy ds =+/1+x"2(y) |dy|
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ou le prime indique la dérivation par rapport a la coordonnée restante. La conservation de 1’énergie
mécanique (8.2) page 224 donne I’expression de la vitesse. En remplacant v et ds dans (8.4) nous
obtenons les deux expressions suivantes pour la durée d’un trajet quelconque :

1+y2
28(ya —y)

12
Atyp = / 1 / 1 X (8.6b)
\ ya

Nous supposons x croissant le long de la trajectoire. Nous conservons (8.6a) sans la valeur
absolue. Posons :

AtAB = (863.)

1+ y2(x)

2g[ya — y(X)] &7

fOX),y' (%) = J

ou le prime désigne la dérivation par rapport a x. La durée d’un trajet At4 g le long d’une trajectoire
quelconque est donc la fonction de fonction, appelée fonctionnelle, suivante :

Atgp = / CFO(0,y ()

La variation de durée entre la trajectoire de durée minimale et une trajectoire infiniment proche
est nulle

SAtAB =0

5 / CFOG0.y ())dx = 0 8.8)

ol y(x) est supposée étre la trajectoire de durée minimale.

Remarque 8.4.1

Mathématiquement, cette condition de durée stationnaire est nécessaire mais n’est pas suffisante pour avoir une durée minimale car elle
pourrait aussi étre maximale ou admettre un point-selle (point d’inflexion horizontal, aussi appelé point-col). Cependant, en physique
parler d’une trajectoire de durée maximale n’a pas de sens. La comparaison de la durée du trajet solution avec la durée de trajets voisins
montrera que c’est effectivement le trajet de durée minimale.

Soient donc y(x) la trajectoire de durée minimale, et g(x) une autre trajectoire entre les mémes
points de départ et d’arrivée.

Comparons leurs durées :

aatnp) = | (g0, g (0))dx / *FOG0.y ()

= [ fe() g () = SO,y ()

XA
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Fic. 8.7 — La brachistochrone (noire) et une trajectoire treés proche

Notons Ay(x) la différence en ordonnées entre les fonctions y(x) et g(x), c.-a-d. la différence en
y pour un X fixé, nulle aux points de départ et d’arrivée car les deux fonctions passent par les
points A et B :

A(Atyp) = / JOX) +4y(x), y'(x) + 4y' (%)) — f(¥(x), y'(x))dx

Remarque 8.4.2

Il n’y a pas de variation en X mais seulement en y et en y’, par conséquent pour une fonction f (y(x), y'(x), x) explicite de la variable
X, nous aurions la méme résolution.

Supposons les deux trajectoires infiniment proches :

6(Atap) = / Bf (x) + 8y(x), y'(x) + 6y'(x)) — f(¥(x), y'(x))dx

Xp
= [ “sr0uyax
XA
XB
x \OY oy
xB XB
= f5ydx+/ af, dy' dx
XA XA ay
On integre par partie le second terme en posant u = 0,/ f et v" = §y" :
B af B d (0f
5(AtAB)=/ 6ydx+ —/ ( )6ydx
X dy A dx \dy’

La variation dy étant nulle aux extrémités de la trajectoire :

XB XB
O (Atyp) = %5 dx—/ %(§;>5ydx
XA

/XB 5~ ax () |ovex

XA
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Ecrivons la condition nécessaire :

XB af
[ [ &

()50 ®9

appelée équation d’Euler. La fonction f (y(x), y(x)) donnée par (8.7) page 226 ne dépendant pas
explicitement de la variable x, nous pouvons intégrer 1’équation différentielle une premicre fois :

40.7) =L ay+ L
df _of . 3
dx OJdy oy’

En utilisant I’équation d’Euler (8.9) pour remplacer le terme 0, f :

TN TIAW )

dx — dx \ay’ 8y’y”
dx(sfy)
-3
f- aa;vy . (8.10)

ou k est une constante par rapport a x. L’équation différentielle (8.9) est maintenant du 1°* ordre
en y(x). Dans la fonction f, effectuons le changement de variable :

y(X) = ya — y(x)
y(x)=-y (x)
y2(x) = y2(x)

[’axe «y »a pour origine y, et est dirigé vers le bas. Reprenons I’expression (8.7) page 226 de la
fonction f :

14y 1/2
FO(x),y'(x)) = [m]

/ (14y? 1/2
0.5 = (52
of 1(1+Yy e 2y’
3y’ 5( 2gy ) " 2gy

-5 ) 25

\/ Zgy(l +y?)
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!’

En notant que y’ = —y’ implique dy’ = —dy’ :

dfy,y) =df (v, y)
ﬂd +ﬂd = ﬂdy+ﬂdy’

af _ of
ay/ - ayl

Remplacons dans I’équation différentielle (8.10) :

W+ y, (_y/)z 1
V2gy  V2gy(+y?) k
1 1
2gy(1+y?) K
k2

y(1+y?) = % 8.11)

Nous retrouvons 1’équation d’une cycloide (8.3) page 225.

8.4.1 Résolution de I’équation différentielle

Cherchons la solution y(x) de cette équation différentielle sous la forme de deux équations
paramétriques y(6) et x(6) ou le parametre 0 est une fonction du temps qu’il faudra déterminer,
6 = 6(t). Effectuons le changement de variable suivant :

v'(0) = 1/tan(§) (8.12)
cos? <§>
sin? (g)

1+y2%(6) =1+

Remplacons dans 1’équation différentielle (8.11) :

2
y(6) = ’;—gsinz (9) (8.13)

2
k2
=13 [1—cos(0)]
Revenons a la variable y :
kz
Y(O) =ya+ 1z [cos(6) — 1]
Cherchons ’expression de x(8). A partir de (8.12) :

Y =1/t (?)
dx = tan(%) dy
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En dérivant (8.13),

d 2
d_}ef = §—g25m<§)x %cos(g)

2

dy = Izc_g sin (g) cos (g) dé

Nous avons donc :
2

dx = K tan (g) sin <§) cos (g) doe

2g
X 2 6
/ dxzk—/ sin2<9>d9
2g o 2

k2 [°
X—X4=-— 1 —cos(6)doé
4g 0
k2
x(@) =Xy + % [9 - sm(@)]

Centrons le repere (x, y) sur le point A qui a alors pour coordonnées (0, 0), nous obtenons

k2
4g
2

x(0) = {:_g [6 —sin(B)]

¥(6) = —[cos(6) — 1]

(8.14)

qui sont les équations paramétriques d’une cycloide de parametre 9, dont la concavité est dirigée

vers le bas. Cherchons les valeurs de 6 qui annulent la dérivée de y(60) :
2
Z_g sin(6) =0
6=0|n]

En ces points les fonctions y(6) et x(6) prennent les valeurs :

{y(O) =0 {y(ﬂ) = —k?*/2g {y(Zn) —=0

x(0)=0 x(m) = wk?/4g x(2m) = wk?/2g
y
6=0 4g 28
+ + x
.{_
2
— — .{..
28 0=nm

FiG. 8.8 — Arche de cycloide : premier cycle (0 < 6 < 27)
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La hauteur de chute est maximale en & = 7. En ce point nous avons la relation :

x(x) = =2 y(x)

La cycloide est la courbe engendrée par un point de la circonférence d’un cercle qui roule sur
une droite. Le diamétre du cercle est égale a la hauteur de chute maximale, k?/(2g).

En notant H = y, — ypg la hauteur finale de chute et D = xg — x4 la distance parcourue en x, le
systeme d’équations (8.14) donne :

k2

H = E [1 - COS(@B)] (815)
k2

D= a3 [6p — sin(6p)]

SiD < %H (c.-a-d. si 6 < 7) le corps descend directement au point B.

SiD > %H le corps passe par une hauteur minimale puis remonte jusqu’au point B.

FiG. 8.9 — Brachistochrones

En dérivant par rapport au temps (8.14) page ci-contre, nous obtenons la vitesse en fonction du
parametre O :

v*(6) = vj(6) + v(6)

() ey

2

2
= [g sin(6) é] + [% (cos(6) — 1) é]

k402
= T6g? (sin®(6) + cos?(6) — 2cos(6) + 1)
442
= I;g@z [1 - cos(6)]
k20
v(6) = 5 \/E V1 —cos(6)
g
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A partir du carré de la vitesse, ((8.2) page 224) :

v3(6) = —2gy(6)

k*6* k2
ng [1 - COS(@)] = ? [1 — COS(@)]
. 4g2
=5
= +28
6=+ i

si bien que

v(B) = £k V1 — cos(6)
V2

La vitesse maximale possible est en 6 = 7, on retrouve le résultat (8.1) page 224 :
v(m) =k

La constante k est donc positive et :
v(0) = % V1 —cos(6)
2

Nous avons alors :

a0 _ o
dt — ov(m)
6g tp
/ do= 2% dt
64=0 U(ﬂ') t4=0
_2gtp
% = v(m)
[ = Ogu ()
5= B2
2g

Pour 65 = 7 (plus longue descente « directe »)

v(rr) =+/2gH

. o . 1 . ,
La relation de cinématique classique x = 5 gt? donne le temps de chute libre d’une hauteur H

2H
T=,—
8
etl’ona:
; T 2H
T
==T
2

232 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

8.5 Principes de moindre action

8.5.1 Principe de moindre action de Hamilton

Dans les équations d’Euler (8.9) page 228, en remplagant la fonction f par le lagrangien et la
variable x par le temps, nous retrouvons 1’équation de Lagrange pour la coordonnée y :
Y
oy dy
Par analogie de (8.8) page 226 qui donne les équations d’Euler (8.9), on déduit que les équations
de Lagrange dérive du principe variationnel

ip
§ [ L@)y@),t)dt=0
ta
ou la trajectoire est variée mais pas le temps, la durée du parcours est fixée a tg — t4. Ce principe
est appelé principe de moindre action de Hamilton. L’intégrale du lagrangien par rapport au
temps est I’action de Hamilton ((7.28) page 216) :

58=0 (8.16)

Laction de Hamilton n’est pas toujours minimale, elle est extrémale (ou stationnaire) car dans
certains cas elle peut étre maximale pour la totalité de la trajectoire. Cependant elle est toujours
minimale pour chaque partie suffisamment petite de la trajectoire. De fagon explicite, le principe

de moindre action s’écrit ,
B

) (T =v)dt =
ta
Lorsqu’un systeme évolue dans I’espace et dans le temps, la différence entre énergie cinétique et
potentielle est la plus petite possible au cours du temps.

Pour généraliser le principe variationnel au cas de plusieurs fonctions d’une méme variable,
considérons une fonctionnelle de deux fonctions supposées linéairement indépendantes y;(x) et
¥,(x), de premiére variation nulle :

5 / £ 010, 3200, 331 (), 320 ) dx = 0 (8.17)

Appelons J cette fonctionnelle :

59 = / © 850,20 Y00 (0, )

af of of af )
= oy; + — d d
/xA <aJ’1 n AP} ay1 it ay; »2
af af ) / (af af )
= dy; |dx + 0y, + = dy; |dx
/xA (ay ayl yl xA ay W2 ayz y2
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En intégrant par partie,

od = /XB ———( )]Syldx+/XB ———(af,>]6y2dx
dyy  dx\dy dy, dx\dy;

XA

Les fonctions y;(x) et y,(x) étant linéairement indépendantes, 67 est nulle quelles que soient
dy; et 8y, si et seulement si f satisfait les équations :

d [of of _

dx <aJ’i ) ay

d (df of _

dx <6y§> oy

En remplagant la fonction f par le lagrangien et la variable x par le temps, nous retrouvons les
équations de Lagrange pour les coordonnées y;(t) et y,(t) :

d (0L oL

il5) -

d (0L oL

it 55:) 3 7

(8.17) donnant les équations (8.18), on en déduit que les équations de Lagrange dérivent du
principe variationnel

(8.18)

B
5 / £ 010,320, 51(0).3>(0). 0 dt = 0 (8.19)

ta
La généralisation a plus de deux coordonnées est immédiate.

8.5.2 Principe de moindre action de Maupertuis

Lorsque le hamiltonien ne dépend pas explicitement du temps, d’apres (4.8) page 133 il se
conserve dans le temps le long de la trajectoire réelle :

tB
) Hdt =
tA
Ajoutons ce terme nul au principe de moindre action de Hamilton (8.19) de la présente page :

ip B
5/ Ldt+ 6 Fdt =

ta g

ip
5/ L+ Hdt =

tg n
/ Z pig;dt =
tag

ou I’intégrale est appelée action de Maupertuis :

tg n
def
/ Z p;q; dt

La variation de I’action de Maupertuis est donc nulle :
SW=0

Cette relation est appelée principe de moindre action de Maupertuis.
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Remarque 8.5.1

En utilisant la linéarité de la fonction intégrale :

tg N n o tp
[ X pgar=3 [ o

Jtg j=1 j=17tx
n B

= pjdq;
j=1/a
-B n

= [ % pidq
Ja jo1

Remarque 8.5.2

Avec J( constant dans le temps :

tp
8= Ldt

ta

tg [ N
tB n tg
/ ijqjdt—ﬂ/ dt
g

D’apres (7.6) page 192, I’action de Maupertuis se confond avec 1’action réduite 8.

A partir de la définition de I’impulsion généralisée 3.4.1 page 109, avec V(q) indépendant des
vitesses généralisées (et du temps) :

Si le hamiltonien constant est égal a 1I’énergie totale &€, d’apres 1’identité d’Euler (4.10) page 134 :

Za q =27

Le principe de moindre action de Maupertuis devient :

tB
5/ 27dt =0 (8.20)
ia
Exemple 8.5.1

Pour un mobile libre, I’énergie cinétique se confond avec 1’énergie totale constante du

mobile :
I
o) / dt =
¢

A
5(tB - tA) = 0

tg — t4 minimal

Le principe de moindre action de Maupertuis devient un principe de moindre temps.
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Exprimons 1’énergie cinétique a partir de la vitesse et de I’abscisse curviligne (élément de
longueur sur la trajectoire) :

T = Lmv?

2
in(3)
T2 dt

dr = ds

V2T /m

Le principe de moindre action de Maupertuis (8.20) s’écrit :

tp
o) 27dt =0

ta

B
2T
5/ ds=0
A 2T /m
B
5/ V2mJTds=0
A

5/3\/2m[8—17(q)]ds=0

A

Nous voyons que la condition d’extrémum est directement sur la trajectoire, sans passer par
I’équation horaire. C’est la I’intérét principal du principe de moindre action de Maupertuis.
Cependant ce principe est moins général que le principe de moindre action de Hamilton puisqu’il
ne s’applique que pour les systémes conservatifs.

Exemple 8.5.2

Pour un mobile libre 1’énergie potentielle est nulle et 1I’énergie totale constante :

5/3\/2m[€—17(q)]ds=0
A

6(Sp—84)=0
Sg — 84 minimal

Le principe de moindre action de Maupertuis devient un principe de moindre chemin
parcouru.

