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Chapitre 1

LE PRINCIPE DES TRAVAUX VIRTUELS EN STATIQUE

Sommaire
1.1 Principe des déplacements virtuels . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Principe des travaux virtuels . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Formulation générale du principe . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Comparaison avec la mécanique de Newton . . . . . . . . . . . . . . . . . . 13
1.6 Avantage de la méthode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Types de liaisons et coordonnées généralisées . . . . . . . . . . . . . . . . . 17
1.8 Multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Forces dérivant d’une énergie potentielle . . . . . . . . . . . . . . . . . . . 24
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En 1586, Simon Stevin énonce le principe des travaux virtuels en étudiant des palans. En 1717,
Jean Bernoulli pose le principe des travaux virtuels comme loi fondamentale de la statique :
à l’équilibre, aucun travail n’est nécessaire pour provoquer un déplacement infiniment petit
d’un système mécanique donné. En 1743, Jean le Rond D’Alembert étend ce principe à la
dynamique. Il devient alors une écriture équivalente des équations de la mécanique de Sir Isaac
Newton. En 1756, dans une lettre à Léonhard Euler, Joseph-Louis de La Grange démontre toute
la mécanique à partir du principe de moindre action. Ces écrits paraissent dans un mémoire des
Mélanges de philosophie et de mathématique de la Société Royale de Turin Tome 2, 1760-1761.
Dans son ouvrage Méchanique analitique de 1788, il pose le principe des travaux virtuels à
la base de la mécanique analytique. En appliquant les coordonnées généralisées à ce principe,
il énonce les équations de la mécanique analytique. Comme les équations de Newton, les 𝑛
équations différentielles de Lagrange sont du 2nd ordre par rapport au temps, du fait des termes
d’accélération. En 1827, Sir William Rowan Hamilton effectue la transformation de Legendre du
lagrangien pour les vitesses généralisées. Les 2𝑛 équations différentielles de Hamilton sont du
1er ordre par rapport au temps, donc intégrées une première fois, et sont remarquables par leur
symétrie. Dans son mémoire de 1837 « Note sur l’intégration des équations différentielles de la
dynamique », Carl Gustav Jacob Jacobi simplifie l’intégration des équations de la dynamique en
abaissant leur ordre.

Il me paraît difficile de comprendre la mécanique analytique en partant du principe de Hamilton
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ou des équations de Newton, c’est pourquoi, comme le fit Lagrange dans son ouvrage de 1788,
j’ai choisi de partir du principe des travaux virtuels.

Nous supposerons comme Newton que le temps est absolu, et que l’espace physique est un espace
euclidien à trois dimensions. L’espace et le temps sont les mêmes pour tous les observateurs,
quel que soit leur mouvement relatif. À partir des notions de temps et d’espace, on définit un
référentiel comme étant un système de coordonnées et une horloge, à chaque référentiel on associe
un observateur, et réciproquement, à chaque observateur on associe un référentiel.

Galilée note qu’aucune expérience effectuée dans la cale d’un navire ne permet de mettre en
évidence la vitesse de ce navire, si celle-ci est constante en norme et en direction par rapport aux
étoiles lointaines. Cette expérience de pensée nous amène à appeler référentiels galiléens tous les
référentiels qui se déplacent d’un mouvement de translation rectiligne uniforme (à vecteur vitesse
constant) par rapport aux étoiles lointaines, et à énoncer le principe de relativité galiléenne : « les
référentiels galiléens sont équivalents pour l’écriture des lois de la physique ». Dans ce document
nous nous plaçons toujours dans un référentiel galiléen.

1.1 Principe des déplacements virtuels

À la fin du XVIe siècle, Stevin étudie les palans qui permettent de charger et décharger les
palanquées sur les navires marchands. Il étudie ces systèmes de poulies à l’équilibre 1. On
suppose la masse des poulies négligeable devant les autres masses, et les liaisons parfaites (ou
polies) c.-à-d. sans frottements au niveau des axes des poulies.

𝑎 𝑏 𝑐 𝑑

𝑚 𝑚′

𝑚

𝑚
2

1 2

𝑚

𝑚
6

𝑚

𝑚
8

Fig. 1.1 – Systèmes de poulies

1. Ernst Mach, La mécanique (Édition Jacques Gabay, 1987).
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En 𝑎, par symétrie 𝑚′ = 𝑚. En 𝑏, la masse 𝑚 est soutenue par les cordes parallèles 1 et 2. Par
symétrie, chacune des cordes supporte la moitié du poids de la masse 𝑚, il faut un contrepoids
de masse 𝑚

2
pour qu’il y ait équilibre.

Stevin remarque que pour chaque système de poulies ci-dessus, si l’on déplace la masse 𝑚 vers
le bas ou vers le haut d’une hauteur ℎ, alors :

• en 𝑎, le poids 𝑚′ = 𝑚 monte ou descend de ℎ,
• en 𝑏, le poids 𝑚

2
monte ou descend de 2ℎ,

• en 𝑐, le poids 𝑚
6

monte ou descend de 6ℎ,

• en 𝑑, le poids 𝑚
8

monte ou descend de 8ℎ.
Ainsi, dans un système de poulies à l’équilibre, les produits de chacune des masses par les
déplacements que l’on pourrait leur donner, sont égaux :

𝑚× ℎ = 𝑚
2
× 2ℎ

= 𝑚
6
× 6ℎ

= 𝑚
8
× 8ℎ

Cette remarque contient en germe le principe des déplacements virtuels. On imagine le système
dans une configuration toute proche de celle que l’on a, chaque masse subissant un déplacement
dit virtuel, car il n’y a pas à proprement parler de déplacement. La notion de temps n’intervient
pas puisqu’il s’agit de comparer deux positions d’équilibre d’un système, sans le passage de l’un
à l’autre. Le mieux est d’imaginer deux systèmes de poulies parfaitement identiques, dans des
positions d’équilibre proches.

Stevin étudie également l’équilibre des forces sur les plans inclinés 2. Il décrit l’expérience de
pensée suivante : une chaîne fermée formée de perles de même poids est placée sur un double
plan incliné (fig. 1.2 de la présente page). On néglige les forces de frottement des perles sur les
plans inclinés.

𝐴

𝐵

𝐶

Fig. 1.2 – Chaîne de perles

La chaîne de perles reste immobile car sinon, selon Stevin « les boules tourneront par elles-mêmes
de manière infinie. Ce qui ne se peut. » 3. Or, la partie représentée en bleue, appelée chaînette ou

2. Simon Stevin, De Beghinselen der Weeghconst (Les principes de l’art de peser, 1586).
3. Notez qu’en l’absence totale de frottements, les perles pourraient tourner de manière infinie.
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caténaire, est symétrique par rapport à l’axe vertical, si bien que la force exercée par la caténaire
en 𝐴 est égale à celle exercée en 𝐶. La partie 𝐴𝐵 de la chaîne de perles équilibre donc la partie
𝐵𝐶, et ce, quel que soit le double plan incliné sur lequel repose la chaîne de perles.

1.2 Principe des travaux virtuels

En étudiant les plans inclinés, Galilée constate la validité du principe des déplacements virtuels
et en trouve une formulation plus générale, le principe des travaux virtuels. Une masse 𝑚 repose
sur un plan incliné dont la longueur 𝐴𝐵 est double de la hauteur 𝐵𝐶. D’après l’expérience de
pensée de Stevin, lorsque les liaisons sont parfaites, c.-à-d. en l’absence de frottements entre
la masse 𝑚 et le plan incliné, et au niveau de l’axe de la poulie, cette masse est maintenue en
équilibre par une masse 𝑚

2
:

𝑚
𝑚
2

𝐴

𝐵

𝐶

Fig. 1.3 – Équilibre d’une masse sur un plan incliné

Si l’on déplace virtuellement la masse 𝑚 vers le haut sur une distance 𝑑 le long du plan incliné,
alors la masse 𝑚

2
descend d’une hauteur 𝑑. Nous n’avons plus l’égalité trouvée par Stevin entre

les masses multipliées par leur déplacement virtuel respectif :

𝑚× 𝑑 ≠ 𝑚
2
× 𝑑

Mais Galilée constate que la masse 𝑚 monte d’une hauteur ℎ
2

et que la masse 𝑚
2

descend d’une
hauteur ℎ, et cette fois les produits sont égaux :

𝑚× ℎ
2
= 𝑚

2
× ℎ

L’équilibre est déterminé par les masses multipliées par leur hauteur de chute, et non par leur
déplacement. Par rapport à Stevin, Galilée précise que le déplacement à prendre en compte est
celui effectué selon la verticale, autrement dit, celui dans le sens des forces de pesanteur.