Exemple 8.5.3 : Balistique

Reprenons 1’ex. 7.2.4 page 201, concernant 1’étude du mouvement dans le plan (x,y)
d’un projectile dans le champ de gravitation terrestre en 1’absence de frottement de 1’ air.
Nous pouvons utiliser le principe de moindre action de Maupertuis car la force de pesan-
teur dérivant d’une énergie potentielle, le hamiltonien se conserve et est égal a I’énergie
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mécanique :
m ., .5
.’H:E(x +y%) + mgy
1
= 5 (% + p}) + mgy
=&

Avec I’énergie potentielle de pesanteur V(y) = mgy, I’action réduite s’écrit

W = /AB \/Zm[S —mgy(x)]ds

En se servant des I’expressions (8.5) page 225 pour I’élément de trajectoire, nous obtenons
deux expressions pour I’action de Maupertuis :

W= /xB \/Zm(é' - mgy)\/l + y"2(x) |dx]|

W= /y y \J2m(E —mgyn[1+ x2() 1y

Le principe de moindre action de Maupertuis s’écrit

é /xB \/2m[8 — mgy(x)]\/l +y2(x)|dx| =0

5 [ \J2mie ~ meyCon 1+ x20) v =0
YA

de la forme

5 / " L),y (0, 0)ldx] = 0

e
5 / L0, X ) y)ldy] = 0
ya

avec les lagrangiens respectifs

£/, (x),x) =/ 2m[€ — mgy(h /1 +y2(x)
L), X (). ) =/ 2mlE — mgy(l 1+ x2(3)

Nous pouvons appliquer le principe de moindre action de Hamilton (8.19) page 234 (!) ou
le parametre temps est remplacé par la coordonnée x ou y. Plutdt que d’écrire les équations
de Lagrange, remarquons que dans le second lagrangien la coordonnée x est cyclique. Par
conséquent

6_5 — pSte
dx'
V2m(E — mgyW1+x2() _ qe
ox’ B

mxl()}) — cSte
V14 x2()
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Il reste a résoudre cette équation différentielle. Soit H la hauteur maximale atteinte par le
projectile en x,,. En ce point I’énergie potentielle mgH est maximale et I’énergie cinétique
est minimale, le vecteur vitesse est horizontal. On pose

Nous avons alors :

On pose

si bien que

1
T(x,) = Emv,zc
= mgA
= v3/(2g)

\V2m2g(H + A — y)x'(y)

=C
V1+x2(y)
C?[1+x?
HitA—y= | 0]
2m2gx'*(y)
C2
- 2m2g

H+A-y= B( 20) )

Ordy/dx=0eny=H,dou A =B:

_ o[y
Sof@)
dv\2
preald
H—y_ﬂ
A dx

On trouve I’équation de la parabole sans passer par I’équation horaire.
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Exemple 8.5.4 : Force centrale

Dans le cas d’un mobile soumis a une force centrale le mouvement est plan. En coordonnées
polaire (p, 0), I’énergie potentielle s’écrit V(o). L’action réduite a pour expression

W=/AB\/2m[€—V(,o)]ds

En coordonnées polaires (p, 6), le carré de 1’élément infinitésimal de trajectoire a pour
expression :
ds? = dp? + p?d6?

Mettons dp ou df en facteur :

do?
2 2 2
= (1 e a) I ds =/ 1+ p62(p) |dpl

=

2
¢ = (3 + %) e ds = \/p? + (@) d6]

ou le prime indique la dérivation par rapport a la coordonnée restante. Le principe de
moindre action de Maupertuis s’écrit

5 / " Jamle — v 1+ 6262() dol = 0
kA

5/ " \Jamle — Voot + @1 =0

de la forme

PB
5 / £(6(0). 8 (0). p)ldp] = 0
PA

OB
5 / £(p(8).0'(6),8)]d6] = 0

04
avec les lagrangiens respectifs

£(68(6).6'(p).p) = 2mlE = V()1 + p26°2(p)
£(p(6).£'(8).6) = \/2m[€ = V(o) p? + P(E)

Dans le premier lagrangien la coordonnée 6 est cyclique. Par conséquent

aL Ste
ﬁ =C

3V2m[€ = V(O)IV1+p%60%(0) .
EE =€

260 VIEVE _ o

V1+p%62%(p)
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Cette constante est la norme L du moment cinétique du mobile. Réécrivons cette équation

différentielle :
o 2m[E - V(p)]
b=ee (”)J T+0%87(0)
r _ 2a2 & —=V(p)
me? = PO O T e
o €=V + p*02(p) — p20"%(p)]

2 E—=V(p)
J w70~ 5] \/ Eren
2mle — V(p)]
(¢- (p)_sz2> pJ T+ p262(p)
L
o' (p)

oo 2 I?
(o) = L/ [mpz\/% (6= Vo) - Zmpz)]

On appelle potentiel effectif le terme :

def I?
Ui (0) = V(6 + 5

Nous avons alors :
d_@ _ L
do 2
P mp2\[21E - Upys(p)]

[ - /w L,

Uer ()]
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LE PRINCIPE DE MOINDRE ACTION DE HAMILTON
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Le principe de moindre action peut servir d’axiome de départ a toute la mécanique.

9.1 Dérivation des équations du mouvement

9.1.1 Les équations de Lagrange

Pour obtenir la trajectoire d’un systeme il nous faut établir les équations de son mouvement.
Celles-ci sont données par
« une loi générale du mouvement (p. ex. la RFD)

« un modele propre au systeme (p. ex. —kx pour le ressort dans sa partie linéaire), fonction
des coordonnées, des vitesses et du temps

« les conditions initiales du systéme que sont sa position et sa vitesse a un instant donné,
appelé instant initial

On suppose que tout systeme mécanique est modélisé par une fonction des coordonnées, des
vitesses et du temps, que I’on appelle lagrangien du systeme £(q;(t), g;(£), t).



Posons la loi générale du mouvement suivante : entre un point de départ A a I’instant t4 et un
point d’arrivée B a I’instant tg, le systeme prend la trajectoire qui rend extrémale I’intégrale du
lagrangien entre les instants de départ et d’arrivée. Suivons le raisonnement inverse du § 8.4

page 225 :

5 [ ogo.40.0d =0

tg
tp

tp
/ £(q; + 85, + 865, 0) dt — / (g g ) dt = 0

ta tA

‘s " oL .
/ (aq, Tqaqj)dtzo

‘B 1 az: B 5L d
/ 5qjdt+ /A 5 dt(a q)dt =

En intégrant par partie le second terme :

5 ” P lg (ac
TR C N _(_.)&,.dt:
/t Za ]tA ta jzﬂdt aqj '

tg ¢ n
oL B oL dacs

) +/ ( )5 dt = 9.1
aq qJ y " ng aq] dl' aq] q ( )

Les variations dq sont nulles aux extrémités de trajectoires prisent entre les mémes points de
départ et d’arrivée dq(t4) = 8q(tg) = 0. On retrouve les équations de Lagrange (3.13) page 74 :

tg n
/ Z(OL ddL)5 =0
., S\9dq;  drdq;

A J=1
d (0L 0L
Vj=1,...,n —(—> =0
dt \ dq; 6qj
Remarque 9.1.1
tp
JRECIORTOLLIET
ta
13:]
/ 8L(q;(6), 4j(), ) dt = 0
L [(0L d oL
/ z:: <6q, ET%)aqjdtzo
donc

n
oL d oL
8L(qi(t),qi(t),t) = <————.>5
(qj(t),q;(t), 1) Z}l oq ~ ataq; )V

8L(q;(t),qi(t),t) _ 8L d L

Vi=1,...,n = -
J 5qj 6qj dt aqj

STL s’appelle la dérivée variationnelle de £(q;(t), 4;(t), t) par rapport a gj.
J
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9.1.2 Les équations de Hamilton

On pose

n
def . .
H(q. pjpt) = D, pidy — £(qp G )
Jj=1
Le principe de moindre action s’écrit :

tB
5 / £(q(0). (0.0 dt =
/ ijq, H(qj. pj. 1) dt =

‘B & O 8
/ Z(équj+pj5qj Er Spj — E 5qj) dt =0
J

car 6t = 0. En intégrant par partie le second terme :

tg ;]
_ . t .
Vj=1,.,n / poq;di = [poq], - / pog; dt

ta tA

iB

tg

car les variations dq sont nulles aux extrémités de trajectoires prisent entre les mémes points de
départ et d’arrivée. Si bien que,

B Z L -

tB n a
q )5p (p~+—)5q-]dt=0
/t Z (] J 77 3q )

Dans I’espace des phases, les trajectoires variées peuvent avoir des coordonnées et/ou des
impulsions différentes, les variations &q; et & p; sont donc indépendantes :

/tthn:[(q] ) b~ (pj+g—;()5qj]dt=

5 = 8
J _5_61-
. j
Vji=1,..,n _5if
J_ap]

On retrouve le systeme d’équations de Hamilton (4.6) page 132.
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9.1.3 L’équation de Hamilton-Jacobi

L’action donne I’équation de la trajectoire q; = g;(¢), autrement dit I’action est fonction des g; et
du temps :

8§ = 8(q;,t)
n
ds = o8 dg; + 98 dt
j=1 an at

Si I’on a la différentielle d’une fonction, c.-a-d. les dérivées partielles de cette fonction par rapport
a chacune de ses variables, alors on a la fonction a une constante pres. Pour trouver 1’expression
de d8/9q; en fonction de ¢ et des g;, cherchons comment varie 1’action entre deux trajectoires
réelles infiniment proches, qui commencent au méme endroit et se terminent au méme moment
mais pas exactement au méme endroit :

Par exemple pour deux brachistochrones :

y

B" g

FiG. 9.1 — Deux brachistochrones infiniment proches, finissant au méme moment mais pas au
méme endroit

Avec (9.1) page 242 :

]
n IB tp N
oL B oL dac
—o0q;| + / (— - ——.) dq;dt
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Puisque les trajectoires sont réelles, elles vérifient les équations de Lagrange et I’intégrale est

nulle : )
"o . |”

2199

ta

Le lagrangien du systeme étant connu, nous avons trouvé la premiere dérivée partielle de S :

oS 0L
V | = 1, , _—=
On pose
def 0L
Vji=1,...,n Di = =—
etl'ona: 33
V j = 1, ) 3 =

C’est la relation (7.3a) page 190. De facon analogue, pour trouver 1’expression de d8/0t en
fonction de ¢ et des gj, cherchons comment varie I’action entre deux trajectoires confondues, qui
commencent au méme endroit et se terminent au méme endroit mais pas exactement au méme
moment (les deux trajectoires ne peuvent étre réelles, car pour une trajectoire il n’existe qu’un
seul temps de parcours possible) :

68 = | =6t

38 ]QB
ot ”

Plutdt que de varier I’intégrale, partons de la différentielle de S :

38 o 98
ds—gdt+;a—qjdqj

n

ds 0os§ oS8 .
== Z_

— +
de ot Hog Y
38 oy
Frinain 21 pig

J:

Nous avons trouvé le terme d8/0t. On réécrit cette relation sous la forme

Les 68/6qj et le hamiltonien J étant connus, on trouve 08/0t grace a cette relation. C’est
I’équation de Hamilton-Jacobi (7.3c) page 190. En résolvant cette équation, et en remontant les
inférences précédentes, on obtient dS, donc § a une constante pres.

sciences-physiques.neocities.org 245


http://sciences-physiques.neocities.org

9.2 Propriétés du lagrangien

9.2.1 Changement d’unités

La multiplication du lagrangien par une constante & ne change pas I’action correspondante, donc
la trajectoire trouvée :

tB
5 / L (qi(t), G(t), £)dt = 0

17}
15:]
as [ L(q0.4(0).0dr =0
ta
tB
Y ACTORTOMEST
ta

68§=0

Cela correspond a un changement d’unités (cf. § 3.2.3 page 96).

9.2.2 Additivité du lagrangien

Soit un systeme isolé, constitué de deux sous-systemes. La trajectoire de ce systeme est donnée
par le principe de moindre action de ce systeme :

68 =0

Si les deux sous-systémes sont eux aussi isolés, donc n’interagissent pas 1’un avec I’autre, chacun
aura sa propre trajectoire indépendante de I’autre :

58120
582=0

La trajectoire du systeme est la somme des trajectoires des deux sous-systémes :

58:581+582
=6(8: +383)
5/5:5/(51+L2)
Lzﬁl +»C12

Nous retrouvons I’additivité du lagrangien, § 3.2.5 page 98.
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9.2.3 Invariance de jauge du lagrangien

Etablissons I’invariance de jauge du lagrangien du § 3.2.6 page 98. Soient deux lagrangiens ne
différant que de la dérivée totale par rapport au temps d’une fonction quelconque des coordonnées
et du temps :

14,6, = £(4,6,0) + <@ D)

tz t2 t2 d
| taana= [ “c@anda+ [T graoa
t

t 151

%)
_ / £(q,q,t)dt + [f(q, t)]ﬁf

151

=/2am¢wm+fmmxm—fmmxm

151

t ts
5/ L(qd,0)dt = 6/ £(q 4 0)dt
t t
0S =68

Le lagrangien n’est donc défini qu’a la dérivée totale par rapport au temps d’une fonction
quelconque des coordonnées et du temps pres.

9.3 Symétries et lois de conservation

Si I’on place le principe de moindre action comme axiome de départ de toute la mécanique, il faut
trouver 1’expression du lagrangien des systemes, a commencer par le lagrangien le plus simple,
celui du systeme libre ou isolé, c.-a-d., non soumis a une influence extérieure.

9.3.1 Conservation de I’énergie

Le lagrangien d’un systeme libre ne peut dépendre de 1’époque a laquelle un observateur galiléen
le considere, ceci est une conséquence de 1’homogénéité du temps, toutes les époques se valent.
Une translation dans le temps ne change pas le lagrangien d’un mobile libre :

£(q,q,t +dt) = £(q, 4, 1)
£(q.q,t +dt) - £(q,q,1) =0

6£(q,q,t) =0
0L
Wdt =0
oL
3 =0
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En conséquence le lagrangien d’un mobile libre ne dépend pas explicitement du temps.

Remarque 9.3.1

Nous avons vu au § 3.3.1 page 107 que cela implique la conservation de 1’énergie généralisée, et donc du hamiltonien. Cette derniere est
donc liée a I’homogénéité du temps.

9.3.2 Conservation de la quantité de mouvement

Le lagrangien d’un systeme libre ne peut dépendre de 1’endroit ou il se trouve dans le référentiel
d’un observateur galiléen, ceci est une conséquence de I’homogénéité de 1’espace, tous les lieux
se valent. Une translation dans 1’espace ne change pas le lagrangien d’un mobile libre :

£(q+dq,q) = £(q,9)
£(q+dq,q)—£(q,4q) =0
0L(q+dq,q) =0

0L

3q 44=0
oL
3q ~°

En conséquence le lagrangien ne dépend pas explicitement des coordonnées généralisées.