Notons 𝑚1 la première masse, 𝑚2 la seconde, ℎ1 la hauteur de chute virtuelle de 𝑚1 et ℎ2 celle
de 𝑚2 :

𝑚1 ℎ1 = 𝑚2 ℎ2
Si les hauteurs de chute virtuelle sont des mesures algébriques affectées d’un signe positif ou d’un
signe négatif selon qu’elles sont ou non de même sens que le poids des masses (force verticale
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vers le bas), alors :
2
∑
𝑖=1

𝑚𝑖ℎ𝑖 = 0

Généralisons à 𝑁 masses 𝑚1, 𝑚2,… ,𝑚𝑝 subissant respectivement les déplacements virtuels
𝑑1, 𝑑2,… , 𝑑𝑝 compatibles entre eux et avec les liaisons, autrement dit compatibles avec le méca-
nisme, donc non indépendants.

Remarque 1.2.1
Sur la fig. 1.3 page précédente, les déplacements des masses sont compatibles entre eux si lorsqu’une masse monte l’autre descend, et
ils sont compatibles avec les liaisons si la masse 𝑚 ne passe pas à travers le plan incliné.

Soient ℎ1, ℎ2,… , ℎ𝑝, les projections de ces déplacements sur la verticale, à l’équilibre :

𝑁
∑
𝑖=1

𝑚𝑖ℎ𝑖 = 0

En écriture vectorielle, soient :
• #»g le champ de gravitation terrestre
• #»𝑃 𝑖 = 𝑚𝑖

#»g le poids de la 𝑖 ème masse
• #»r 𝑖 le vecteur position de la 𝑖 ème masse
• 𝛥 #»r 𝑖 le déplacement virtuel de la 𝑖 ème masse
• #»𝑃 𝑖 ⋅ 𝛥

#»r 𝑖 le travail virtuel de la 𝑖 ème masse
Le principe des travaux virtuels énonce qu’à l’équilibre la somme des travaux virtuels est nulle,

𝑁
∑
𝑖=1

#»𝑃 𝑖 ⋅ 𝛥
#»r 𝑖 = 0

où :
• les liaisons sont parfaites
• les déplacements virtuels sont compatibles entre eux
• les déplacements virtuels sont compatibles avec les liaisons

1.3 Formulation générale du principe

En 1717, Jean Bernoulli énonce la formulation générale du principe des travaux virtuels pour
tous les cas d’équilibre, en ce qu’elle ne s’applique pas uniquement aux forces de pesanteur. En
effet, une force quelconque peut être remplacée par la traction exercée par une corde attachée à
une masse par l’intermédiaire d’une poulie.

Plusieurs forces peuvent s’exercer sur une même partie mobile du système (les masse𝑚𝑖). Notons
#»𝐹 𝑖 la somme des modèles des forces exercées sur la 𝑖e partie mobile :

#»𝐹 𝑖
def
=

#»

f 1 +
#»

f 2 +…
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Soient 𝑁 sommes de modèles de force #»𝐹 1,
#»𝐹 2,… , #»𝐹𝑁 actives (qui créent le mouvement, aussi

appelées motrices) appliquées aux 𝑁 parties mobiles d’un système, subissant respectivement les
déplacements virtuels infiniment petits 𝛿 #»r 1, 𝛿

#»r 2,… , 𝛿 #»r 𝑝. À l’équilibre, la somme des travaux
virtuels des forces actives est nulle,

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0 (1.1)

où :
• les liaisons sont parfaites
• les déplacements virtuels sont compatibles entre eux
• les déplacements virtuels sont compatibles avec les liaisons
• les déplacements virtuels sont infinitésimaux

Ceci constitue le principe des travaux virtuels appliqué à la statique dans sa formulation la plus
générale. Nous verrons avec les ex 1.4.2 page 9 et 1.4.3 page 11 que c’est justement parce que
les déplacements virtuels sont compatibles entre eux et avec les liaisons, c.-à-d. respectent le
mécanisme, que l’on ne considère plus les forces de contrainte (aussi dites passives ou résistantes)
mais seulement les forces actives.

L’emploi de déplacements infinitésimaux plutôt que finis considérés par Galilée, est justifié par
la remarque qui suit. Soit le système suivant, pour lequel la poulie est parfaite et la masse glisse
sans frottements sur le plan incliné :

Fig. 1.4 – Déplacements finis

Les deux masses et l’inclinaison du plan sont choisis de sorte que le système soit à l’équilibre.
Cet équilibre persiste quelle que soit la position du poids sur le plan incliné. Dans ce cas parti-
culier, nous pouvons employer au choix, des déplacements finis ou infinitésimaux. Cependant,
considérons le cas général en remplaçant le plan incliné par une surface quelconque tangente au
plan incliné au point de contact de la masse :

Fig. 1.5 – Déplacements infinitésimaux

L’équilibre subsiste puisque du point de vue de la masse rien n’a changé. Si nous considérons
alors un déplacement fini, le système se transforme en une conformation voisine toute autre,
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pour laquelle il n’y a pas toujours équilibre. Le système n’est pas à l’équilibre mais revient à sa
position d’équilibre ou s’en éloigne définitivement. Si l’on considère maintenant un déplacement
infinitésimal, le poids reste sur le plan tangent et l’équilibre est maintenu. Il n’y a donc d’essentiel
que la possibilité de déplacement infinitésimal, pour lequel l’équilibre subsiste toujours. Les
déplacements virtuels sont donc toujours infinitésimaux.

1.4 Exemples

Exemple 1.4.1 : Masse glissant sans frottements sur un plan incliné
Reprenons la fig. 1.3 page 4, et cherchons la masse 𝑚2 pour qu’il y ait équilibre. Dans cet
exemple on ne part pas du principe des travaux virtuels mais on le fait apparaitre à partir
de la mécanique de Newton.

#»𝑅1

#»𝑃 1

#»𝑃 2

#»𝑇 1
#»𝑇 2

Fig. 1.6 – Équilibre d’une masse sur un plan incliné

Le système comprend 𝑁 = 2 parties mobiles. #»𝐹 (𝑒)
𝑖 est la somme des forces extérieures

s’exerçant sur la 𝑖 ̀𝑒𝑚𝑒 partie mobile du système :

{
#»𝐹 (𝑒)
1 = #»𝑃 1 +

#»𝑇 1 +
#»𝑅1

#»𝐹 (𝑒)
2 = #»𝑃 2 +

#»𝑇 2

Lorsque le système est à l’équilibre, chacune de ces sommes de forces extérieures est nulle :

{
#»𝐹 (𝑒)
1 = #»0

#»𝐹 (𝑒)
2 = #»0

Leur travail virtuel est donc nul pour tout ensemble de déplacements virtuels quelconques
indépendants (pour le moment aucun lien entre 𝛿 #»r 1 et 𝛿 #»r 2) :

{
∀𝛿 #»r 1

#»𝐹 (𝑒)
1 ⋅ 𝛿 #»r 1 = 0

∀𝛿 #»r 2
#»𝐹 (𝑒)
2 ⋅ 𝛿 #»r 2 = 0
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Additionnons ces travaux virtuels nuls :

∀𝛿 #»r 1, 𝛿
#»r 2,

#»𝐹 1 ⋅ 𝛿
#»r 1 +

#»𝐹 2 ⋅ 𝛿
#»r 2 = 0

La force active est ici le poids #»𝑃 , les forces de contrainte sont la tension #»𝑇 et la réaction
du support #»𝑅 .