Remarque 9.3.2

En coordonnées rectangulaires
0L

ox
La coordonnées X est cyclique, d’apres le § 3.3.2 page 108 la quantité de mouvement selon 1’axe X, donc selon n’importe quel axe, se
conserve. Cette derniere est donc liée & I’homogénéité de I’espace.

0

La quantité de mouvement d’un systeéme formé de deux sous-systemes est la somme des quantités
de mouvement des deux sous-systémes, car elle ne dépend pas de I’interaction entre les deux
sous-sytemes. Elle est donc additive.

9.3.3 Conservation du moment cinétique

Le lagrangien d’un systeme libre ne peut dépendre de son orientation dans un référentiel galiléen,
ceci est une conséquence de I’isotropie de 1’espace, toutes les directions se valent. Il ne peut donc
étre fonction que de la norme de sa vitesse, autrement dit de v? :

L = L(v?) 9.2)

Montrons que I’isotropie de 1’espace implique la conservation du moment cinétique. Imaginons
la rotation infinitésimale d’un systeme libre par rapport au référentiel d’un observateur galiléen.
Chaque vecteur position passe de la position T; & la position T; + d T; avec

dT; =d&d X T;
Chaque vecteur vitesse passe de V; 2 V; + dV; avec
d7i =dw X Vi
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La rotation dans I’espace ne change pas le lagrangien d’un systéme libre. Utilisons la notation
vectorielle de la remarque 3.2.1 page 94 :

L(T;+dT;, vV +dV) = L(T, V)
L(?l + d?i’ Vi + dVl) - L(?i’ Vl) =0

dL(T;, V) =0

N
3 . 0L )\ _
Z(a?i-drl+avl dvl>—

— —
On utilise la propriété suivante des produits mixtes, a - (b X E’) =b-(x2):

N
Z[da'(?ixa)+d3-(7ixﬁi)]=0

i=1

N
da'Z[(?i X i)+ (F;x B)] =0

i=1
d
aZ 1 X Pi =0

i=1

Le moment cinétique total du systeme se conserve dans le temps. Le moment cinétique d’un
systeme formé de deux sous-systémes est la somme des moments cinétiques des deux sous-
systemes, car il ne dépend pas de I’interaction entre les deux sous-sytemes. Il est donc additif.

9.4 Principe de relativité de Galilée

D’apres (9.2) page ci-contre, le lagrangien d’un systeme libre n’est fonction que de v. Les
équations de Lagrange donnent :

(6L(v)
dt ar(v)
(580
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(d (65(0)) —0 (90L(v) = el
dt aavx aavx L(U) — Cfte/tvx + f(vy, vz)
d [oL(v L(v
d (513(1))) —0 OL) _ stest L(v) = C5*'t, + g(vy, )
\dt \ Ju, \ dvu, 3
v, = Cite/t
v, = c;te/t 5 V= a’ste/t
v, = Cgte/t

Dans un référentiel galiléen, tout systeme libre se déplace avec une vitesse constante en grandeur
et en direction. C’est la loi de ’inertie. Elle définit les référentiels galiléens et les systémes libres.

Les coordonnées T et T’ d’un méme point dans deux rciférentiels galiléens R et R', dont le
second se déplace par rapport au premier avec la vitesse V, sont li€es par la transformation de
Galilée N

T=7+Vt
ou le temps est le méme dans les deux référentiels.

Remarque 9.4.1

Remarquons que nous pouvons redéfinir les référentiels galiléens comme des référentiels dans lesquels I’espace est homogene et isotrope,
et le temps homogene.

9.5 Lagrangien d’un mobile libre

Cherchons I’expression du lagrangien d’un mobile libre. D’apres le § précédent, son lagrangien
n’est fonction que de la norme de sa vitesse dans un référentiel galiléen. Supposons une vitesse
relative infinitésimale d vV entre deux référentiels galiléens. On prend le carré pour ne prendre en
compte que la norme :

V' =V +dv
V%= (V+dv)?

=02 +2dV - V + (dv)?

Si nous voulons que la trajectoire du mobile soit la méme dans le second référentiel galiléen,
I’action doit étre identique dans les deux référentiels, autrement dit le lagrangien ne doit différer
que de la dérivée totale par rapport au temps d’une fonction des coordonnées et du temps :

L)=L0)+ ((11—1;

L) =L(v+dv) + i—lj

dF(T,t)

L) =L +2dV -V +(dv)?) + N
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On effectue le développement limité au 1° ordre en dV de la fonction £(v?), du type

f(x+dx) = f(x)+ a];—gcx)dx

En négligeant le terme d’ordre deux (dv)? :

oL dF
2 _ 2 —> . ——}_ el
L*)=L(*)+2dV -V 302 + T
E(r, v,t)=-2dv - Vv 30
Cette égalité n’est vérifiée que si
oL
v = ¢
£ = Cv?

N
En effet, dans ce cas, en se souvenant que d v est constant :

LD _ ocdv -7
dt
o dT
=-2Cdv - E
F(?,t)=-2Cdv-T ot dV est constant.

Remarque 9.5.1

Dans le cas ot 8,,2£ = f(r, v, t) non constante :

% = 2f(r,0,0)dV - ¥

F(T,t) = —2d7 - / F(r, v, )Vt
ce qui est impossible car la fonction F n’est pas fonction de la vitesse V et I'intégrale la fait apparaitre.

La constante doit caractériser le systéme, on pose C = m/2 et on appelle masse du systéme la
constante m. La masse ne peut étre négative, sans quoi ’intégrale du lagrangien ne pourrait
passer par un minimum. D’apres le § 9.2.1 page 246, la constante 1/2 ne change pas le lagrangien,
elle correspond au choix des unités :

1
L= Emv2

Le lagrangien d’un mobile libre se confond avec son énergie cinétique, que nous noterons J.

9.6 Lagrangien d’un systeme
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9.6.1 Lagrangien d’un systeme libre

Pour un systeme libre constitué de deux mobiles libres, d’apres le § 9.2.2 page 246, les lagrangiens
s’additionnent. L’énergie cinétique est donc la somme des énergies cinétiques des parties du
systeme :
7(q,4,8) = D, (g, 4, 1)
4

C’esten cela que la masse n’est pas une simple constante que 1’on pourrait supprimer du lagrangien.
Elle intervient lorsque le systeme est constitué de plusieurs parties mobiles.

Pour un systeme libre constitué de deux mobiles en interaction, nous devons ajouter au lagrangien
des deux mobiles isolés, une fonction qui modélise des interactions dans le systeme. Elle doit donc
étre fonction des coordonnées généralisées des mobiles, et de méme dimension que le premier
terme d’énergie cinétique. En mécanique classique on suppose que I’interaction se propage a
vitesse infinie, elle est instantanée et ne dépend pas du temps. Nous ’appelons I’ énergie potentielle
V(q). Le lagrangien s’écrit :

’C(q’ q, t) = T(qa q, t) - V(Q)

Le signe négatif est affaire de convention car V(q) doit étre remplacé par un modele. Tout
c , . ( . . 1 1 ) 2 .
dépend de ce que I’on souhaite appeler énergie potentielle, p. ex. Ekx2 ou —Ekx2 pour I’énergie

potentielle élastique d’un ressort dans sa partie lin€aire.

9.6.2 Lagrangien d’un systeme dans un champ extérieur

Si le systeme est plongé dans un champ extérieur variable dans le temps alors

[’(q’ q’ t) = T(q9 q’ t) - V(q, t)

9.7 Le temps comme quatrieme coordonnée

Dérivons le lagrangien par rapport au temps :

S 3L
dt+za q + Za—qJ
£
Zaqjqﬁz

Avec les équations de Lagrange (3.13) page 74 :

. d (9L oL
Vi=1,...,n E(a—qj)—a—qj_

oc _d (o
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Donc

dac 9 "d(aa). Yy
dt ot jzzldt ag;) ¥ Jzzlaq]f
_% ii(aﬁ )
ot~ &4 dr\dg; 7
oL  d < aL.

Supposons que dans I’intervalle (¢y, ;) la Varlable t maintenant indépendante varie de &t sauf
aux extrémités de la trajectoire. Nous avons alors 6¢; = 0 (ou ici le delta n’est 0 qu’a la variation

temporelle), et :
) de
5q =9 (a)

- (dt)?
_ddg;  dg; 5(dr)

dt de dt
. dot

~Uar
En intégrant par parties et avec (9.3) de la présente page :

5/Ldt=/£6dt+/5£dt
AL 5 0L .
/Ld6t+/(at 5t+jza—q5qj)dt
/ —(5t)dt+ / = 5tdt — / Z ZL qjéit(ﬁt)dt
=— —5tdt+/—5tdt /Z ( )5tdt
aqj

oL d oL
—+&<j —.q]'—L>5tdt

dt ~1 dq]
=0

La contribution de la variation temporelle est donc nulle. Par conséquent on peut traiter le temps
comme si ¢’était une quatrieme coordonnée, le principe de moindre action de Hamilton incluant
le temps comme parametre est équivalent au principe de Hamilton sans le temps. Dans un espace
V4 a quatre dimensions, de parametres q,, 4, 43, t, les trois équations

Vi=123 g =g

représentent une courbe appelée ligne d’univers. Réciproquement, toute courbe peut étre repré-
sentée de la sorte dans V. Imaginons un mobile soumis a des forces et répondant aux équations
de Lagrange. Sa trajectoire dans I’espace et dans le temps, c.-a-d. sa ligne d’univers dans V}, est
telle que & [ £dt = 0 en prenant le temps comme quatriéme coordonnée, les extrémités spatiales
et temporelles restant fixes.
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10.1 Transformations invariantes

10.1.1 Définition des transformations invariantes

Lors d’une transformation ponctuelle de 1’espace des configurations (déf. 5.1.1 page 146), on
exprime les anciennes coordonnées généralisées q en fonction des nouvelles q’ :

Vji=1,..,n qi = qj(q’l, v s Qs t)
Les anciennes vitesses généralisées ¢ s’expriment de facto en fonction des q et des q’ :
Vi=1,..,n G = 4i(q1s - > qn> G5 -+ > s )
On obtient le nouveau lagrangien £’ en injectant ce changement de variables dans I’ancien £ :
£(q,4q,0) =Lla(d,1),4(q',q', 1), ] (10.1)

Ces lagrangiens sont égaux a chaque instant ¢, mais en général ils n’ont pas la méme forme
fonctionnelle. En revanche, les équations de Lagrange (3.13) page 74 gardent la méme forme
fonctionnelle :

0L'(q;, qg;,t) 0L'(q;,q:,t)
Vj:l,...,n i( qJ q] )— q‘] qJ =0

dt aq; aq;



Les équations explicites du mouvement écrites en fonction des nouvelles variables sont habi-
tuellement différentes de celles écrites en fonction des anciennes, elles n’ont pas méme forme
fonctionnelle. En général, on ne peut pas obtenir les équations explicites du mouvement simple-
ment en changeant les anciennes variables par les nouvelles.

Exemple 10.1.1 : Des coordonnées rectangulaires du plan aux coordonnées polaires

En coordonnées rectangulaires, la force gravitationnelle (force centrale attractive) s’écrit
en posantk > 0 :

- k -
= = ¢ r
X2+ y?
Cette force dérive de I’énergie potentielle gravitationnelle :
k
V=-

Le lagrangien a pour expression :

def
L=T-=-7

= -m (&2 +y?) +

k
Reprenons le changement de coordonnées polaires vers rectangulaires ((2.2) page 56) :
x = pcos(6) % = pcos(8) — pBsin(6)
{y = psin(6) {y = psin(6) + p6 cos(6)
L’énergie cinétique devient :
7(6.6) = 7[5 (6.6).3(2.6)
= -m[32(5,6) + 2 (5,6)]
= im {[p cos(6) — pb sin(@)]2 + [,é sin(8) + p8 cos(@)]z}
= im (62 + p%6?)
L’énergie potentielle devient :

V'(p,0) = V[x(p,0), y(p,0)]
—k

V2.0 +7.0)
—k
\/pz c0s2(8) + p2 sin?(0)
k

P

Le nouveau lagrangien s’écrit :

£'(p,6,p,6,1) = L[x(p,6,1), y(p, 6, 1), X(p, 6, 0,6, 1), ¥(p, 6, 0,6, 1), ]
=7"(6,6) +V'(p, 0)
1

. : k
=-m(p* +p°60%) + p
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Remarque 10.1.1

Si le nouveau lagrangien avait eu méme forme fonctionnelle on aurait eu :

k
Vo + o2

£'(0,0,0,6,1) = %m(p2 +62) +

=£(p,6,0,6,t)

Les équations de Lagrange s’écrivent de la méme facon (elles ont méme forme fonction-
nelle) :

d [(3L'(p,6,0,6,t)\ 0L'(p,6,p,6,t)

- d _ =0
dt op dp

d (3L'(p,6,6,6,1)\  9L(0,6,6,6,8) _ 0
dt 36 36 B

En revanche les équations du mouvement a force centrale ne s’écrivent pas de la méme
facon en coordonnées (o, 6) et en coordonnées (x, y).

Cependant, il existe des transformations de coordonnées pour lesquelles les équations explicites
du mouvement sont les mémes, elles ont méme forme fonctionnelle et I’on peut passer des unes
aux autres simplement en échangeant les anciennes et les nouvelles coordonnées.

Définition 10.1.1 : Transformations invariantes

Les transformations de coordonnées qui laissent invariantes les équations explicites du
mouvement sont appelées des transformations invariantes.

Remarque 10.1.2

Ne pas confondre I’invariance de forme fonctionnelle d’un lagrangien £'(q’,q’,t) = £(q’,q’, t) pour laquelle les variables sont les
mémes, et I’égalité A chaque instant £'(q’,q’,t) = £(q,q, t).

Il est certain que si le lagrangien est invariant de forme fonctionnelle par changement de coor-
données, c.-a-d. si

£q.q.0=£L(q.q.t) ou  Lqqt)=4L(qq.1) (10.2)
alors les équations de Lagrange (qui sont toujours invariantes de forme fonctionnelle), donneront
des équations du mouvement invariantes de forme fonctionnelle. Nous pouvons ajouter au lagran-

gien la dérivée totale par rapport au temps d’une fonction f des n coordonnées généralisées q(t)
et du temps (cf. § 3.2.6 page 98) :

£L£(q',q,t)=L(q,q,t)+ ou  £(q,q,t) = £(q,q,t) +

Avec (10.2) de la présente page on obtient la condition générale d’invariance de la transformation,
par exemple pour les coordonnées primées :

df(q’.0) df(gq.©)
dt dt

y df(q,t
L’(q’,q,t)=£(q,q,t)+% (10.3)

La relation (10.1) page 255 toujours vraie lors d’un changement de coordonnées, donne la
condition sur le lagrangien de départ £ pour avoir une transformation invariante :

df(q,t
£(q,q,t) = £(q',q',t) + % (10.4)
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Exemple 10.1.2 : Mobile libre en une dimension

Le lagrangien d’un mobile de masse m libre en une dimension s’écrit :

L(x, %, t) = émx2

Considérons la possible invariance de ce systeme par une transformation de la forme,

x'=x+g()
x=x"—g(t)
%=X - (1)

et cherchons g(t). Par changement de variables, le nouveau lagrangien s’écrit :

L/(x, %, 1) = =ml£(x, X, D]
= %mxz(x, x,t)
= Jml¥ = g0
= ~mi'2 + =mg(t) — mi'§(1)
=L(x, %, ) + %mgz(t) — mx'g(t)
Pour que la transformation soit invariante la relation (10.3) page précédente doit étre
vérifiée :

df(x',t
L'(x', x',t) =L(xX", X', t) + SUCAT)

dt
df(x’,t)
dt
L(AE0 o, G0 )

“m@(t) — mx'§(t) =

T ar\” ax

LoD L, Af(e D)
=T T T &

af(x',t)

—, he sont pas des fonctions explicites de x’, donc seule possibilité :

%ng(t) et
af(x',t) .,

ox’ X

D — gy

fO&' 1) = —mg(0)x" + hy(2)

= —mx'g(t)

11 reste : BFCe )
X, _ 1 )
at - ng (t)
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Les conditions de Schwarz pour que f(x', t) soit une différentielle totale exacte s’écrivent :

f  O*f
dtdx’ ~ dx’'dt
5 . a 1 )
= [-me®)] = 5= | mg0)]
0)
ot 0
g0 =8
glt) =a+pt

ol o et 3 sont des constantes.

Remarque 10.1.3

%xt/’t) = mB2 et f(x',t) = —mBx' + hy(t)

F& 0 = SmB2 + hy(x")

La fonction a pour expression :

fOx' 1) = —mpx’ + %mﬁzt

La transformation invariante la plus générale avec les hypotheses que nous avons prises est
donc la suivante :
X' =x+a+ft

Pour ¢ # 0 et B = 0 il s’agit d’un déplacement purement spatial, et pour &« = 0 et
B # 0 d’une transformation galiléenne (changement de référentiel galiléen pour une vitesse
relative B).
Remarque 10.1.4
On note qu’une transformation de coordonnées vers un référentiel accéléré n’est pas une transformation invariante, puisque

nous avons montré que seuls un déplacement spatial et une transformation galiléenne sont possibles. En mécanique de Newton
cela est clair par I’apparition de forces fictives, aussi appelées force d’inertie.

10.2 Transformations infinitésimales

10.2.1 Définition des transformations infinitésimales

Certaines transformations ont des parameétres ajustables, par exemple « et S dans 1’exemple
précédent. Notons aj, ces parametres :

Vi=1,..,n qu = qj(qi,ock, t)
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Pour certaines valeurs ocg des parametres, la transformation devient la transformation identité :

Vi=1,...,n  q =qq,apt)

Définition 10.2.1 : Transformations infinitésimales

Les transformations de coordonnées pour lesquelles les paramétres «j sont infiniment
proches des ocg et pour lesquelles les nouvelles coordonnées généralisées qu ne different
qu’infiniment peu des anciennes coordonnées généralisées q; sont appelées des transfor-
mations infinitésimales. Pour ces transformations :

o = ocg +8a, et Vj q=q+ dq; avec dqj = ;(E) 0 Soty

Reprenons la condition (10.4) page 257 sur le lagrangien de départ pour avoir une transformation
invariante, et considérons une transformation infinitésimale invariante :

: ' df(q’,¢
@40 =4, ¢,0+ LD

) ) d ,
=L(q+96q,q+q,t) + T [6f(q',1)]

Remarque 10.2.1

Pour que les lagrangiens soient infiniment proches, la fonction f doit prendre une valeur infiniment petite, d’ot le 8 f. Ici § f n’est pas
une petite variation de la fonction f, mais signifie que f prend une valeur infiniment petite du premier ordre.

£(4.0.0) ~ £(q+ 80,4 +64,1) = <= [6/(q'.1)]
—M(q, 0.0 = S [6(¢.0)]
0

0L(q,q,t) + o [5f(q ] =

Un changement de coordonnées &q; induit un changement de vitesse généralisée 4¢; :

do:
Vj=1,..,n 5qj=5<d—?)

d
E(a%)

La transformation infinitésimale invariante s’écrit donc :
f % 54 +Z = 5+ 3 [6(d0] =
] a ag; Y dt
> Esg+ ( ) ( )aq + S 1asq.01 =
dq; ¥ dt
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En utilisant les équations de Lagrange :

d [« 0L d ,
a(._ 2 aa)+ Gierao1=o

£ ( 3 00+ t)) ~0

Z 5qj+5f(q D) = Cllenps (10.5)

Théoreme 10.2.1 : Théoréme de Noether

A toute transformation infinitésimale invariante est associée une constante du mouvement,
appelée intégrale premiere.

Exemple 10.2.1

Nous avons vu (cf. (4.14) page 138) que I’impulsion généralisée associée a une coordonnée
cyclique est une constante du mouvement. C’est un cas particulier du résultat que nous
venons d’obtenir. La variable cyclique q.) n’apparaissant pas dans le lagrangien, ce dernier
est invariant sous toute transformation de coordonnées impliquant cette variable,

q/ =(cyta
q, —qcy =&
6qcy = 6

ol o« est une constante arbitraire infiniment petite du premier ordre. La condition 10.4
page 257 sur le lagrangien de départ est respectée, avec df(q’, t)/dt = 0, soit f(q’,t) = 0.
D’apres (10.5) de la présente page, la constante du mouvement associée a la transformation
infinitésimale correspondant a cette transformation invariante est I’impulsion généralisée
0£/9qcy, conjuguée de la coordonnée cyclique q,),.

Exemple 10.2.2

Reprenons I’exemple 10.1.2 page 258. La transformation suivante est invariante pour un
mobile libre en une dimension :

X' =x+a+ft
La transformation infinitésimale correspondante est donnée par :

X+ox=x+a+ft
dx=a+tp
=da +tép

Remarque 10.2.2

Sa n’est pas une petite variation de o mais signifie que o est un nombre infiniment petit du premier ordre. De méme pour 8.
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D’apres la remarque 10.1.3 page 259, la fonction a pour expression :

f(x',t) = —mx'B + %mﬁzt

Sf = —mx'8f + ém(5ﬁ)2t
En négligeant les infiniments petits d’ordre deux devant ceux d’ordre un :

f&x's0)

—m(x + 8x)58
= —mxdp

D’apres le théoreme de Noether 10.2.1 page précédente, pour £(x,X,t) = mez, la
constante du mouvement associée a cette transformation infinit€simale invariante s’écrit :

n
3 g—g 5¢; +81(q'.1) = mi(Ba + 136) — mx5p
j:l ]
= mxda + (mxt — mx)5f3

Au déplacement purement spatial, da # 0 et 55 = 0, est associée la conservation de la
quantité de mouvement mx. A la transformation de Galilée, ot = O et § B # 0, est associée
la conservation de x, = x(t) — Xt, c.-a-d. la position initiale du mobile.

10.3 Transformations de I’espace et du temps

10.3.1 Homogénéité de I’espace

Considérons un systeme libre. Dans le cas général, ce systeme est constitué de plusieurs parties
qui peuvent étre en interaction les unes avec les autres. Ces parties peuvent étre en mouvement, la
i° partie est repérée par son vecteur position T ;(t) éventuellement fonction du temps. Ce systeéme
contient de 1’énergie potentielle V (dite interne), par exemple un gaz sous pression, un ressort
tendu, un volant d’inertie, etc. Dans le cas général donc, le lagrangien du systeme libre constitué
de N parties s’écrit :

N
N1l 2
L= Z Emivi +7V
i=1
Une expérience de physique donne les mémes résultats quel que soit I’endroit ou elle est faite, ce
qui implique ’homogénéité de I’espace. La physique est invariante par une transformation des

z . . . . —> .
coordonnées consistant en une translation arbitraire d’un vecteur a dans I’espace. La translation
est arbitraire pour le systeéme global donc pour chacune de ses parties :

Vi=1,..,N Ti(t)=Ti)+72
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Remarque 10.3.1

La translation spatiale peut étre vue indifféremment comme une transformation active, pour laquelle c’est le systéme qui se déplace, ou
comme une transformation passive, pour laquelle c’est I’'observateur qui se déplace.

Une constante du mouvement est donc associée a la transformation infinitésimale invariante
correspondante :

La vitesse de chacune des parties du systeéme reste invariante lors d’une translation dans 1’espace,
; 2 e e
Vi=1,..,N rit)=1,(t)+ a
e
= 1(t)
donc aussi I’énergie cinétique totale du systeme. De mé€me, translater un systeme dans 1’espace

laisse invariante son énergie potentielle interne. Le lagrangien du systeme est donc invariant de
forme fonctionnelle par une translation dans 1’espace :

2 2 _ =2
L'(r',1',t)=L(r", 1',1)

D’apres (10.5) page 261 la constante du mouvement associée a la transformation infinitésimale
invariante s’écrit :

N N
Za—f §ad =) mf; 58
i=107T; i=1
On pose
— def N -
P=)>mi; (10.6)

la constante du mouvement. On I’appelle quantité de mouvement totale du systéme.

Remarque 10.3.2

Notez que ce résultat est indépendant de I’énergie potentielle interne du systeme.

10.3.2 Isotropie de I’espace

On considere que le méme systeme libre que précédemment. Une expérience de physique donne les
mémes résultats quelle que soit ’orientation spatiale qu’on lui donne, ce qui implique 1’isotropie
de I’espace. La physique est invariante par une transformation des coordonnées consistant en
une rotation arbitraire d’un angle 6 dans 1’espace. Dans le cas d’une transformation active, on
tourne le systéme d’un angle 6 autour de I’axe des z. Si 1’axe des z ne passe pas par le centre
d’inertie du systéme, celui-ci subit une rotation et un déplacement spatial, mais nous avons vu
que I’espace est homogene. Dans le cas d’une transformation passive 1’observateur tourne d’un
angle —0 autour du méme axe z, le systéme subit une rotation et un déplacement spatial fictif. La
transformation des coordonnées s’écrit :

x" = xcos(6) — ysin(6)
y' = xsin(6) + y cos(6)
z'=z
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Une constante du mouvement est donc associée a la transformation infinitésimale invariante
correspondante :

X + 6x = xcos(66) — ysin(86) X+ 0x =x—ydb dx = —yé6
Y+ 0y =xsin(86) + ycos(66) = Jy+dy=x80+y => dy = x66
z' =z Z, =Z Z/ =z

L’énergie cinétique du systeme et son énergie potentielle interne ne sont pas affectées par une
rotation de I’espace. Le lagrangien du systeme est donc invariant, et par conséquent la trans-
formation des coordonnées aussi. D’apres (10.5) page 261 a cette transformation infinitésimale
invariante est associée la constante du mouvement :

N N
0L oL ar e
; (a_xl 5xi + a—yl 5y1) = ; <_a—xl ylc?@ + a—yl xl5e)
N
= m(xy; — yi%;)36
i=1
=1L1L,60

ou L, est la composante en z du moment angulaire total du syst¢tme. De méme, en considérant
des rotations autour des axes x et y, on montre que les composantes L, et Ly sont des constantes
du mouvement. Le moment cinétique total du systeéme est donc une constante du mouvement.

Remarque 10.3.3

-
Les vecteurs étant indépendants de tout systeme de coordonnées, une égalité (ici L = C 5£€) démontrée dans un systeme de coordonnées
particulier (ici rectangulaire) est valable dans tout systeme de coordonnées.

Nous pouvons refaire cette démonstration sous forme vectorielle, sans utiliser de systeme de
2, ., > . . . .

coordonnées. Soit a un vecteur unitaire porté par 1’axe de rotation passant par le centre du

systeme de coordonnées, alors :

—

Ari:?l)x r;

i
5?i = 53){ ?i

]

c/
O,
&)
Il

O,
D
®)

I
M =
X

B

=
o)
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10.3.3 Changement de référentiel galiléen

Une expérience de physique donne les mémes résultats quel que soit le référentiel galiléen
dans lequel se trouve le systeme et quel que soit le référentiel galiléen dans lequel se trouve
I’observateur. La physique est invariante par une transformation de galilée des coordonnées. Dans
une transformation active, le systéme voit sa vitesse augmenter de V. Dans une transformation
. . ’ . — . z
passive, la vitesse nulle de 1’observateur devient —v. La transformation de coordonnées de
I’ancien référentiel galiléen R vers le nouveau R’ s’écrit :
- —
TIO=T;O)+tVv = Fl=1i;+V

La nouvelle énergie cinétique s’écrit :
N
1 e
T'=-p mt;-V|?
2 HE
i=1
N N
1 > o 1 =12
=T - EZmiri -V +52mi||v||
i=1 i=1

L’énergie potentielle interne n’est pas affectée par un changement de référentiel. Le nouveau
lagrangien s’écrit :

£(q.q') =L, q)—-zml Vit ZmlIIVII2

Le lagrangien n’est pas invariant, mais le terme de droite est la dérivée totale par rapport au
temps d’une fonction de la position et du temps :

N N
1 -, = 1 —
f==32umiTi Vo Y mil| VPt

2 4 2 4

i=1 i=1
Une constante du mouvement est donc associée a la transformation infinitésimale invariante :
— — - —
r;j+0r;=7r;+tév
—_>
5 r; = t57

D’apres (10.5) page 261 a cette transformation infinitésimale invariante est associée la constante
du mouvement :

Noac )
;a—?l + [T (1), 1]

I
Mz

N
i=1

N N
mifit—Zmi?i> . 5;7)

~(Frogmr)o

ot P la quantité de mouvement totale du systeme se conserve (déf. 10.6 page 263). En posant

~.

'MZH

Il
~
<
1
—_

-
1
—

"Ui

N

def 1
G() = Mzml l(t)
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le vecteur position du centre d’inertie G du systeme :

f;t +M1—€G = E)Ste
= MR s(t = 0)

La constante du mouvement est donc le vecteur position initial du centre d’inertie du systeme.

10.3.4 Décalage temporel

Les transformations invariantes et les transformations infinitésimales concernent les transfor-
mations des coordonnées spatiales uniquement, les variables dépendantes. Pour la variable
indépendante, le temps, la relation (4.9) page 134 montre que si le lagrangien ne dépend pas
explicitement du temps, de sorte que les équations du mouvement sont invariantes lors d’un
décalage temporel, alors le hamiltonien se conserve.
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COMPARAISON DES DIFFERENTES MECANIQUES
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11.1 Double plan incliné

Deux masses m; et m, sur un double plan incliné sont reliées entre elles par un cable de longueur
constante passant par une poulie. Les masses se déplacent sans frottements. Quelle est I’équation
de leur mouvement ?