( #»𝑃 1 +
#»𝑇 1 +

#»𝑅1) ⋅ 𝛿
#»r 1 + ( #»𝑃 2 +

#»𝑇 2) ⋅ 𝛿
#»r 2 = 0

( #»𝑃 1 ⋅ 𝛿
#»r 1 +

#»𝑃 2 ⋅ 𝛿
#»r 2) + ( #»𝑇 1 ⋅ 𝛿

#»r 1 +
#»𝑇 2 ⋅ 𝛿

#»r 2 +
#»𝑅1 ⋅ 𝛿

#»r 1) = 0

Choisissons les déplacements virtuels 𝛿 #»r 1 et 𝛿 #»r 2 compatibles entre eux et avec les liaisons.
Ils ne sont plus quelconques mais dépendants, et sont liés par l’équation de liaison qui
remplace les forces de tension :

‖𝛿 #»r 1‖ = ‖𝛿 #»r 2‖

𝛿 #»r 1

𝛿 #»r 2
𝛼

Fig. 1.7 – Déplacements virtuels compatibles entre eux et avec les liaisons

En l’absence de frottements la réaction du support #»𝑅1 est perpendiculaire au déplacement
virtuel et ne travaille pas :

( #»𝑃 1 ⋅ 𝛿
#»r 1 +

#»𝑃 2 ⋅ 𝛿
#»r 2) + ( #»𝑇 1 ⋅ 𝛿

#»r 1 +
#»𝑇 2 ⋅ 𝛿

#»r 2) = 0

La tension de la corde travaille

{
#»𝑇 1 ⋅ 𝛿

#»r 1 ≠ 0
#»𝑇 2 ⋅ 𝛿

#»r 2 ≠ 0
(1.2)

mais la somme de ces travaux virtuels est nulle. En effet, la tension étant constante

‖ #»𝑇 1‖ = ‖ #»𝑇 2‖

qui donne
#»𝑇 1 ⋅ 𝛿

#»r 1 +
#»𝑇 2 ⋅ 𝛿

#»r 2 = ‖ #»𝑇 1‖ ‖𝛿
#»r 1‖ − ‖ #»𝑇 2‖ ‖𝛿

#»r 2‖
= ‖ #»𝑇‖ (‖𝛿 #»r 1‖ − ‖𝛿 #»r 2‖)
= 0

Il reste,
#»𝑃 1 ⋅ 𝛿

#»r 1 +
#»𝑃 2 ⋅ 𝛿

#»r 2 = 0
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qui est le principe des travaux virtuels appliqué aux deux parties mobiles, les masses 𝑚1
et 𝑚2. Supposons que la masse 𝑚1 monte et la masse 𝑚2 descende :

−‖ #»𝑃 1‖ sin(𝛼) ‖𝛿 #»r 1‖ + ‖ #»𝑃 2‖ ‖𝛿
#»r 2‖ = 0

𝑚2 = 𝑚1 sin(𝛼)

Les déplacements virtuels compatibles entre eux et avec les liaisons ont permis de trouver
la condition d’équilibre. S’il existe une force de frottement

#»

f entre la masse et le plan
incliné, il va de suite que :

−‖ #»𝑃 1‖ sin(𝛼) ‖𝛿 #»r 1‖ − 𝑓 ‖𝛿 #»r 1‖ + ‖ #»𝑃 2‖ ‖𝛿
#»r 2‖ = 0

𝑓 = (𝑚2 −𝑚1) 𝑔 sin(𝛼)

Effectuons un déplacement virtuel perpendiculaire au plan incliné, donc incompatible avec
la liaison. Le déplacement virtuel de la seconde masse est choisi nul pour être compatible
avec le déplacement virtuel de la première.

𝛿 #»r 1

𝛼

Fig. 1.8 – Déplacements virtuels compatibles entre eux mais pas avec la liaison

#»𝐹 1 ⋅ 𝛿
#»r 1 = 0

( #»𝑃 1 +
#»𝑅 + #»𝑇 1) ⋅ 𝛿

#»r 1 = 0

La tension est perpendiculaire au déplacement virutel, elle ne travaille pas :
#»𝑃 1 ⋅ 𝛿

#»r 1 +
#»𝑅 ⋅ 𝛿 #»r 1 = 0

−‖ #»𝑃 1‖‖𝛿
#»r 1‖ cos(𝛼) + ‖ #»𝑅‖‖𝛿 #»r 1‖ = 0

‖ #»𝑅‖ = ‖ #»𝑃 1‖ cos(𝛼)

Un déplacement virtuel incompatible avec une liaison permet sa détermination.

Exemple 1.4.2 : Pendule statique
Une masse est attachée à une corde de longueur 𝜌 faisant un angle 𝜃 avec la verticale.
Quelle doit être l’intensité ‖

#»

f ‖ de la force horizontale pour qu’il y ait équilibre?

On imagine le système dans une configuration d’équilibre toute proche de celle que l’on
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a, ce qui revient à effectuer un déplacement virtuel compatible avec la liaison. Pour cela,
faisons varier l’angle d’une valeur 𝛿𝜃 infiniment petite :

𝛿 #»r = 𝛿𝑥 ⃗𝚤 + 𝛿𝑦 ⃗𝚥
= 𝜌 cos(𝜃)𝛿𝜃 ⃗𝚤 + 𝜌 sin(𝜃)𝛿𝜃 ⃗𝚥

𝜌

𝜃

#»𝑃

#»

f

#»𝑇

Fig. 1.9 – Pendule statique

Le déplacement virtuel est perpendiculaire à la tension, le travail virtuel de la tension est
donc nul. Appliquons le principe des travaux virtuels (1.1) page 6 à la seule partie mobile
(𝑁 = 1), pour un déplacement virtuel compatible avec la liaison :

#»𝐹 (𝑎) ⋅ 𝛿 #»r = 0

(
#»

f + #»𝑃) ⋅ 𝛿 #»r = 0

‖
#»

f ‖𝜌 cos(𝜃)𝛿𝜃 − ‖ #»𝑃‖𝜌 sin(𝜃)𝛿𝜃 = 0

‖
#»

f ‖ = 𝑚𝑔 tan(𝜃)

C’est la condition d’équilibre cherchée. On note que la longueur de la corde n’intervient
pas. Pour 𝜃 = 0° la force est nulle, pour 𝜃 = 45°, ‖

#»

f ‖ = 𝑚𝑔. La force tend vers l’infini
lorsque 𝜃 tend vers 90°.
Prenons un déplacement virtuel incompatible avec la liaison :

𝛿 #»r = 𝛿𝑦 ⃗𝚥

La force horizontale lui est perpendiculaire, son travail virtuel est donc nul.
#»𝐹 ⋅ 𝛿 #»r = 0

( #»𝑃 + #»𝑇) ⋅ 𝛿 #»r = 0

−‖ #»𝑃‖𝛿𝑦 + ‖ #»𝑇‖ cos(𝜃)𝛿𝑦 = 0

‖ #»𝑇‖ =
𝑚𝑔

cos(𝜃)

Pour 𝜃 = 0°, ‖ #»𝑇‖ = 𝑚𝑔, puis ‖ #»𝑇‖ croit avec 𝜃 et tend vers l’infini lorsque 𝜃 tend vers 90°.
La composante verticale de la tension est toujours égale à 𝑚𝑔, sa composante horizontale
est toujours égale à ‖

#»

f ‖.
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Exemple 1.4.3 : Le principe du levier

Dans le repère orthonormal (𝑜, ⃗𝚤, ⃗𝚥), soit un levier à l’équilibre sous l’action de deux forces
actives :

⃗𝚤

⃗𝚥

o

#»𝑅
#»

f 2

#»

f 1

𝜃

Fig. 1.10 – Levier à l’équilibre quel que soit l’angle 𝜃

{
#»

f 1 = −‖
#»

f 1‖ ⃗𝚥
#»

f 2 = −‖
#»

f 2‖ ⃗𝚥

Les vecteurs position des extrémités du levier s’écrivent :

{
#»r 1 = ‖ #»r 1‖ cos(𝜃) ⃗𝚤 + ‖ #»r 1‖ sin(𝜃) ⃗𝚥
#»r 2 = −‖ #»r 2‖ cos(𝜃) ⃗𝚤 − ‖ #»r 2‖ sin(𝜃) ⃗𝚥

Donnons au levier une rotation virtuelle d’angle 𝛿𝜃 compatible avec la liaison #»𝑅 :

#»𝑅
#»

f 2

#»

f 1

𝛿𝜃

Fig. 1.11 – Rotation virtuelle d’angle 𝛿𝜃

Les variations des vecteurs positions ont pour expressions :

⎧

⎨
⎩

𝛿 #»r 1 =
𝜕 #»r 1
𝜕𝜃 𝛿𝜃

𝛿 #»r 2 =
𝜕 #»r 2
𝜕𝜃 𝛿𝜃

⇒ {
𝛿 #»r 1 = −‖ #»r 1‖ sin(𝜃) 𝛿𝜃 ⃗𝚤 + ‖ #»r 1‖ cos(𝜃) 𝛿𝜃 ⃗𝚥
𝛿 #»r 2 = ‖ #»r 2‖ sin(𝜃) 𝛿𝜃 ⃗𝚤 − ‖ #»r 2‖ cos(𝜃) 𝛿𝜃 ⃗𝚥

La réaction #»𝑅 ne travaille pas lors de ce déplacement virtuel, elle reste identique à elle-
même quel que soit l’angle. Appliquons le principe des travaux virtuels (1.1) page 6 pour
un déplacement virtuel compatible avec la liaison. Nous devons considérer qu’il y a deux
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parties mobiles (𝑁 = 2), chaque extrémité du levier :
𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»

f 1 ⋅ 𝛿
#»r 1 +

#»

f 2 ⋅ 𝛿
#»r 2 = 0

−‖
#»

f 1‖ ‖
#»r 1‖ cos(𝜃) 𝛿𝜃 + ‖

#»

f 2‖ ‖
#»r 2‖ cos(𝜃) 𝛿𝜃 = 0

‖
#»

f 1‖ ‖
#»r 1‖ = ‖

#»

f 2 ‖
#»r 2‖

Nous retrouvons le principe du levier, c.-à-d. l’égalité des moments de force.

Remarque 1.4.1
Le principe du levier est précisément le principe des travaux virtuels. Celui-ci aurait pu être établi en étudiant le levier plutôt
que les palans. Le principe de fonctionnement des palans et celui du levier étant à la base de la statique, ils ne sont pas
démontrables.

Calcul de la force de réaction
Lorsque l’on veut calculer une force de réaction, le déplacement virtuel doit être incom-
patible avec cette liaison pour qu’elle travaille virtuellement. La force de liaison est alors
traitée comme une force active. Pour calculer la réaction du point d’appui, on donne au
levier une translation verticale virtuelle 𝛿 #»r = 𝛿𝑦 ⃗𝚥 :

#»𝑅#»

f 1
#»

f 2

𝛿𝑦

Fig. 1.12 – Force de réaction d’un levier

Le principe des travaux virtuels s’écrit :
#»𝑅 ⋅ 𝛿 #»r +

#»

f 1 ⋅ 𝛿
#»r +

#»

f 2 ⋅ 𝛿
#»r = 0

‖ #»𝑅‖ 𝛿𝑦 − ‖
#»

f 1‖ 𝛿𝑦 − ‖
#»

f 2‖ 𝛿𝑦 = 0

‖ #»𝑅‖ = ‖
#»

f 1‖ + ‖
#»

f 2‖

Remarque 1.4.2
La translation virtuelle aurait pu être vers le bas, le résultat aurait été le même. Il est permis de considérer un déplacement
virtuel où deux solides se compénètrent et ne respectent pas les liaisons.

Nous voyons sur cet exemple la différence entre un déplacement virtuel et un déplacement
réel. Dans ce dernier, si le levier se sépare de son appui, la réaction #»𝑅 devient nulle, et ne
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travaille pas. Dans le déplacement virtuel, la réaction reste la même et effectue le travail
virtuel ‖ #»𝑅‖ 𝛿𝑦.

Dans l’exemple que nous venons de voir, nous ne cherchons pas l’équation d’équilibre du système
mais la force de réaction, c’est pourquoi le déplacement virtuel choisi n’est pas compatible
avec la liaison. Lorsque nous étudierons l’équilibre d’un système, nous prendrons toujours des
déplacements virtuels compatibles avec les liaisons, c.-à-d. pour lesquels le travail virtuel des
forces de liaison est nul.

1.5 Comparaison avec la mécanique de Newton

En mécanique de Newton, un système est à l’équilibre lorsque la somme de toutes les forces
extérieures exercées sur ce système est nulle, et lorsque la somme des moments de ces forces
est nulle. Pour un système articulé, on doit définir plusieurs sous-systèmes, puis déterminer les
forces exercées sur ces sous-systèmes, dont les forces de liaison entre ces sous-systèmes. C’est la
détermination des forces de liaison qui permet de résoudre le problème.

Exemple 1.5.1 : Palan
Reprenons l’exemple du palan (fig. 1.1.b page 2). Quelle doit être la valeur de la masse 𝑚2
pour équilibrer celle de 𝑚1 ?
Résolution par la mécanique de Newton

#»𝑇 #»𝑇 #»𝑇

#»𝑃 1

#»𝑃 2

Fig. 1.13 – Palan : inventaire des forces

Le premier sous-système étudié est constitué de la première poulie et de la première masse.
Appliquons le principe fondamental de la dynamique. L’ensemble est immobile donc la
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somme des forces extérieures exercées sur ce sous-sytème est nulle :

∑
#»

f (𝑒) = #»0
#»𝑃 1 + 2 #»𝑇 = #»0

#»𝑇 = −
#»𝑃 1
2

Nous avons déterminé la force de liaison, la tension #»𝑇 de la corde. Le second sous-système
étudié est la masse 𝑚2. Appliquons le principe fondamental de la dynamique. Elle est
immobile donc :

∑
#»

f (𝑒) = #»0
#»𝑃 2 +

#»𝑇 = #»0
#»𝑃 2 = − #»𝑇

Par conséquent :
𝑚2 =

𝑚1
2

Résolution par le principe des travaux virtuels
Donnons à la masse 𝑚2 un déplacement virtuel 𝛿 #»r 2 vertical vers le bas :

𝛿 #»r 2 = −𝛿𝑦 ⃗𝚥

Le vecteur déplacement virtuel 𝛿 #»r 1 de la masse 𝑚1 compatible avec les liaisons et compa-
tible avec 𝛿 #»r 2 est tel que :

𝛿 #»r 1 = −𝛿
#»r 2
2

𝑃1

𝑃2

𝛿 #»r 1

𝛿 #»r 2

Fig. 1.14 – Palan : déplacements virtuels

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2),
les masses 𝑚1 et 𝑚2, pour des déplacements virtuels compatibles entre eux et avec les
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liaisons :
𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 2 ⋅ 𝛿
#»r 2 +

#»𝑃 1 ⋅ 𝛿
#»r 1 = 0

#»𝑃 2 ⋅ 𝛿
#»r 2 −

#»𝑃 1 ⋅
𝛿 #»r 2
2 = 0

( #»𝑃 2 −
#»𝑃 1
2 ) ⋅ 𝛿 #»r 2 = 0

𝑚2 =
𝑚1
2

Nous avons tenu compte des liaisons sans introduire de forces de liaison inconnues à
déterminer, mais en utilisant des déplacements virtuels compatibles entre eux et avec les
liaisons (un mouvement virtuel compatible avec le mécanisme).
Au lieu de s’appliquer séparément à chacun des sous-systèmes, le principe des travaux
virtuels s’applique au système dans son ensemble en regardant comment les sous-systèmes
s’articulent entre eux grâce aux liaisons.

Exemple 1.5.2 : Poulies coaxiales
Deux poulies coaxiales de rayon 𝑅1 et 𝑅2 supportent respectivement les masses 𝑚1 et 𝑚2.
Quelle est la condition d’équilibre?
Résolution par la mécanique de Newton
L’ensemble des poids et des poulies coaxiales constitue le système.

+

#»𝑃 1
#»𝑃 2

#»𝑇 1 #»𝑇 2

#»𝑅 1
#»𝑅 2𝑐

Fig. 1.15 – Poulies coaxiales : inventaire des forces
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À l’équilibre, la somme des moments des forces extérieures est nulle par rapport à n’importe
quel point. Par rapport au centre 𝑐 de l’axe commun aux deux poulies, nous avons :

↶

𝑀 #»𝑃1/𝑐 +

↶

𝑀 #»𝑃2/𝑐 =
#»0

#»𝑅1 ×
#»𝑃 1 +

#»𝑅2 ×
#»𝑃 2 =

#»0
‖ #»𝑃 1‖ ‖

#»𝑅1‖ − ‖ #»𝑃 2‖ ‖
#»𝑅2‖ = 0

𝑚1 =
𝑅2
𝑅1

𝑚2

Résolution par le principe des travaux virtuels
La position du système ne dépend que de l’angle 𝜑 de rotation des poulies. Donnons aux
poulies une rotation virtuelle d’angle 𝛿𝜑.

+

#»𝑃 1
#»𝑃 2

𝑅1
𝑅2

𝛿𝜑

𝛿 #»r 1
𝛿 #»r 2

Fig. 1.16 – Poulies coaxiales : déplacements virtuels

Les déplacements virtuels s’écrivent :

𝛿 #»r 1 = −𝑅1 𝛿𝜑 ⃗𝚥
𝛿 #»r 2 = 𝑅2 𝛿𝜑 ⃗𝚥

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2),
les masses 𝑚1 et 𝑚2, pour des déplacements virtuels compatibles entre eux et avec les
liaisons :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 1 ⋅ 𝛿
#»r 1 +

#»𝑃 2 ⋅ 𝛿
#»r 2 = 0

‖ #»𝑃 1‖ 𝑅1 𝛿𝜑 − ‖ #»𝑃 2‖ 𝑅2 𝛿𝜑 = 0
𝑚1𝑔𝑅1 −𝑚2𝑔𝑅2 = 0

𝑚1 =
𝑅2
𝑅1

𝑚2

Nous avons montré avec l’exemple du palan que le principe des travaux virtuels contient le
principe de l’équilibre des forces de la mécanique de Newton. Grâce au principe des travaux

16 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 1 : Le principe des travaux virtuels en statique

virtuels nous retrouvons aussi l’équilibre des moments de force de la statique géométrique.
Le principe des travaux virtuels contient donc les deux principes de la mécanique de
Newton, l’égalité des forces et l’égalité des moments de force.