11.1.1 Résolution par la mécanique de Newton

Fic. 11.1 — Double plan incliné

a) Grace a la relation fondamentale de la dynamique

Pour chaque masse, la relation fondamentale de la dynamique s’écrit :

ma T @

"

+R+T

Pour la masse m; : o
m15,)1=P1+R1+T1

En projetant sur les axes X; et Y;, on obtient le systeme

mljfl =mg Sin(al) - T
0 = —mygcos(a;) + Ry

De méme, pour la masse m,, en projetant sur les axes X, et Y, :

mzjéz =myg Sin(az) - T
0 = —mygcos(a,) + R,

Avec ce choix d’axes de projection, les positions et les vitesses des masses sont liées par :

Xy = —X1
xZ == —)'Cl
Xy = —X1

Par conséquent :

my¥; — myX, = mygsin(a;) — mygsin(a,)
_ myq Sin(al) —m, Sin(az)

= my + m,
. my Sin(C(l) —m, Sin((xz) .
X = t+x;(t=0
1 (m1 + mz) 8 l( )
ml Sin(al) - m2 Sin(az) 2 .
X; = t“+xt=0)t+x,(t=0
1 P (ml + mz) 8 1 ( ) 1 ( )
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b) Grace aux intégrales premieres

A n = 1 degré de liberté correspond 2n — 1 = 1 intégrale premiere. Toutes les forces
extérieures dérivent d’un potentiel donc 1’énergie mécanique se conserve. Elle a pour
expression :

def
E=T+V

1 .2 1 .2 . .
= SMiXy + SmpXy — migx, sin(ay) — mygx, sin(ory)
— cste

Avec notre choix d’axes de projection :

1 . 1. . .
E= Emlx% + Emzx% — m; gx; sin(ay) + mygx, sin(a,)
1 ) . .
= 5(””1 + my)xi — glmy sin(a;) — m, sin(ay)]x;
1 )
= 5(’"1 + my)xi — Ax

ot ’on a posé A = g[m, sin(a;) — m, sin(ct,)]. On prend les conditions initiales sur la
position x;(t = 0) = 0 et sur la vitesse X;(t = 0) = 0, par conséquent m; descend et :

=0

Nous avons alors
dx; N 2AX,
dt T my + m,

On ne conserve que le signe positif pour la vitesse car nous avons supposé que la masse
m; descend. La seule variable x; est notée x dans ce qui suit :

dt [ My + m,
0o VAX

On pose X = Ax donc dx = dX/A:
m1+m2 /Xg
V \/—
m1+m2 [\/)_(]X
V 0

V2(my + my)X

;= /2(m1/'1|‘m2)\/)—c

A 2
—_—t
2(my + my)
_ my Sin(al) —m, Sin(az)
a 2(my + my)

t =

>

:>Ir—*h>|t\> N

Revenons a la variable x :

X =
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11.1.2 Résolution par le principe des travaux virtuels

Fic. 11.2 — Double plan incliné

Le systeme est soumis la liaison holonome :
— —
Io ]| =67,

On choisit des déplacements virtuels 5T, et § T, compatibles entre eux et avec les liaisons. Le
principe des travaux virtuels (2.1) page 54 s’écrit :

(Pi+Ry—p1) 0T +(P,+R,— py) 6T, =0
(—mugsin(ay) — myl| 1) 16T 1] + (mag sin(a,) — my|| Pl 6T 5] = 0
Avec ||31|| = ||f>)2|| et la condition de liaison holonome :
—mygsin(ay) — my|| Pl + mag sin(ay) — my| p4ll = 0
(=my — my) || p1l| — myg sin(ay) + myg sin(a,) = 0

14

_ m, Sin(az) —my Sin(al)
N my + m,

Résolvons ce probleme en utilisant les multiplicateurs indéterminés de Lagrange. Soit 4 le
multiplicateur, le principe des travaux virtuels et la condition de liaison s’écrivent en une seule
équation :
(Pi+Ry— 1) 0T +(P,+ Ry — ) 8T, + A (8T, - 6T,) =0
[—mugsin(a) = my| D1 18T 1] + [magsin(a) — mal| B, | 18T ] + 4 (18T 1] = 6T ]] = 0
|—mugsin(ay) — my || Byl + 2] (8T 1)) + [ mag sin(ay) — my|| Pl — A] 167, = 0

16Tl et |67 étant non nuls et || p || = | P :

—mygsin(ay) — my|| Pyl + A =0 . . R
, - mag sin(a,) — myg sin(ay) — (my + my)| Pl = 0
mag sin(ay) — my|| Pl — A =0

U Sin(az) —m Sin(al)
B m; +m, J

14l

270 sciences-physiques.neocities.org


http://sciences-physiques.neocities.org

11.1.3 Résolution par la mécanique de Lagrange

Soient g; la distance du sommet du double plan a la masse m, et g, celle a la masse m,. Le
systeme est soumis a la liaison holonome :

ste

O +q=c¢
dq; +dq, =0
¢ =—9

I1 n’y a qu’un seul degré de liberté donc une seule coordonnée généralisée, p. ex. q;.
En prenant le sommet du double plan comme origine des €nergies potentielles, le lagrangien
s’écrit :
def
L=T=V

1. 1. ) )
= Emlcﬁ + Emzqg — (—myg qq sin(ay) — m,g q; sin(ay))

1 ) . .
= 5(””1 +my)di + [my q sin(ag) + m, (C — q1) sin(ay)] g
1 ) . .
= E(ml + mz)q% + (my sin(ay) — my sin(a,)) 84
[’équation de Lagrange s’écrit :
S EAEC
dt\dq,) gy
(my + my)g, = (my sin(ay) — mysin(a,)) g
my Sin(al) —my Sin(az)
my + m, 8

(il=

11.1.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ¢,. Le moment
conjugué de la variable q; a pour expression :

dEf oL _ . . Dy
1= g, S mtm)a > qi=o (11.1)
Le hamiltonien s’écrit :
def .
H=pq—XL
i1 p? . .
= ™+ m, — 5(m1 + mz) (ml —+ m2)2 — (ml sm(ocl) —m, sm(c(z)) gq
2
p . .
- 2(my -:- m,) (my sin(ay) — m, sin(az)) g4

Les équations de Hamilton s’écrivent :

pl = _a_ql pl = (ml Sil’l(al) -—m; Sin(aZ))g
R L T
a1 = apl mp +m,
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p1 = (my sin(a;) — m, sin(ay)) gt + p; (¢ = 0)
_ mysin(ey) — my sin(ay) ! (t=0)
B m; +m, § m; +m,

Q1
soit, en utilisant (11.1) page précédente,

_ my Sin(al) —-—m, Sin(az)
=TT 0 v my)

g +q,(t=0)t+q(t=0)

11.1.5 Résolution par la mécanique de Hamilton-Jacobi
Avec (7.3a) page 190 le hamiltonien a pour expression :
1 38 \? . .
= m (5_611) — (my sin(ay) — m; sin(ay,)) g

[’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

08(qy,a,t) 1 < o8

2
ot 2(my + m,) a_(h> — (m, sin(et;) — m, sin(a,)) gq; = 0

D’apres (4.8) page 133, le hamiltonien ne dépend pas explicitement du temps donc il se conserve.
La liaison étant holonome scléronome et le potentiel ne dépendant pas des vitesses généralisées,
I’énergie mécanique se confond avec le hamiltonien :

1 38\’ . , B
S + ) (aql) = (my sin(ay) — my sin(at;)) g1 = 0
o £/ 20m; + ma) [Omy sin(a) = m, sin(ty)) gy + €]

oq

80(q1,E) = £V 2(my + my) / \/(ml sin(a;) — my sin(a,)) gq, + €dq; +¢

3/2

i% 20m, + my) [(m; sin(a;) — m, sin(a,)) gq; + €] te

(my sin(a;) — m, sin(a,)) g

2y/2(my + m;) | |
*3 (m; sin(ay) — m, sin(a,)) g [(my sin(ety) — my sin(et2)) gq1 + €

3/2
|

ou nous avons supprimer la constante d’intégration. (7.9b) page 193 donne I’équation du mouve-
ment t(q;) :

_ 38,

=t 5

B \V2(my + my) , ,

=—t= (my sin(ay) — m, sin(a,)) 8 \/(”’h sin(et) — m; sin(a,)) gq; + €

En isolant la coordonnée généralisée q; on trouve 1’équation du mouvement q;(t) :

&
(m; sin(ay) — m, sin(a,)) g

_m Sin((xl) —m, Sin(az)
1= 2(my + my,)

gB+ 1)’ —
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11.2 Poulies coaxiales

— —>
Soient deux poulies coaxiales, de rayons R; et R,, supportant les poids P; et P,. Quelle est
I’équation du mouvement des poids ?

5
Ry
Ry

T, -
T,
P,
P,

Fic. 11.3 — Poulies coaxiales

11.2.1 Résolution par la mécanique de Newton
a) Grace au théoreme du moment cinétique

La dérivée totale par rapport au temps du moment cinétique d’un systeme par rapport a un
point o quelconque, est égale a la somme des moments par rapport au méme point o des
forces extérieures appliquées a ce systeme :

dfo = (e)
ar 2. o

— —>
L’ensemble des poids et des poulies coaxiales constitue le systeme. Les tensions T # T,
sont des forces intérieures qui n’interviennent pas. En prenant le centre commun des poulies
coaxiales comme point o, nous avons :

d - — - > — g — e
E(RlmeVI'Fszszz):R1XP1+R2XP2

d ) )
ar (Ry - MiR @ + R, - myR,@) = Ry - myg — Ry - myg
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soit,

s m1R1 - msz

mlR% + mzR%

. m;R; — m,R )

= R =R oy g =0)
myR5 + mR5

MR, — myR,

= P+ot=0)t+et=0
@ 2(m1R§+m1R§)g p(t=0)t+¢(t=0)

b) Grace aux intégrales premieres

~

A n = 1 degré de liberté correspond 2n — 1 = 1 intégrale premiere. Toutes les forces
extérieures dérivent d’un potentiel donc 1’énergie mécanique se conserve. Elle a pour
expression :

def
E=T+7V

1 .
=3 (mRT + myR3) @* — (MR, — m,R,;) go

— Cste
En dérivant par rapport au temps :

(mlR% + mzR%) $@ — (MmR; —myR,) g =0
s m1R1 — m2R2
mlR% + mzR%

11.2.2 Résolution par le principe des travaux virtuels

Donnons aux poulies une rotation virtuelle d’angle d¢. Appliquons le principe des travaux
virtuels (2.1) page 54 aux deux parties mobiles (N = 2), les masses m, et m, :

N
2 (fi(a) - Ez) 6T =0
i=1
(Bi=p1) 871 +(Py—p,) 6T, =0
(mig — MR $) R8¢ + (—myg — myuR,$) Ry69 = 0
M gR; — MR — mygR, — myR34 = 0
¢ (—myR3 — mRT) = mygR, — m;gR;
. _ MRy —myR,
~ myR? + m,R3
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11.2.3 Résolution par la mécanique de Lagrange
On choisit le centre des poulies coaxiales comme origine des énergies potentielles :
V = —mgh; — mygh,
= —[my (Cy + R1p) + my (C; — Ry9)] 8
= — (MR, — myR,) gp
Il n’y a qu’'une seule coordonnée généralisée, q; = ¢. Le lagrangien s’écrit :

f
sy

1 .
=3 (mRf + myR3) ¢ + (m Ry — myR,) g9

[’équation de Lagrange s’écrit :
Y
dt\d¢ /) de
(mlR% + mzR%) ¢ = (MR, —myR;) g
. MRy —myR,
myR? + m,R>

11.2.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ¢. Le moment
conjugué de la coordonnée généralisée ¢ a pour expression :

p
m R} + m,R3

def 3L ) )
p===(mRi+mR3})¢ => ¢=

5 (11.2)

Le hamiltonien a pour expression :

def

H=pp—L
p? 1 2 2) 2
= m =3 (mlRl + msz)go — (MR, — myR,) gp
p?
= > (mlR% n mZR%) — (M Ry — myR,) gp
=¢

Il ne dépend pas explicitement du temps donc il se conserve. Les équations de Hamilton s’écrivent :

: OH .

p= ~3 p=(mR; —myR,)g p = (MR, —myRy) gt + p(t = 0)
oK = = % = qb:mlRl_mZRZ ¢ p(t=0)
GD = 5 mlR% + mzRg mlR% + mlR% mlR% + mlR%
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11.2.5 Résolution par la mécanique de Hamilton-Jacobi

Avec (7.3a) page 190 le hamiltonien a pour expression :

1 68)2
= — | — (MR, —myR
2(m1R%+m2R%) (6@ (MR, 2R;) gp

[’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

38(p, a, t) 1 <68

2
— ) —(mR; — myR =0
at 2(m1R%+m2R%) a¢> ( 1M1 2 2)g¢

D’apres (4.8) page 133, le hamiltonien ne dépend pas explicitement du temps donc il se conserve.
La liaison étant holonome scléronome et le potentiel ne dépendant pas des vitesses généralisées,
I’énergie mécanique se confond avec le hamiltonien :

=

1 (680

2
+ — (myR; — m,R =0
2 (myR} + m,R3) dqo) (mRy =maRy) 89

08
S = = 2(miR} + maB) [(mRy — moR;) g + €]

So(p, €) = i\/z (miRf + myR3) / V(M Ry — myR,) gp + Edop + ¢

/2
2 \/ 2 o [(MmRy — myR;) 8¢ + 5]3

=+—4/2(mR7+ m,R +c
3 (miRi 2R3) (mRy —myRy) g

2\/2 (mR% + m,R3)
=% m;R; — myR +&
3(mR; — myRy) g [(miRy 2Ry) 89 + €]

3/2

ou nous avons supprimer la constante d’intégration. (7.9b) page 193 donne I’équation du mouve-
ment t(¢p) :

a8,
p=—t+3¢

V2 (RS + myR3)
—t+
(MR, — myR,) g

\/(mlRl —myRy)gp + &

En isolant la coordonnée généralisée ¢ on trouve I’équation du mouvement ¢(t) :

&
(mR; —myR;) g

o= (mR; — myR;)
2(mR} + myR3)

gB+1)? -
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11.3 Masse glissant sans frottements sur un plan incliné non fixe

Une masses m glisse sans frottements sur un plan incliné de masse M, lui-méme glissant sans
frottements sur une surface horizontale. Quelles sont les équations du mouvement de la masse m
et du plan incliné ?

11.3.1 Résolution par la mécanique de Newton

(a) Grace a la relation fondamentale de la dynamique

0] X

Fic. 11.4 — Masse glissant sans frottements sur un plan incliné non fixe

.. = 1 4 ot . . . 2 e
Soit a le vecteur accélération de la masse m relative au plan incliné, et soit A le vecteur
accélération du plan incliné.

Pour le plan incliné de masse M, la relation fondamentale de la dynamique s’écrit :
ST = MA

N
La force exercée par la masse m sur le plan _i)ncliné n’est pas son poids total P,,, mais sa
composante perpendiculaire au plan incliné, —R ;. A la limite ou I’angle a tend vers 90°, cette
composante du poids tend vers zéro et la masse m tombe en chute libre.

En projetant sur les axes X et Y, nous avons :

= M
—Mg + (Mg + Ry, cos(a)) — Ry, cos(a) = MA,, A =0

. R
{—Rm sin(a) = MA, A, = —=2Zsin(a)

y

-
donc le vecteur accélération A est horizontal et la composante A, est négative. En notant A la
norme de A,

A =1/A%
=_Ax
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Donc,
MA = R,, sin(a) (11.3)

L1 4g ‘0z . . 1 4o g - 2
L’ accélération de la masse m dans un référentiel galiléen est la somme des accélérations a + A.
Pour la masse m, la relation fondamentale de la dynamique s’€écrit :

Z?,Sf)=m(3+2f)
P+ Ry =m(T +4)

Le vecteur accélération @ est parallele au plan incliné. En projetant sur les axes X et Y, nous

avons :
{Rm sin(at) = ma, + mA,

—mg + R, cos(a) = ma,,
donc la composante a, est positive et la composante a,, est négative.
R,, sin?(a) = ma, sin(a) — mA sin(c)
Ry, cos*(ar) = mg cos(a) + ma,, cos(a)
En notant a la norme de 2,
R,, sin*(a) = ma cos(a) sin(a) — mA sin(a
" 2( ) (c)sin(@) ) (o) R,, = mgcos(ax) — mA sin(x)
R, cos*(a) = mg cos(ax) — ma sin(a) cos(a)
On isole a en multipliant par cos(x) la premiere équation, et par sin(«) la seconde,
R,, sin(a) cos(a) = ma cos?(a) — mA cos(x)
) ) 5 a = Acos(a) + gsin(a)
R, cos(a) sin(a) = mg sin(a) — ma sin“(a)
En combinant (11.3) et (11.3.1),
MA = mg cos(a) sin(ct) — mA sin®(cx)
A(msin®(a) + M) = mg cos(a) sin(et)
cos(a) sin(x)
sin®(a) + M/m

A=

En combinant (11.3.1) de la présente page et (11.3) de la présente page,

_ cos*(a)sin(a)
 sin(a) + M/m
( cos*(e) + 1) gsin(a)
sin®(a) + M/m
mecos®(a) + msin®(a) + M
- msin®(a) + M g sin(@)
m+M

= —— gsin(a
msinz(oc)+Mg (@)

g + gsin(a)

Si I’on suppose la masse du plan incliné M tres petite devant celle du solide m, on a :

an —1 sin(a)
m sin®(a) 8

g
R sin@ ~ 8
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car 0 < a < 7r/2. Plus I’angle « est petit, et plus 1’accélération relative du solide par rapport au
plan incliné est importante. L’accélération verticale a sin(a) a pour expression a sin(x) =~ g, la
masse m tombe en chute libre. De méme, pour le plan incliné nous avons :

__ cos(a) sin(ex)

A >
sin“(a)
. _8
~ tan(a) > 8

Plus I’angle « est petit, plus le plan incliné est accéléré vers la gauche.

(b) Grace aux intégrales premieres

h

0 X

Fic. 11.5 — Masse glissant sans frottements sur un plan incliné non fixe

A n = 2 degrés de liberté correspond 2n — 1 = 3 intégrales premiéres. La seule force est la force
de pesanteur qui dérive d’un potentiel, donc I’énergie mécanique se conserve. Soit V la vitesse
de la masse m exprimée dans le repere OXY, elle a pour composantes

Uy, = 1 + 7 cos(a)
vy =k sin(a)

Le carré de sa norme vaut

=v; + 05
— ;;.2 + 2R F "2 2 22 il
= 115 cos(ar) + 75 cos“(a) + 75 sin“(ax)
= i + 2k F cos(a) + 75
L’énergie cinétique est la somme des énergies cinétiques de m et M :
1,5 1
T = EMFIZ + Emv2
I - .
= EMFIZ +5m (72 + 2i4F, cos(at) + 75)
1 2 1 . -
=-M+m) i+ Emrz2 + miyi, cos(cr)
En prenant I’origine de 1’énergie potentielle au sommet du plan incliné, elle a pour expression :

V = —mgn, sin(x)
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L’énergie mécanique est une intégrale premiere du mouvement :

def
E=T+7V
1 2 1, . .
=-(M+m) i+ 5”””’22 + mijF;, cos(ar) — mgr, sin(a)
— Cste

En dérivant par rapport au temps,
(M + m) iiiy + misF, + miif, cos(a) + misF; cos(a) — mgr, sin(a) = 0

Le systeme n’est pas isolé puisque dans un champ de gravitation. Cependant, ce champ est selon
I’axe des Y, par conséquent la quantité de mouvement se conserve selon 1’axe des X et nous avons
une deuxieme intégrale premiere du mouvement :

(M + m) i, + mi; cos(a) = ¢5t¢
(M + m) i} + mi; cos(a) = 0

n=- 5, COS(X
| = e oos(@)

La conservation de 1’énergie mécanique s’écrit maintenant :

m? cos?(a) ..

—mi4F; cos(a) + miyih, — Mt by + mibi; cos(a) — mgr, sin(ar) = 0

. mcos? .
M = 3, 2= M8 sin(a)
2
.. m cos“(a) )
6%‘7ﬁ%‘=ﬂ“@
. M+m—m[1-sin’(a)] .
i Mt = gsin(a)
b= _Mrm gsin(a)
> m sin(a) + M
et pour la coordonnée 1 :
s _m sin(a) cos(a)
! msin®(a) + M
__sin(a) cos(ar)

sin?(at) + M/m
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11.3.2 Résolution par le principe des travaux virtuels

0 X

Fic. 11.6 — Masse glissant sans frottements sur un plan incliné non fixe

Le systeme possede deux degrés de liberté. Choisissons 1; et , comme coordonnées généralisées.

Appliquons le principe des travaux virtuels (2.1) page 54 aux deux parties mobiles (N = 2), la
masse m et I’ensemble M + m :

N
> (Fi(a) - Ez) 6T =0
i=1

(Z ﬁM+m - EM+m) ’ 5?1 + (Z ﬁm - l_g)m) ’ 6?2 =0

Les déplacements virtuels 5T, et 5T, sont indépendants. Le premier terme concerne 1’en-
semble M + m. Posons 5T, = 8K1:

{Pr+ Rytem + Py = [(M+m) Ty +mT,]}- 67, =0
(M + m) i, + mi cos(a) =0

Le second terme concerne la masse m seule.
Posons 6T, = 6r, (cos(a) T — sin(at) J) :

(Bt B m(P1 4+ 73)] 67,20
mg sin(a) — m (i cos(ax) + i5) = 0

Nous avons le systéme suivant :

(M + m) i}, + micos(a) =0 (M + m) i} + mi; cos(a) = 0
iy cos(ar) + i5, = gsin(a) mii cos?(a) + mi; cos(a) = mg sin(a) cos(a)
—mg sin(cr) cos(a)

{i"l (M + m — mcos*(a)) = —mg sin(a) cos(a) N = M +m—m(1 - sin’(a))

i = gsin(a) — i cos(a) mg sin(a) cos?(a)

i = gsin(a) +
> = gsin(a) M + msin®(a)

_ sin(a) cos(cx)
sin®(at) + M/m
M+m
7‘2 = — 5, < >
M + msin“(a)

g sin(a)
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11.3.3 Résolution par la mécanique de Lagrange

q:(1)

q:(0)

@) X

Fic. 11.7 — Masse glissant sans frottements sur un plan incliné non fixe

Le systeme possede deux degrés de liberté. Le choix des coordonnées généralisées est libre.
Choisissons q; et g, comme coordonnées généralisées. Pour g, nous aurions pu choisir la hauteur
y de la masse m. Le lagrangien s’écrit :

def
LTy

1 o 1. .. .
=- (M +m) g3 + qug + md, g, cos(a) + mgq, sin(x)

La coordonnée g, est cyclique, elle n’apparait pas dans le lagrangien. Nous avons alors :

d /0L
a(a—ql)—o

d . .
I [(M + m)q; + mg,cos(ax)] =0
(M + m) §; + mq, cos(a) = ¢5t¢

On retrouve I’intégrale premiere du mouvement correspondant a la conservation de la quantité de
mouvement selon 1’axe des X. Les équations de Lagrange pour chaque coordonnée généralisée
s’écrivent :

d oL\ oL o

de\og, )~ oq, 37 LM +m) 4y + mg, cos(a)] = 0
d/ac\ ac — )d., . . .

I _56'12 = —aqz T (mq; cos(a) + mq,) = mgsin(a)

(M + m) §; + mg, cos(a) =0 (M + m) §; + mg, cos(ax) =0

{c’jl cos(a) + g, = gsin(a) = {mc’jl cos?(a) + md, cos(a) = mg sin(a) cos(a)
g1 (M + m — mcos*(a)) = —mg sin(ex) cos(a)
{% = gsin(a) — g cos(a)

G, = —mg sin(a) cos(a) . sin(a)cos(a)
M+m-m(1- sinz(a)) ! sin®(a) + M/m
i . mg sin(a) cos?(a) . M+m -
= gsin(a) + G = —————gsin(a)
92 = gsin(a@) M + msin®(a) M + msin®(a)
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11.3.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées q; et g,.
Les moments conjugués des variables g; et g, ont pour expression :

def 0L
Pr= 54, L [pr=(M+m) +md;cos(@)
def 9L P2 = mq; cos(a) + mq,
b = 30,
qQ

Inversons ces relations griace a la méthode de Cramer :

p1\ | M+m mcos(a) |(q;
(pz)_ m cos(a) m ](cb)

Notons A le déterminant de la matrice,

. _1|p mcos(oc)’ . mp; —mp,cos(a)

T = Alp, m N D= M m) — m2 cos2(a)
. 1| M+m p; _ (M + m) p, — mp, cos(x)
© = ZFlmcos(@) p, Q2= 0 (M + m) — m2 cos?(a)

Le hamiltonien s’écrit :
def .
H = pigi— £
i
) ) 1 ) 1. .. .
= P11 + P22 — 5 (M + m) qf — Sma3 — mdu g, cos(a) — mgqs sin(a)

Inutile d’expliciter davantage le hamiltonien en fonction de p; et p,. Les équations de Hamilton
pour la coordonnée q; s’écrivent :

. OH A
P1=—3- p1=0
q1
83 T g4 — __mMmp1L—mp;cos(a)
4 = ap; N m (M + m) — m2 cos?(a)

Les équations de Hamilton pour la coordonnée g, s’écrivent :

. 0F : :
P2 = _a_qz p, = mgsin(a)
' 8% = i, = (M + m) p, — mp; cos(ax)
Q2 = 3p, 27 m(M + m) — m2cos?(a)
En intégrant,
p1 =i’
p, = mgsin(a)t + c5'¢
q, = —m?gsina cos(at) R i = — sirzl(oc) cos(a) [ 4 oste
m (M + m) — m2 cos2(x) N sin“(a) + M/m
, (M + m) mgsina . M+m : ste
= t ste = ——————gsin(a)t+c
2= 50 M+ m) — m2 cos?(@) e =5 sin®(a) + M (@)
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11.3.5 Résolution par la mécanique de Hamilton-Jacobi
Le hamiltonien s’écrit :
. .1 2 1. . .
= p1dy + p2qz — 5 (M + m) GF — Smd3 — m@u g, cos(a) — mgq, sin(a)
mpt —mpypycos(a) (M +m) p3 — mp, p, cos(a)

~m (M + m) — m? cos2(x) m (M + m) — m2 cos?(a)
1 mp, — mp, cos(x)
—;M+m) [m(M + m) — m2 cos2(x)

1 [ (M + m)p, — mp; cos(a) 2

2" m (M + m) — m2 cos2(a)

~ (m?p, cos(at) — m?p, cos*(a)) [(M + m) p, — mp; cos(a)]
[m (M + m) — m?2 cosz(oc)]2

— mgq, sin(x)

H =[m(M + m) — m? cosz(oc)]_2 {[mpt + (M + m) p5 — 2mp; p, cos(a)]|
[m (M+ m)— m? cos*(a)] - % (M+ m)m?p? — ; (M+ m) m?p3 cos?(a)
+ (M + m) m? p; p, cos(a) — % (M + m)* mp3 — §m3 p? cos?(a)

+ (M + m) m? p, p, cos(a) — (M + m) m?p; p, cos(a)

+ (M + m) m?p3 cos*(a) + m®pi cos*(a) — m®p; p, cos*a} — mgq, sin(«)

H =[m(M + m) — m? cosz(oc)]_2 [(M + m)m2p? + (M + m)* mp?
—2(M + m) m?p; p, cos(a) — m®p3 cos?(a) — (M + m) m?p3 cos?(a)
+ 2m3py p, cosda — % (M +m)m?p? + % (M + m) m?p3 cos?(a)
+ (M + m) m?p; p, cos(a) — % (M + m)* mp3 + %m3 p? cos?(cx)

+ —m3p, p, cos*a| — mgq, sin(at)

H = [m(M + m) — m? cosz(oc)]_2 E (M + m)m?p? + % (M + m)* mp3
— (M + m) m?p, p, cos(a) — %m3 p? cos?(a) — % (M + m) m?p3 cos?(a)

+m?p, p, cos*a| — mgq, sin(a)

_ mpi N (M + m) p3
2[m(M + m) —m?cos?(a)]  2[m(M + m) — m?cos2(a)]
_ mp, p, cos(a)
m (M + m) — m? cos2(a)
P+ (M 2-2
_ mpi + M +m)p; — 2mp, p22 cos(a) maq, sin(@)
2[mM + m?2 — m2 (1 — sin*(a))]
_ mpi + (M + m) p3 — 2mp; p, cos(«)
2m (msin*(a) + M)

H

— mgq, sin(a)

— mgq, sin(a)
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Avec (7.3a) page 190 le hamiltonien a pour expression :

_ mdy, 8% + (M + m) 94,8 — 2md, 8 94,8 cos()
2m (msin®*(a) + M)

— mgq, sin(a)

L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

aS b b b ’t
(1,2, A1, 13 )+%(ql’q2’ a8 98 t):O

at dq,’ gy’
08 My 8* + (M +m)d,,8% —2mdy 8 d,,8 cos(a) _ 0
3t 2m(m sin®(ar) + M) ~ mggz sin(@) =

La variable temps étant cyclique, on pose :
S (ql’ q2, €, a2, t) =—Ct+ 80 (ql’ 4z, €, CCZ)
et I’équation de Hamilton-Jacobi devient :

mdy, 85 + (M + m) 8,85 — 2m cos(a) 9q, 8o 9g,S0
2m (msin®*(a) + M)