1.6 Avantage de la méthode

Imaginons qu’une machine inconnue soit placée dans une caisse fermée d’où il ne sort que deux
bras de levier, servant de point d’application aux forces #»𝐹 1 et #»𝐹 2.

#»𝐹 1

#»𝐹 2

#»r 1 #»r 2

Fig. 1.17 – Mécanisme dans une boîte noire

En observant les vecteurs déplacements simultanés réels #»r 1 et #»r 2, nous déduisons immédiatement
la condition d’équilibre :

#»𝐹 1 ⋅
#»r 1 +

#»𝐹 2 ⋅
#»r 2 = 0

Dans cet exemple, les vecteurs forces étant constants, les déplacements virtuels se confondent
avec les déplacements réels. Ce type de problème n’est pas soluble par la mécanique de Newton
car nous n’avons pas accès aux mécanismes internes de la machine.

1.7 Types de liaisons et coordonnées généralisées

Un système est soumis à des liaisons s’il existe des contraintes qui en limitent les mouvements
externes ou internes. Les liaisons s’expriment soit par des forces de contrainte, soit par des
équations de liaison.
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1.7.1 Liaisons géométriques et liaisons cinématiques

Une liaison géométrique concerne uniquement les positions et éventuellement le temps.

Soit #»r 𝑖 = (𝑥1,… , 𝑥𝑚)𝑖 le vecteur position du 𝑖 ̀𝑒𝑚𝑒 point matériel (ou partie mobile) du système.
Une liaison géométrique s’écrit sous la forme 𝑓 ( #»r 1, ..,

#»r 𝑝, 𝑡) = 0

Exemple 1.7.1 : Trois exemples de liaison

• La liaison du pendule simple plan peut s’exprimer soit par la force de contrainte #»𝑇
(tension dans la corde), soit par l’équation de liaison 𝑥21 + 𝑥22 = 𝜌2 :

𝑥1

𝑥2

𝜌

#»𝑇

Fig. 1.18 – Le pendule se déplace sur un arc de cercle

• Deux mobiles sont maintenus à une distance constante par une liaison rigide qui
peut s’exprimer soit par deux forces égales et opposées, soit par l’équation de liaison
‖ #»r 1 −

#»r 2‖ = 𝑐 𝑠𝑡𝑒 :

#»𝐹 21
#»𝐹 12

1 2

Fig. 1.19 – Liaison rigide entre deux mobiles

• La liaison du solide glissant sur un plan incliné peut s’exprimer soit par la force de
contrainte #»𝑅 (réaction du plan incliné sur le solide), soit par l’équation de liaison
𝑥2 = 𝑎𝑥1 + 𝑏 :
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𝑥1

𝑥2

#»𝑅

Fig. 1.20 – Le solide se déplace sur une droite

Une équation de liaison concernant les vitesses ( ̇𝑥1, .., ̇𝑥𝑚)𝑖 et éventuellement les positions et le
temps est dite cinématique.

1.7.2 Liaisons scléronomes et liaisons rhéonomes

Une liaison dont l’équation ne dépend pas explicitement du temps est dite scléronome. Dans le
cas contraire, une liaison dont l’équation dépend explicitement du temps est dite rhéonome.

1.7.3 Liaisons holonomes

Une équation de liaison est dite holonome si elle permet d’éliminer l’une des 𝑚 coordonnées.
Lorsque toutes les liaisons sont holonomes, le système est dit holonome. Dans la plupart des cas,
les liaisons géométriques sont holonomes et les liaisons cinématiques sont non-holonomes.

Définition 1.7.1 : Degrés de liberté
Soit un système décrit par𝑚 coordonnées dont 𝑘 sont superflues. Si l’on utilise 𝑘 équations
de liaisons holonomes pour éliminer les 𝑘 coordonnées superflues alors le nombre 𝑚− 𝑘
de coordonnées restantes est égal au nombre minimal 𝑛 de paramètres nécessaires pour
décrire le mouvement du système, c.-à-d. au nombre de degrés de liberté du système :

𝑛 = 𝑚 − 𝑘

On définit le symbole de Kronecker 𝛿𝑖𝑗 par

𝛿𝑖𝑗
def
= {

1 si 𝑖 = 𝑗
0 si 𝑖 ≠ 𝑗

Définition 1.7.2 : Coordonnées généralisées
Si la configuration d’un système est déterminée par un ensemble de 𝑛 variables indépen-
dantes 𝑞, alors ces variables sont appelées coordonnées généralisées de ce système, et l’on
a la relation d’indépendance :

∀𝑖, 𝑗
𝜕𝑞𝑖
𝜕𝑞𝑗

= 𝛿𝑖𝑗 (1.3)
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Le nombre de degrés de liberté d’un système est donc égal au nombre de coordonnées généralisées
de ce système.

Les coordonnées généralisées étant indépendantes, leur nombre est minimal. Réciproquement, si
le nombre de coordonnées est minimal alors elles sont indépendantes. Nous pouvons donc aussi
définir les coordonnées généralisées en écrivant qu’elles constituent un ensemble minimal de
coordonnées pour un système.

Remarque 1.7.1 : Rappel sur les dérivations totales et partielles
Soit 𝑥(𝑡) une fonction explicite du temps et soit 𝑓(𝑥) = 𝑥2 une fonction explicite de 𝑥 et implicite du temps par l’intermédiaire de la
fonction 𝑥 :

𝜕𝑓
𝜕𝑡 = 0 ; 𝜕𝑓

𝜕𝑥 = 2𝑥 ; d𝑓
d𝑥 = 2𝑥 ; d𝑓

d𝑡 = 2𝑥𝑥̇

Plus précisemment :

d𝑓[𝑥(𝑡)] = 𝜕𝑓
𝜕𝑥 d𝑥

d𝑓[𝑥(𝑡)]
d𝑡 = 𝜕𝑓

𝜕𝑥
d𝑥
d𝑡

Notez que d𝑓[𝑥(𝑡)]
d𝑡

n’a pas le même sens que d𝑓
d𝑡
[𝑥(𝑡)], dans le premier cas la fonction 𝑓 a pour variable 𝑥(𝑡), dans le second cas

c’est la dérivée de la fonction 𝑓 qui a pour variable 𝑥(𝑡).

Exemple 1.7.2 : Liaison holonome scléronome
Deux masses 𝑚1 et 𝑚2 sur un double plan incliné sont reliées entre elles par un câble de
longueur constante passant par une poulie. Quelle est la condition d’équilibre?

𝛼1 𝛼2

#»𝑃 1
#»𝑃 2

#»r 1
#»r 2

Fig. 1.21 – Double plan incliné

Soient #»r 1 et #»r 2 les vecteurs position des masses par rapport au sommet de la poulie.
Nous avons deux coordonnées, 𝑟1 et 𝑟2, donc 𝑚 = 2, et le système est soumis à une liaison
holonome scléronome telle que :

‖𝛿 #»r 1‖ = ‖𝛿 #»r 2‖

Remarque 1.7.2
Nous avons

‖ #»r 1‖ + ‖ #»r 2‖ = 𝑐 𝑠𝑡𝑒

𝛿(‖ #»r 1‖ + ‖ #»r 2‖) = 0
𝛿‖ #»r 1‖ + 𝛿‖ #»r 2‖ = 0

mais la variation de la norme d’un vecteur n’est pas la norme de sa variation, la première pouvant être négative mais pas la
seconde.
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Donc 𝑘 = 1, et 𝑛 = 𝑚 − 𝑘 = 2 − 1 = 1 un seul degré de liberté. Cette relation
permet d’éliminer la coordonnée 𝑟2, et 𝑟1 devient l’unique coordonnée, appelée coordonnée
généralisée. La force de tension du câble est remplacée par l’équation de liaison. Appliquons
le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2), les masses
𝑚1 et 𝑚2, pour des déplacements virtuels compatibles entre eux et avec les liaisons :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 1 ⋅ 𝛿
#»r 1 +

#»𝑃 2 ⋅ 𝛿
#»r 2 = 0

Supposons que la masse 𝑚1 descende et que la masse 𝑚2 monte :

‖ #»𝑃 1‖ sin(𝛼1) ‖𝛿
#»r 1‖ − ‖ #»𝑃 2‖ sin(𝛼2) ‖𝛿

#»r 2‖ = 0
(𝑚1𝑔 sin(𝛼1) − 𝑚2𝑔 sin(𝛼2)) ‖𝛿

#»r 1‖ = 0
𝑚1 sin(𝛼1) = 𝑚2 sin(𝛼2)

On vérifie que pour 𝛼2 = 𝜋/2 on retrouve 𝑚2 = 𝑚1 sin(𝛼1).