— mgq, sin(a) = €

La variable q; étant cyclique, p; = a,, et ’on pose :
S0(q1,q2, €, 02) = 81 (q2, €, ) + a2 qy
et I’équation de Hamilton-Jacobi devient :

mas + (M + m) 8,81 — 2ma, cos(a) 8,8,
2m (msin*(a) + M)

— mgq, sin(a) = &

soit,

(M+m)d,,87 — 2ma; cos(a) 8,8, — 2m?gq, sin(a) (m sin®(«) + M) + mat3
= 2mé& (msin*(a) + M)

Polyndme du second degré en Jg, 81, de la forme,

aquSf (q2) + b3y, 8,(q2) +¢c=0

avec,
a=M+m
b = —2ma, cos(a)
b’ = —ma, cos(ax)
c=dqg,+e

d = —2m?gsin(a) (msin*(a) + M)

e = ma3 — 2mé& (msin’*(a) + M)

Le discriminant réduit s’ écrit,
A =b"?—ac
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Les racines sont :

-b’ N Vb2 —ac

e}

q2 = a ~— a
_ b Vb2 —adq, — ae
a a

On integre :

- _2(b?*-adq,— ae)3/2

S1(q2) = a a + 3a2d
Nous avons donc,
ma, cos(a) N 1

§ = q,
! M+m 273 (M + m)* m2g sin(a) (m sin® (@) + M)

x {m2a3 cos* () + 2 (M + m) m2g sin(a) (msin®(«) + M) q,
— (M + m)mo + 2m (M + m) € (msin®(a) + M)}3/2

__ ma; cos(a) . 1
273 (M + m)* m2g sin(a) (msin®(a) + M)

M+m
s {[2 (M + m) (& + mgqs sin()) — a2] m (m sinX(«) + M)}
N \/m sin®(a) + M

3M+ m)2 \/n_qg sin(a)

L’ action de Hamilton s’écrit :

1))

. 3/2 Mo, cos(a
[2(M + m) (€ + mgaqy sin(@) — 3]~ + — 21— = n(q )

§=8(qE ay)—Et+a,q;
\/m sin®(a) + M
+

" 3(M + m)* \/mgsin(a)
— &t + arqh

. 3/2  ma, cos(a
[2(M + m) (€ + mgq, sin(a) — 5|+ —]V; n n(q ) 1@

(7.3b) page 190 donne les équations du mouvement :

o8
Pr= 35

\/(m sin®(a) + M) [2 (M+ m) (€ + mgq, sin()) — a3
(M + m)+/mgsin(a)

—t

=+

Isolons g5,

m(B; +t)° [(1;4 + m) g sin(a)]* (11.4)
msin“(a) + M

2(M + m) (€ + mgq, sin(a)) — a3 =

| m (B, + t)* [(M + m) g sin(a)]* + o2
mgqz sin(a) = 2(M+m) { 1 msin®(a) + M 2} - ¢

B -2M+méE (Bt + But + 1) (M + m) g sin(a)
2= 2+ mymgsin(@) 2 (msin’(@) + M)
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(7.3b) page 190 donne :

a8
By = 3,
cxz\/m sin(a) + M m cos(a)
=F 2(M + m) (€ + mgq,sin(a)) — a3 + ———=>q, + q
(M+m)2Wgsin(a)\/ - P Mam T
Avec (11.4):
.2 .
B ocz\/m sin“(a) + M \/ﬁ(ﬁl +)(M +m)gsin(ax) mcos(a)
62=+ 3 - X +M+m CI2+CI1
(M + m)*\/mgsin(a) \/m sin?(at) + M
__ay (B +1t)  mecos(a)
=F Mxm M+m @+ q
a +t mcos(a
g =+ 2(Bi+t) ()q2

M+m M+m

11.4 Pendule simple, plan

Soit une masse m attachée a une tige de longueur p constante, dans un champ de gravitation —gJ,
oscillant dans le plan (x, y). Quelle est I’équation du mouvement de la masse m?

11.4.1 Résolution par la mécanique de Newton

a) Grice a la relation fondamentale de la dynamique

FiG. 11.8 — Pendule simple, plan

— —>
On note F la force exercée par la tige sur la masse m et P son poids. (2.4) page 57 donne
I’expression de 1’accélération en coordonnées polaires dans la base polaire orthonormée
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288

CAEDE

mi =Y T©

mpB € — mpd?€, = —mgsin(6) €4 + mgcos(6) €, — F€,
qui donne le systeme, .
mp6? + mg cos(0) = F
P8 + gsin(8) =0

La seconde relation est 1’équation différentielle de 1’élongation 6(t) du pendule simple.
Dans I’approximation des petites oscillations, on utilise le développement limité de la
fonction sinus a I’ordre un. [’équation devient :

p8+g8=0

La solution de cette équation différentielle linéaire du 2" ordre par rapport au temps est de
forme sinusoidale, fonction sinus ou cosinus au choix, la phase a I’origine des temps ¢,
permettant de passer d’une fonction circulaire a 1’autre :

o(t) = Asin(wt + ¢g)
8(t) = Aw cos(wt + @)
6(t) = —Aw? sin(wt + @,)
ou A est ’amplitude (élongation maximale) et ¢ = wt + ¢, est la phase du mouvement

oscillatoire. En remplagant dans 1’équation différentielle, on trouve I’expression de la
pulsation propre,

—pAw? sin(wt + @g) + gA sin(wt + @) = 0

if
e

pour laquelle on ne conserve que la valeur positive. L’amplitude A et la phase a I’origine
des temps ¢, sont les deux constantes de ce systeme a un degré de liberté :

0=0(tA ¢y
6 =0(t, A, p)

def
En posant ¢, = —wt,,
0 = Asin(wt — wt) 0 = Asinfw(t — ty)]
6 = Aw cos(wt — wty) 6 = Aw cos[w(t — )]

puis T =t — tg,
{9 = A ssin(wt)

6 = Aw cos(wt)
nous supprimons la constante ¢,. Il ne reste comme constante que I’amplitude A. A 1’instant
initial T = 0,
60 - A
éo =0
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etl’'ona:
0(t) = 6, sin(w7)

Lintégrale premicre A n’est autre que la racine carrée de I’énergie mécanique a un facteur
multiplicatif pres. En effet, en prenant I’origine de 1’énergie potentielle au point le plus bas
de la trajectoire, 1’énergie mécanique s’écrit :

&= %m,ozé2 + mgp [1 — cos(0)]

Pour de petites oscillations, on utilise le développement limité de la fonction cosinus
1
cos(B) ~ 1 — 592 :

Er %mpzéz + mgp (%62)
Relation valable en particulier a I’instant initial :
Ex %mg,oA2
Pour de petites oscillations, 8(t) est donc une fonction sinusoidale du temps :
0(t) = Asin(wt + ¢g)

avec w = 4/ g/p. Nous pouvons exprimer les constantes A et ¢, en fonction des conditions
initiales sur la position 6, et sur la vitesse 6 :

6% = A%sin®(wt + @)
62 = A2w? cos®(wt + @)

donne pour I’amplitude A :
2

0

A= (—) + 62
w

ot I’on ne conserve que le signe positif car 1’amplitude est positive. A I’instant initial :

.2
6

A= (—O) + 63
w

Pour la phase a I’origine des temps ¢, nous avons :
60 =A Sin(¢0)
6 = Aw cos(@,)

soit :

(Q)eo)
®Po = arctan | —
6o

6\ 6
o(t) = (—0) + 63 sin [cot + arctan (ﬂﬂ
w N
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b) Grace au théoréme du moment cinétique Prenons le moment cinétique du pendule par
rapport au point d’attache o du pendule :

Z—’(e)
d — — 2
E(pxmv):pxP+p><F
Sl spxm(pe 1+ p6€o)] = p & X (~mgsin(6) T + mgcos(6) €, — FE,)

(m,o26 €)) = —mgpsin(6) €
p@ + gsin(6) =
¢) Grice aux intégrales premieres

A n = 1 degré de liberté correspond 2n — 1 = 1 intégrale premiére. La force de pesanteur
est la seule force extérieure, elle dérive d’une énergie potentielle. L’énergie mécanique est
donc une intégrale premiére qui fournira une équation pour la seule variable 6. Prenons
I’origine de 1’énergie potentielle de pesanteur au point de suspension du pendule. La
conservation de 1’énergie mécanique s’écrit :

def

E=T+7V

— L (52 202

= Em(p + p?6%) — mgh

= %mpzéz — mgp cos(6)

= —mgp cos(Onax)

— cste
Nous reportons I’approximation des petites oscillations a la fin des calculs :

~mp*6? — mgp cos(8) = —mgp cos(Omax)
> pez = g[cos(6) — cos(Oqx)]

dG / \/cos(e) — c08(Bmax)
t—ty=,/ 2
28 Jo, \[cos(6) — COS(emax)

On utilise la formule de trigonométrie de 1’angle double cos(x) = 1 — 2 sin?(x/2) :

-2 [ o
% \/ 2 5in%(B)q/2) — 2 sin*(6/2)
e
% [ $in*(Oqx/2) — sin’(6/2)

sm

Une période est le quadruple du temps mis pour aller de 8 = 0 a 6,4y :

emax
T 2\/?/ da
& /o \/sinz(emax/Z) — sin%(8/2)
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On pose o = 6/2, donc o4 = Oax/2 €t d6 = 2da :

Xmax
T= 4\/7 /
2 2
\/Sm (Amax) — sin (OC)
Amax
- Sln(amax)\/7/ \/ sm(O() 2

bln(OCmax)

On pose ‘
sin(§) = #(:a)x)

Pour &« = 0 nous avons £ = 0, et pour & = a4, nous avons & = 7/2. Dérivons le
changement de variable pour trouver I’expression du nouvel élément différentiel :

dsin(§)  dsin(§) da
d¢ ~  da dE

_ 1 dsin(a) da
cos($) = sin(typay)  da d_g

da _cos(§) d

sin(Qygy)  cos(a)
_[1=sin’() de
“Vi1i- sin?(a)

sin(a) = Sin(amax) Sin(g)

sinz(oc) = Sinz(amax) Sinz(é')

da _ \/ 1 — sin?(§) d
Sin(amax) B 1- Sinz(amax) Sinz(g)

1 — sin?(§)

/2
\[ / /2 \/T@Jl—sin%amax)sm%s)
Vil
J1-

/2
K(k) = / ds
0

\/1—k2sin%(§)

ol k est un parametre, est une intégrale elliptique compléte de premiére espéce sous sa
forme trigonométrique. Pour de petites oscillations 6,,,, < 1, le développement de la

fonction K donne :
o (15 33 O + )
T~?2 1+ — 62 — 0
”\/; T 16 “max ¥ Tgpq Ymax T
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Lintégrale
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11.4.2 Résolution par le principe des travaux virtuels
Appliquons le principe des travaux virtuels (2.1) page 54 a la seule partie mobile (N = 1) :
> (F@-,)-s7i=0

i=1
(P+F-p) 67 =0
Choisissons un déplacement virtuel pour lequel la force de liaison ne travaille pas :
o) T = p56 E)Q

(2.4) page 57 donne I’expression de I’accélération en coordonnées polaires dans la base polaire
orthonormée (€, €p). Avec p constant, nous avons :

donc,
(—mgsin(6) €g + mgcos(6) €, — F€, + mpt? €, — mpes) - p6€4 =0
(—mgsin(6) — mpB) pdd = 0
06 + gsin(6) = 0

Pour trouver I’expression de la tension F dans la tige, on choisit un déplacement virtuel pour

lequel la force de liaison travaille :

8T =6p €,

donc,

(=F + mgcos(6) + mp6%)6p =0
mp6? + mgcos(8) = F

11.4.3 Résolution par la mécanique de Lagrange
Le systeme posséde deux dimensions x et y, et une contrainte holonome :

Va2 +y2=p

— Cste
donc un seul degré de liberté. Prenons 8 comme coordonnée généralisée, le lagrangien s’écrit :

def
L=T-=-7

= %mpzéz — [-mgp cos(9)]
= émpzéz + mgp cos(6)

= %péz + mg cos(6)
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[’équation de Lagrange s’écrit :
428y

dt\ g8/ a6

d, . .

5 (pB) = —gsin(6)

P8 + gsin(8) = 0

Remarque 11.4.1

Si I’on ne connait pas 1’expression du potentiel V, on calcule la force généralisée a partir de la déf. 3.1.1 page 71. Par exemple, la force

généralisée de pesanteur a pour expression :

- 8(pf) -
8] 38 €o
= —mgp sin(O)

puis I’on se sert de (3.10) page 72 :

Vj=1,...,n i(

o\ 8T _
dr

3q;) ~dq; I

d ; .

I (mp26) = —mgpsin(6)
06 + gsin(@) =0

11.4.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée 6. Le moment

conjugué de la coordonnée généralisée O a pour expression :

def 0.0 24 . p
= —=mp6 => H6=——
P =% P mp?
Le hamiltonien s’écrit :
def .
H= pd—L

= mp26* — Empzéz + mgp cos(@)]
= %m,ozé2 — mgp cos(0)

p?
= >mp? — mgp cos(6)

=&

Les équations de Hamilton s’écrivent :

. N4 . .
p=->5 p = —mgp sin(6)
-/ I P

0= e mp?
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11.4.5 Résolution par la mécanique de Hamilton-Jacobi
Avec (7.3a) page 190 le hamiltonien s’écrit :

pZ

H = 2mp? — mgp cos(6)
1 (38\
= 2 <%> — mgp cos(6)

. S 1
Pour de petites oscillations cos(6) ~ 1 — 592, nous avons :

1 (38 2 142
5= g (58) ~mee(1-39)

2
— ; (a_8> + w 62
2mp2 \ 06 2

a une constante pres. L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

38 (6, a, t) +%(e 38 t)=0

at ’ 36’
a8 1 (38\*  mgp .,
§+2mp2<%)+ 2 =0

La variable temps étant cyclique, on pose :
S(6,&,t)=—-Et+8,(6,8)

et I’équation de Hamilton-Jacobi devient :
88\’
(8] 22

2mp2 \ 96

08, 2_ 5 mge ,,

(58) =2met(e -9
08,

20 — 20002
30 +0v/2mE — m2gpd

Sy = ip/\/zmé‘ — m?gp62do

et ’action de Hamilton a pour expression :

§=-¢t ip/\/Zmé‘ — m2gp62do

(7.3b) page 190 donne 1’équation du mouvement ¢(6) :

a8
B=3¢

= % (—St +p / \2mE — m2gp6? d@)
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En se servant de la résolution de (7.13) page 197, avec k = mgp,

__ P arcsin| « / 8P
g = ti\/;arcsm( 58 6)

soit, en isolant la coordonnée généralisée O :

arcsin(,/@—‘?@)zi %(t+,8)

Résolution en utilisant ’ex. 6.7.3 page 183

__pr _
H = e mgp cos(0)

Pour de petites oscillations cos(6) ~ 1 — %62 :

2

_ P M8P

_2mp2+ 2 0
On pose M = mp? et w =/g/p :

P> 1o

1
_ m(pz —M2w262)
De la forme de (6.11) page 185. La solution est donc :

p(t) = V2ME cos(wt + ) p(t) = pV2méE cos(wt + )

=
a0 = 2/ 2 sin(ot + ) OEN rj—ggp sin(wt + )

11.5 Pendule simple a ressort, plan

Soit un pendule simple, a ressort, de longueur p(t) variable. La masse m est supposée osciller
dans le plan. Quelle est I’équation de son mouvement ?
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FiG. 11.9 — Pendule plan a ressort

11.5.1 Résolution par la mécanique de Newton

a) Grace a la relation fondamentale de la dynamique

b)

296

(2.4) page 57 donne I’expression de 1’accélération en coordonnées polaires dans la base
polaire orthonormée (E)p, _e)e). En utilisant la relation fondamentale de la dynamique,

ma =)y, f©
—P+F
m (g — p6?) €, + m(pb +2066) € = —mgsin(0) €4 + mgcos(6) €, + F€,,

qui donne le systeme,

- F
o 2 — -
[p P8 — geos(8) = -

P8 + 260 + gsin(8) = 0
Si le modele de la force de rappel du ressort est de la forme,
F =—k(p—po) €y
alors,
{p’ ~ 6% — gos(6) = — (o — o)
P06 + 200 + gsin(6) =0
Grice aux intégrales premieres

A n = 2 degrés de liberté correspond 2n — 1 = 3 intégrales premiéres. Il nous faut deux
équations, c.-a-d. deux intégrales premieres, pour deux inconnues p et 6. Si le modele de
la force de rappel du ressort dérive d’une énergie potentielle alors 1’énergie mécanique se
conserve. Supposons que le modele de la force de rappel soit de la forme

F =—k(p—po) €,
qui dérive de I’énergie potentielle

V_l

= Sk(p — po)’
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[’énergie est alors une intégrale premiere :

def
E=T+7V

1 . : 1
= -m(p* + p*6%) — mgp cos(6) + k(o — po)’
En dérivant par rapport au temps :
mpop + mpp6? + mp?66 — mgp cos(6) + mgpbsin(8) + ko (o —po) =0 (11.6)

Le vecteur moment cinétique est aussi une intégrale premicre. Calculons-le par rapport au
point d’attache o du pendule :

dfo = (e)
ar 2. To

%(E’Xm?/’):ﬁ’x P+B8xF
a[p €oxm(p€,+p8€p)| =p €, x(—mgsin(6) €+ mgcos(6) €, — F€,)

d = . -
o (mp?6 €)) = —mgpsin(6) €
P8 + 268 + gsin(8) = 0
On multiplie cette équation par mpé et I’on soustrait de (11.6) :

.. k
P — p&% —gcos(6) = —— (p — po)
P8 + 206 + gsin(8) = 0

11.5.2 Résolution par le principe des travaux virtuels
Appliquons le principe des travaux virtuels (2.1) page 54 a la seule partie mobile (N = 1) :
Z(Fia - pi>'5?i=0

i=1

(P+F-p) 67

0

(2.4) page 57 donne I’expression de 1’accélération en coordonnées polaires dans la base polaire
orthonormée (E)p, 39). Il y a deux coordonnées généralisé€es, donc deux déplacements virtuels.

[mgcos()€, — mgsin(6) €y + F€, —m (5 — p6?) €, —m(pb + 266) €4] - 6p€, =0
[mgcos(8)€, — mgsin(0)€g + F€, —m (5 — p6?) €, — m(p6 + 206) €| - p56€4 = 0
{mgcos(@) +F —mp+mpd? =0 N g — p6% — gcos(6) = %
—mgsin(0) — mp6 — 2mpo = 0 08 + 266 + gsin(0) = 0

Si le modele de force est de la forme F = —k (P — po) E)p, alors,

. k
p = p8% —gcos(6) = —— (p = po)
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11.5.3 Résolution par la mécanique de Lagrange

Le systeme posseéde deux degrés de liberté, donc deux coordonnées généralisées, p et 6. Le
lagrangien s’écrit :

def
LTV

= ~mp? + ~mp?6? — | =mgp cos(6) + >k (p — po)’ |
= ~mg? + =mp?6? + mgp cos(6) — =k (p — po)’

Les équations de Lagrange s’écrivent :

d /0L oL d | !
de\dp _5_0 R E(mp)—mpe —mgcos(0) +k(p—pg)=0
d (0L\ dL d .y | )

dt(ae) 86 dt (mp 9)+mgp sin(6) =0

. k : k

= 2 " _ — = 2 __r _

p pie gccs@ +—(—po) =0 p ’ P8 . gcos(6) (o = po)
mp*0 + 2mpp6 + mgp sin(6) = 0 6 + 266 + gsin(6) = 0

Si le modele de la force de rappel du ressort ne dérive pas d’un potentiel, on utilise la force
généralisée Q dont les composantes sont données par la déf. 3.1.1 page 71 :

def w4 = OT;
Q = F;- !
)= 25y
L, 9p¢€,
Q,=Fe,:
P P 3p
=F
Q=0
Les équations de Lagrange s’écrivent :
Y
dt\op) dp
d (8[,) oL _
dr\z8) a6 —

d | -
q; (mP) —mp&? —mgcos(6) = F . )p’ — p8% — gcos(6) =

o 3

% (mp?6) + mgp sin(6) = P8 + 2066 + gsin(8) =
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11.5.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées g et 6. Les
moments conjugués des variables p et 6 ont pour expression :

det 9L . _ Pp
Pe = 35 R {pp=mp I Lo

po = %% po = mp*0 )= Lo
36 mp

Le hamiltonien s’écrit :

def .
H= ) pG =L
J
: o 1 o 1 : 1
= mp? + mp*6% — Em,o2 — Empzez — mgp cos(6) + k(o - 00)°

= ~mg? + Zmp*6? — mgp cos(6) + 2k (p — py)”

P D L 2
=2 mp? ~ ™8P cos(6) + ~k (o — po)
=€

D’apres (4.8) page 133 le hamiltonien n’étant pas une fonction explicite du temps, il se conserve.
Les équations de Hamilton pour la variable p s’écrivent :

. 0K . P2

Pe= "3, Pp=m—p3+mg005(9)—k(,0—,00)
a7

6= — . _ Pp
9D, Pe=m

{pp = mp6? + mg cos(6) — k (o — py)
pp =mp

Nous vérifions qu’elles redonnent bien 1’équation :

. k
p— P8 —gcos(6) = —— (p — po)

Les équations de Hamilton pour la variable 8 s’écrivent :

. 0K . o
bo=—=5 [Pe = —mgp sin(6) {pe = —mgp sin(6)
= =

3 Po . X .
é:% ezm_pz Do = mp26 + 2mbpp
6

Nous vérifions qu’elles redonnent bien 1’équation :

p8 42606 + gsin(8) = 0
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11.6 Pendule sphérique

Soit un pendule de masse m et de longueur r pouvant osciller dans toutes les directions. Quelle
est I’équation du mouvement de la masse m?

Fic. 11.10 — Pendule sphérique

- g Pl . o .
Dans la base orthonormée (?, J» k), en coordonnées rectangulaires (X, y, z), le vecteur position a
pour expression :
— - > -
r(x,y,z) =xi+yj+zk

Le changement de coordonnées sphériques a rectangulaires est le suivant :
x = rsin(6) cos(¢)
y = rsin(60) sin(¢)
z = —rcos(6)

Nous employons ici deux méthodes pour déterminer I’expression du carré de la vitesse.

Ed Pag , s .
1. En restant dans la base (7, J, k) et en passant aux coordonnées sphériques (r, 6, ¢), le
vecteur position s’écrit

T(r, 6, 9) = rsin(0) cos(P)i + rsin(6) sin($)] — r cos(6) K
En dérivant et en prenant 7 = 0, le vecteur vitesse s’€crit :
V = [rcos(6) cos(¢) — ré sin(6) sin(¢)| 7
+ [ré cos(8) sin(¢) + ré sin(8) cos(¢)| 7 + 10 sin(6) K
V2 = 1202 cos?(8) cos? ¢ + r2¢? sin?(6) sin® ¢ — 2r26¢ cos(8) cos(¢) sin(8) sin(¢p)
+ 1262 cos?(8) sin® ¢ + r2¢? sin?(8) cos? ¢ + 2r26¢ cos(8) sin(¢) sin(8) cos(¢p)
+ r26%sin%(6)
= 1262 + r2¢? sin*(6)
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2. En passant dans la base sphérique unitaire (€, €, €4) :

T(r,0,9)=r€,

dr(r,6,¢) = (W)M + (%>r,e ¥ (%)r,qﬁ

= [sin(@) cos(¢p)l + sin(0) sin(¢p) ] — cos(@)E] dr
+r [cos(@) cos(p)l + cos(0) sin(¢)] + cos(@)f] dé
— r[sin(6) sin(¢)7 — sin(6) cos(¢) ] d¢p
=dr€, +rd6€y + rsin(6)dg €,

Nous en déduisons I’expression des vecteurs unitaires de la base sphérique dans la base
orthonormée,

» = sin(6) cos(¢)r + sin(8) sin(¢p)] — cos(@)E
o = c0s(0) cos(¢p)T + cos(8) sin(¢p)T + cos(@)i)
€p = —sin(¢)i + cos(¢)]

et ’expression du vecteur vitesse en coordonnées sphériques dans la base unitaire sphé-
rique :

—
€
—
€
—

V =F€,+r0€g +rsin(0)d€,
=r0€q +rsin(6)$ €y
0?2 = 1262 + r?sin?(0)§?

11.6.1 Résolution par la mécanique de Newton, grace aux intégrales premieres

A n = 2 degrés de liberté correspond 2n—1 = 3 intégrales premiéres. Il nous faut deux équations,
c.-a-d. deux intégrales premiéres, pour deux inconnues 6 et ¢. Le vecteur moment cinétique est
une intégrale premiere. Calculons-le par rapport au point d’attache o du pendule :

—

L,=TxmV

= re, X mr(Beg + sin(6)dey)

= mr2(9e¢ — sin(6)dep)
Sa norme est constante

L, = mr? (62 + sin*(6)$?)
ansi que sa projection sur n’importe quel axe fixe, en particulier sur I’axe z :
L, k= mr?(fey - K —sin(0)¢es - K)
L,o = mr?sin®(6)¢ (11.7)
Les forces dérivant toutes d’un potentiel, I’énergie mécanique se conserve :
def

E=T4+7V
= imr2 [6% + sin(0)¢?| — mgr cos(6)
_ mr?e? 12,

= + - 6 11.8
2 2mr? sin%() mgr cos(9) (118)
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On isole 6 :

; 2 L}
6= > [€— ——— + mgrcos(6)
mr 2mr2 sin“(0)
dé

\/mr2 Zmr2 51112(9) +mgr COS(@)]

C’est une intégrale elliptique de premiere espece. Avec (11.7), nous avons 1’expression de 1’autre
variable :

dp _ dg di
do ~ dr o

mr2 st(G) 2,
\/ mr2 2mr2 smz(e) +mgr COS(Q)]

_ doé
r\/_ smz(e)\/

C’est une intégrale elliptique de troisieme espece. (11.8) donne

¢ =

2mr2 2(9) + mgr cos(6)

mr2262 =&— #210112@) + mgr cos(6)
par conséquent :
& — L + mgrcos(6) >0
2mr2 sin?(6)
L%

—=—— —mgrcos(6) > &
2mr2 sin®(0) & ©

Les limites du mouvement sont atteintes lorsque 1’énergie cinétique est nulle, c.-a-d. lorsque
LZ
4_02 — mgrcos(6) =
2mr2 sin“(6)

C’est une équation du troisieme degré en cos(6), ayant deux racines cos(6), et cos(8), entre —1

et +1. Ces racines déterminent la position de deux cercles paralleles 6; = ¢*¢ et 6, = ¢3¢, sur

la sphere, entre lesquels est comprise toute la trajectoire du pendule.

11.6.2 Résolution par la mécanique de Lagrange

L’énergie cinétique a pour expression,
1 : 2
T = Emr2 (62 + $%sin’(0))

et I’énergie potentielle :
V = —mgr cos(0)
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Le lagrangien a pour expression :
L= émr2 (62 + ¢? sin*(9)) + mgr cos(6)

La coordonnée généralisée ¢ €tant cyclique, son moment conjugué py est une intégrale premiere
du mouvement. Les équations de Lagrange s’écrivent :

d (oL oL d . ;

dt (%) T30 o (mr?6) — mr?g? sin(6) cos(6) + mgr sin(6) = 0
=

d (oL oL d P

a (%) "o = (mr?gsin®(©)) = 0

mr28 — mr2¢? sin(6) cos(8) + mgrsin(6) = 0
¢ sin?(8) = cste

Nous obtenons 1I’équation différentielle du 2" ordre par rapport au temps suivante :

§ = ¢ sin(6) cos(6) — & Sif(e)
cos(6) gsin(6)

= $%sint 0
¢7sin sin®(6) r
_ oste 5 cos(6) gsin(0) (11.9)
sin®(8) r .

11.6.3 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées 6 et ¢ :

0L ' . Do
P o pe = mr? O
Py = p¢=mr¢sm(6) p=—""
? 7 9 mr2 sin®(6)

Le hamiltonien s’écrit :

def .
H= 2=~
j

= peb + psd — Emr2 (62 + $2sin(9)) + mgr cos(@)]

2 2 2 2
& Pg 1pg 1 Py
= - = - = — mgr cos(6
mr2 " mr2sin?()  2mr2 . 2 mr2sin?(6) greos(f)
& P
=9 ? — mgr cos(6)

2mr? - 2mr2 sin?(6)

Le hamiltonien n’est pas une fonction explicite du temps, d’apres (4.8) page 133 il se conserve.
On retrouve le fait que la coordonnée généralis€e ¢ est cyclique et par conséquent que py est une
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intégrale premiere du mouvement. Deux équations de Hamilton redonnent la transformation de
Legendre :

6= 9% 6 Do
dps mr2
_o T (g P
¢$= dpy mr2 sin®(6)
Les deux autres donnent les équations de la dynamique :
N A 2
. _oJt . P cos(6) '
Do 30 Do = —¢2 ——— — mgrsin(0)
. Py g mr? sin>(6)
P =3¢ ps="0

Nous en déduisons 1’équation différentielle du mouvement :

5 &

0= mr2
_ Pé cos(6) _ gsin(6)
T m2r sin®(6) r
_ oste 5 cos(6)  gsin(6)

sin3(6) r

Pour établir cette équation nous avons dii dériver 6. Nous retrouvons alors I’équation différentielle
de la méthode de Lagrange, (11.9) page précédente.
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de Poisson définition, 170
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de relativité de Galilée, 249
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Séparation des variables, 192
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