Exemple 1.7.3 : Liaison holonome rhéonome
Une masse 𝑀 est posée sur une trappe qui s’ouvre, p. ex. grâce à un moteur, d’un angle 𝜃
donné en fonction du temps : 𝜃 = 𝑓(𝑡)

𝑜
𝜃 = 𝑓(𝑡)

𝛿 #»r

d #»r

#»𝑅

#»𝑃

𝑀
#»r

⃗𝚤
⃗𝚥

Fig. 1.22 – Masse sur une trappe

Le vecteur position de la masse s’écrit :
#»r = 𝜌 #»e 𝜌

#»r (𝜌, 𝜃) = 𝜌 (cos(𝜃) ⃗𝚤 + sin(𝜃) ⃗𝚥)

Nous avons deux coordonnées, 𝜌 et 𝜃, donc 𝑚 = 2, mais le système est soumis à une
liaison holonome rhéonome,

𝜃 − 𝑓(𝑡) = 0
donc 𝑘 = 1 et il reste 𝑛 = 2 − 1 = 1 un seul degré de liberté. Le vecteur position est une
fonction explicite du temps, et de la seule coordonnée généralisée 𝜌 :

#»r (𝜌, 𝑡) = 𝜌 [cos(𝑓(𝑡)) ⃗𝚤 + sin(𝑓(𝑡)) ⃗𝚥] (1.4)

Ce problème est résolu dans l’ex. 2.4.5 page 66.

sciences-physiques.neocities.org 21

http://sciences-physiques.neocities.org


Chapitre 1 : Le principe des travaux virtuels en statique

1.7.4 Liaisons non-holonomes

L’enceinte d’un gaz constitue une liaison non-holonome. Dans le cas d’une enceinte sphérique de
rayon 𝑟, l’équation de liaison pour chaque molécule du gaz de coordonnées (𝑥1, 𝑥2, 𝑥3) s’écrit :

𝑥21 + 𝑥22 + 𝑥23 ⩽ 𝑟2

On ne peut pas exprimer l’une des coordonnées en fonction des deux autres grâce à cette équa-
tion de liaison. Les liaisons s’exprimant par une inégalité, dites unilatérales, sont toutes non-
holonomes. Pour être holonomes, les liaisons doivent s’exprimer par une égalité, c.-à-d., être
bilatérales. C’est une condition nécessaire mais pas suffisante.

Exemple 1.7.4 : Disque roulant sans glissement sur un plan horizontal
Considérons un disque roulant sans glissement sur un plan horizontal (une pièce de monnaie
sur la tranche roule sur une table). La position du disque est définie par ses deux coordonnées
𝑥 et 𝑦 dans le plan, et son orientation est définie par l’angle 𝜃 de rotation du disque autour
de son axe, et par l’angle 𝜑 que fait l’axe du disque avec l’axe des 𝑥.

𝑦

𝑥

𝜃

axe
𝜑

Fig. 1.23 – Disque roulant sans glissement sur un plan horizontal

En projetant le vecteur vitesse instantanée (à chaque instant perpendiculaire à l’axe du
disque) sur les axes 𝑥 et 𝑦 :

{
𝑣𝑥 = ‖ #»v ‖ cos(𝜋/2 − 𝜑)
𝑣𝑦 = −‖ #»v ‖ sin(𝜋/2 − 𝜑)

⇒ {
̇𝑥 = ‖ #»v ‖ sin(𝜑)
̇𝑦 = −‖ #»v ‖ cos(𝜑)

Notons 𝑟 le rayon du disque, la condition de roulement sans glissement s’écrit

‖ #»v ‖ = 𝑟 ̇𝜃

si bien que les équations de liaison du disque avec le sol s’écrivent :

{
̇𝑥 = 𝑟 ̇𝜃 sin(𝜑)
̇𝑦 = −𝑟 ̇𝜃 cos(𝜑)

⇒ {
d𝑥 − 𝑟 sin(𝜑) d𝜃 = 0
d𝑦 + 𝑟 cos(𝜑) d𝜃 = 0

Ces équations différentielles ne peuvent être intégrées, il n’existe pas de facteur intégrant
qui les transformerait en différentielles totales exactes. Si cela était possible, l’on pourrait
exprimer une coordonnée en fonction des trois autres. Or, pour une position du disque en un
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point (𝑥, 𝑦), toutes les orientations en 𝜃 et 𝜑 sont possibles, en fonction de la trajectoire prise
pour venir en ce point. Les quatre coordonnées (𝑥, 𝑦, 𝜃, 𝜑) sont nécessaires pour définir
complètement la position et l’orientation du disque dans l’espace. Aucune coordonnée
n’est superflue, et par conséquent la liaison est non-holonome.

1.8 Multiplicateurs de Lagrange

Soit à résoudre le système de deux équations à deux inconnues 𝑥 et 𝑦 suivant,

{
𝑦 = 𝑎𝑥 + 𝑏
𝑦 = 𝑐𝑥 + 𝑑

⇒ {
𝑦 − 𝑎𝑥 − 𝑏 = 0
𝑦 − 𝑐𝑥 − 𝑑 = 0

Soit 𝜆 un multiplicateur indéterminé, différent de zéro. Le système précédent est équivalent à la
seule équation suivante

∀𝜆 ≠ 0, (𝑦 − 𝑎𝑥 − 𝑏) + 𝜆 (𝑦 − 𝑐𝑥 − d) = 0

En effet, la seule façon d’annuler cette équation pour tous les lambda non nuls est bien que chacun
de ses deux termes soient nuls. Il est important que le multiplicateur 𝜆 soit indéterminé, car s’il
prenait une valeur déterminée il suffirait de résoudre l’équation. Nous avons :

∀𝜆 ≠ 0, 𝑦 − 𝑎𝑥 − 𝑏 + 𝜆𝑦 − 𝜆𝑐𝑥 − 𝜆𝑑 = 0
∀𝜆 ≠ 0, (1 + 𝜆) 𝑦 − (𝑎 + 𝜆𝑐) 𝑥 − (𝑏 + 𝜆d) = 0 (1.5)

Si l’on prend 𝜆 = −1 pour éliminer l’inconnue 𝑦, on obtient la solution triviale,

(𝑎 − 𝑐) 𝑥 − (𝑏 − d) = 0 ⇒ {
𝑎 = 𝑐
𝑏 = 𝑑

(1.5) doit être valable ∀𝜆 ≠ 0, donc aussi pour 𝜆 = −𝑎/𝑐, qui permet d’éliminer l’inconnue 𝑥,

(1 − 𝑎
𝑐 ) 𝑦− (𝑏 −

𝑎𝑑
𝑐 ) = 0

𝑦 = 𝑏 − 𝑎𝑑/𝑐
1 − 𝑎/𝑐

= 𝑏𝑐 − 𝑎𝑑
𝑐 − 𝑎

On trouve l’expression de 𝑥 grâce à 𝑦 = 𝑎𝑥 + 𝑏, ce qui finit de résoudre le système.

Exemple 1.8.1
Résolvons le problème du double plan incliné de l’ex. 1.7.2 page 20 en utilisant les
multiplicateurs indéterminés de Lagrange. Le système formé par le principe des travaux
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virtuels et l’équation de liaison holonome,

{
−‖ #»𝑃 1‖ sin(𝛼1) ‖𝛿

#»r 1‖ + ‖ #»𝑃 2‖ sin(𝛼2) ‖𝛿
#»r 2‖ = 0

‖𝛿 #»r 1‖ − ‖𝛿 #»r 2‖ = 0

est équivalent à la seule équation suivante,

∀𝜆 ≠ 0 − ‖ #»𝑃 1‖ sin(𝛼1) ‖𝛿
#»r 1‖ + ‖ #»𝑃 2‖ sin(𝛼2) ‖𝛿

#»r 2‖ + 𝜆 (‖𝛿 #»r 1‖ − ‖𝛿 #»r 2‖) = 0

∀𝜆 ≠ 0 (−‖ #»𝑃 1‖ sin(𝛼1) + 𝜆) ‖𝛿 #»r 1‖ + (‖ #»𝑃 2‖ sin(𝛼2) − 𝜆) ‖𝛿 #»r 2‖ = 0

qui redonne le système

{
𝑚1𝑔 sin(𝛼1) − 𝜆 = 0
𝑚2𝑔 sin(𝛼2) − 𝜆 = 0

⇒ 𝑚1 sin(𝛼1) = 𝑚2 sin(𝛼2)

1.9 Forces dérivant d’une énergie potentielle

Lorsque tous les modèles de forces qui travaillent lors de leur déplacement virtuel dérivent d’une
énergie potentielle, le principe des travaux virtuels (1.1) page 6 s’écrit

𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅ 𝛿
#»r 𝑖 = 0

𝑁
∑
𝑖=1

−
#     »grad𝑖 (𝒱𝑖) ⋅ 𝛿

#»r 𝑖 = 0

où #     »grad𝑖 (𝒱𝑖) est le vecteur gradient du modèle d’énergie potentielle 𝒱𝑖.
𝑁
∑
𝑖=1

(
𝜕𝒱𝑖
𝜕𝑥𝑖

#»e 𝑥 +
𝜕𝒱𝑖
𝜕𝑦𝑖

#»e 𝑦 +
𝜕𝒱𝑖
𝜕𝑧𝑖

#»e 𝑧) ⋅ (𝛿𝑥𝑖
#»e 𝑥 + 𝛿𝑦𝑖

#»e 𝑦 + 𝛿𝑧𝑖
#»e 𝑧) = 0

𝑁
∑
𝑖=1

(
𝜕𝒱𝑖
𝜕𝑥𝑖

𝛿𝑥𝑖 +
𝜕𝒱𝑖
𝜕𝑦𝑖

𝛿𝑦𝑖 +
𝜕𝒱𝑖
𝜕𝑧𝑖

𝛿𝑧𝑖) = 0

𝑁
∑
𝑖=1

𝛿𝒱𝑖 = 0

𝛿
𝑁
∑
𝑖=1

𝒱𝑖 = 0

Soit 𝒱 = ∑𝑁
𝑖 𝒱𝑖 la somme des modèles des énergies potentielles de toutes les parties mobiles. Sa

variation lors du déplacement virtuel s’écrit :

𝛿𝒱 = 0
𝑛
∑
𝑗=1

𝜕𝒱
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0
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où 𝑛 est le nombre de degrés de liberté du système et 𝑞𝑗 est la 𝑗 ème coordonnée généralisée. Les
𝛿𝑞𝑗 étant indépendants, à l’équilibre :

∀𝑗 = 1,… , 𝑛 𝜕𝒱
𝜕𝑞𝑗

= 0 (1.6)

1.10 Nature de l’équilibre

1.10.1 Système à un degré de liberté

Soit 𝑞 la seule coordonnée généralisée. D’après (1.6), la condition d’équilibre en 𝑞 = ̃𝑞 (la
notation 𝑞0 est réservée pour désigner la position à l’instant initial) est,

𝒱′( ̃𝑞) = 0

le prime indiquant une dérivation par rapport à 𝑞.

Remarque 1.10.1

𝒱′( ̃𝑞) est un abus de notation pour
d𝒱(𝑞)
d𝑞

|||𝑞=𝑞̃
. En effet ̃𝑞 n’est pas une variable.

Pour 𝑞 = ̃𝑞, l’énergie potentielle 𝒱(𝑞) est donc soit minimale, soit maximale, soit constante, soit
elle présente un point d’inflexion. Cela correspond respectivement à un équilibre stable, instable,
indifférent, et de nouveau, instable.

a) premier cas, éloigné de sa position d’équilibre, le système gagne de l’énergie potentielle,
𝛥𝒱 > 0, qu’il restitue plus ou moins rapidement pour retrouver sa position initiale.

b) deuxième cas, éloigné de sa position d’équilibre, le système perd de l’énergie potentielle,
𝛥𝒱 < 0, il s’éloigne irrémédiablement de sa position d’équilibre.

c) troisième cas, l’énergie potentielle est constante, 𝛥𝒱 = 0. Toute nouvelle position est
encore une position d’équilibre.

d) quatrième cas, dans un sens 𝛥𝒱 < 0 et dans l’autre 𝛥𝒱 > 0. Un petit déplacement fait
quitter son état d’équilibre au système. Dans le premier sens, le système s’éloigne de
son point d’équilibre. Dans l’autre sens, il repasse momentanément par son ancien état
d’équilibre avec une vitesse non nulle, puis s’en éloigne.

L’étude du signe de l’accroissement de potentiel au voisinage de l’équilibre se fait à l’aide du
développement de Taylor de 𝒱(𝑞) pour 𝑞 au voisinage de ̃𝑞 :

𝒱(𝑞) = 𝒱( ̃𝑞) + 𝒱′( ̃𝑞)(𝑞 − ̃𝑞) + 𝒱″( ̃𝑞)
(𝑞 − ̃𝑞)2

2! + 𝒱‴( ̃𝑞)
(𝑞 − ̃𝑞)3

3! + …
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À l’équilibre nous avons vu que 𝒱′( ̃𝑞) = 0, et la variation d’énergie potentielle s’écrit,

𝛥𝒱 = 𝒱(𝑞) − 𝒱( ̃𝑞)

= 𝒱″( ̃𝑞)
(𝑞 − ̃𝑞)2

2! + 𝒱‴( ̃𝑞)
(𝑞 − ̃𝑞)3

3! + …

𝑞 étant au voisinage de ̃𝑞, 𝑞 − ̃𝑞 est petit, et donc le signe de 𝛥𝒱 est celui du premier terme non
nul.

• 𝛥𝒱 > 0 (équilibre stable), implique 𝒱″( ̃𝑞) > 0.
• 𝛥𝒱 < 0 (équilibre instable), implique 𝒱″( ̃𝑞) < 0.
• 𝛥𝒱 = 0 (équilibre indifférent), implique ∀𝑛 ⩾ 2, 𝒱(𝑛) ( ̃𝑞) = 0.
• Si 𝒱″( ̃𝑞) = 0, il faut étudier le signe de la première dérivée 𝑝-ième non nulle 𝒱(𝑝)( ̃𝑞) selon

la parité de 𝑝, avec 𝑝 > 2 :

— si 𝑝 est pair et 𝒱(𝑝)( ̃𝑞) > 0, l’équilibre est stable.
— si 𝑝 est impair et 𝒱(𝑝)( ̃𝑞) > 0, l’équilibre est instable. C’est un point d’inflexion de

𝒱(𝑞).
— si 𝒱(𝑝)( ̃𝑞) < 0 (𝑝 pair ou impair), l’équilibre est instable.

Exemple 1.10.1 : Poulies coaxiales
Reprenons l’ex. 1.5.2 page 15. Les deux forces de ce problème dérivant de l’énergie
potentielle de gravitation, nous pouvons le résoudre grâce à (1.6) page précédente.

𝑚1

𝑚2

𝜑

𝑅1
𝑅2

Fig. 1.24 – Poulies coaxiales

#»𝑃 𝑖 = −
#     »grad𝑖 (𝒱𝑖) = −

𝜕𝒱𝑖
𝜕𝑦 ⃗𝚥 = −𝑚𝑖𝑔 ⃗𝚥

𝜕𝒱𝑖
𝜕𝑦 = 𝑚𝑖𝑔 ⇒ 𝒱𝑖 =

ˆ 𝑦𝑖+𝛥𝑦𝑖

𝑦𝑖
𝑚𝑖𝑔d𝑦 = 𝑚𝑖𝑔𝛥𝑦𝑖 = 𝑚𝑖𝑔ℎ𝑖

où les ℎ𝑖 sont les variations de hauteur des masses 𝑚𝑖. L’énergie potentielle totale est la
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somme des énergies potentielles :

𝒱 = 𝑚1𝑔ℎ1 +𝑚2𝑔ℎ2
= 𝑚1𝑔 (𝑐 𝑠𝑡𝑒1 + 𝑅1𝜑) + 𝑚2𝑔 (𝑐 𝑠𝑡𝑒2 − 𝑅2𝜑)

𝜑 est la seule coordonnées généralisée. À l’équilibre, le principe des travaux virtuels
s’écrit :

𝜕𝒱
𝜕𝜑 = 0

𝑚1𝑔𝑅1 −𝑚2𝑔𝑅2 = 0

𝑚1 =
𝑅2
𝑅1

𝑚2

De plus,

∀𝑛 ⩾ 2, 𝜕𝑛𝒱
𝜕𝜑𝑛 = 0

donc l’équilibre est indifférent. Le système est à l’équilibre quelle que soit la valeur de
l’angle 𝜑. Éloigné de sa position, il ne revient ni ne s’éloigne d’avantage de celle-ci.

Exemple 1.10.2 : Double plan incliné
Reprenons l’ex. 1.7.2 page 20. Les deux forces de ce problème dérivant d’une énergie
potentielle (de gravitation), nous pouvons le résoudre grâce à (1.6) page 25.

𝛼1 𝛼2

𝑚1 𝑚2

#»r 1
#»r 2

Fig. 1.25 – Double plan incliné

Prenons le sommet de la poulie comme origine des énergies potentielles de gravitation.
L’énergie potentielle totale est la somme des énergies potentielles. Du fait de la liaison

‖ #»r 1‖ + ‖ #»r 2‖ = 𝑐 𝑠𝑡𝑒

la seule coordonnée généralisée est 𝑟1 :

𝒱 = −‖ #»𝑃 1‖ ‖
#»r 1‖ sin(𝛼1) − ‖ #»𝑃 2‖ ‖

#»r 2‖ sin(𝛼2)
= −𝑚1𝑔 ‖

#»r 1‖ sin(𝛼1) − 𝑚2𝑔 (𝑐 𝑠𝑡𝑒 − ‖ #»r 1‖) sin(𝛼2)
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À l’équilibre, le principe des travaux virtuels s’écrit :

𝜕𝒱
𝜕𝑟1

= 0

−𝑚1𝑔 sin(𝛼1) + 𝑚2𝑔 sin(𝛼2) = 0
𝑚1 sin(𝛼1) = 𝑚2 sin(𝛼2)

De plus,

∀𝑛 ⩾ 2, 𝜕𝑛𝒱
𝜕𝑟𝑛1

= 0

l’équilibre est indifférent.

1.10.2 Système à deux degrés de liberté

Soient 𝑞1 et 𝑞2 les coordonnées généralisées, et soient ̃𝑞1 et ̃𝑞2 les coordonnées généralisées de la
position d’équilibre. Le développement de Taylor de 𝒱(𝑞1, 𝑞2) pour 𝑞1, 𝑞2 au voisinage de ̃𝑞1, ̃𝑞2
s’écrit :

𝒱(𝑞1, 𝑞2) = 𝒱( ̃𝑞1, ̃𝑞2) + 𝜕𝑞1𝒱( ̃𝑞1, ̃𝑞2)(𝑞1 − ̃𝑞1) + 𝜕𝑞2𝒱( ̃𝑞1, ̃𝑞2)(𝑞2 − ̃𝑞2)

+ 1
2
[𝜕2𝑞1𝒱( ̃𝑞1, ̃𝑞2) (𝑞1 − ̃𝑞1)

2+ 2𝜕2𝑞1,𝑞2𝒱( ̃𝑞1, ̃𝑞2) (𝑞1 − ̃𝑞1) (𝑞2 − ̃𝑞2)

+ 𝜕2𝑞2𝒱( ̃𝑞1, ̃𝑞2) (𝑞2 − ̃𝑞2)
2] + …

À l’équilibre, les dérivées partielles 𝜕𝑞1𝒱, et 𝜕𝑞2𝒱 sont nulles. On pose :

⎧

⎨
⎩

𝐴 = 𝜕2𝑞1𝒱( ̃𝑞1, ̃𝑞2)
𝐵 = 𝜕2𝑞1,𝑞2𝒱( ̃𝑞1, ̃𝑞2)
𝐶 = 𝜕2𝑞2𝒱( ̃𝑞1, ̃𝑞2)

La variation d’énergie potentielle s’écrit alors :

𝛥𝒱 = 1
2
[𝐴 (𝑞1 − ̃𝑞1)

2 + 2𝐵 (𝑞1 − ̃𝑞1) (𝑞2 − ̃𝑞2) + 𝐶 (𝑞2 − ̃𝑞2)
2] + …

C’est l’équation de la surface 𝛥𝒱(𝑞1, 𝑞2), de la forme :

𝛥𝒱 = 𝐴
2
𝑥2 + 𝐵𝑥𝑦 + 𝐶

2
𝑦2 +…

Si l’on suppose 𝐴 > 0,

𝛥𝒱 = (√
𝐴
2
𝑥 +√

2
𝐴
× 𝐵

2
𝑦)

2

− 2𝐵2

4𝐴
𝑦2 + 𝐶

2
𝑦2 +…

= (√
𝐴
2
𝑥 + 𝐵

√2𝐴
𝑦)

2

− 𝑦2

2
(𝐵

2

𝐴
− 𝐶) +…
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Si 𝐵2 − 𝐴𝐶 ⩽ 0, donc si 𝐶 > 0, alors 𝛥𝒱 > 0 et l’équilibre est stable.
Si 𝐵2 − 𝐴𝐶 > 0 alors,

𝛥𝒱 = (√
𝐴
2
𝑥 + 𝐵

√2𝐴
𝑦)

2

− (𝑦√
𝐵2

2𝐴
− 𝐶

2
)
2

+…

= [(√
𝐴
2
𝑥 + 𝐵

√2𝐴
𝑦) + (𝑦√

𝐵2

2𝐴
− 𝐶

2
)] × [(√

𝐴
2
𝑥 + 𝐵

√2𝐴
𝑦) − (𝑦√

𝐵2

2𝐴
− 𝐶

2
)] +…

= [√
𝐴
2
𝑥 + 𝑦 ( 𝐵

√2𝐴
+√

𝐵2

2𝐴
− 𝐶

2
)] × [√

𝐴
2
𝑥 + 𝑦 ( 𝐵

√2𝐴
−√

𝐵2

2𝐴
− 𝐶

2
)] +…

dont le signe dépend des valeurs prises par 𝑥 et 𝑦, donc par 𝑞1 − ̃𝑞1 et 𝑞2 − ̃𝑞2, et de celles des
dérivées partielles secondes 𝐴, 𝐵, 𝐶. L’équilibre est stable ou instable selon les directions.

Si 𝐴 = 𝐵 = 𝐶 = 0, l’équilibre est indéterminé, il faut étudier le signe des dérivées d’ordre
supérieur à deux.

Si 𝒱 = 𝑐 𝑠𝑡𝑒, alors 𝛥𝒱 = 0, l’équilibre est indifférent.

1.11 Applications des travaux virtuels

1.11.1 Poutre sur deux cylindres

Une poutre de masse 𝑀 est posée sur deux cylindres de masse 𝑚. Quelle force #»𝐹 faut-il appliquer
pour maintenir l’ensemble à l’équilibre sur un plan incliné d’un angle 𝛼?

𝐴

𝐵
#»𝑃

#»𝑃

#»Q

#»𝐹

𝛿 #»s 𝐴

𝛿 #»s 𝐴𝛿 #»s 𝐴

𝛿 #»s 𝐵

𝛿 #»s 𝐵

𝛼

Fig. 1.26 – Poutre sur deux cylindres

Communiquons à la poutre un déplacement virtuel 𝛿 #»s 𝐴. Appliquons le principe des travaux
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virtuels (1.1) page 6 aux trois parties mobiles (𝑁 = 3) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝐹 ⋅ 𝛿 #»s 𝐴 +
#»Q ⋅ 𝛿 #»s 𝐴 + 2 #»𝑃 ⋅ 𝛿 #»s 𝐵 = 0

Cherchons la relation entre les déplacements virtuels 𝛿 #»s 𝐴 et 𝛿 #»s 𝐵 de sorte qu’ils soient compa-
tibles entre eux et avec les liaisons. Le point de contact des cylindres avec le plan incliné est un
centre instantané de rotation. Soient #»v 𝐴 et #»v 𝐵 les vitesses virtuelles instantanées (rapport d’un
déplacement virtuel sur un temps réel infinitésimal) des points 𝐴 et 𝐵 :

#»v 𝐴 = 2 #»v 𝐵
#»v 𝐴 d𝑡 = 2 #»v 𝐵 d𝑡
𝛿 #»s 𝐴 = 2𝛿 #»s 𝐵

par conséquent,
#»𝐹 ⋅ 𝛿 #»s 𝐴 +

#»Q ⋅ 𝛿 #»s 𝐴 +
#»𝑃 ⋅ 𝛿 #»s 𝐴 = 0

‖ #»𝐹‖ − ‖ #»Q‖ sin(𝛼) − ‖ #»𝑃‖ sin(𝛼) = 0
‖ #»𝐹‖ = (𝑀 +𝑚) 𝑔 sin(𝛼)

1.11.2 Treuil

Soit un treuil à l’équilibre sous l’action d’un poids #»𝑃 et d’une force #»𝐹 . Pour quelle valeur de la
force #»𝐹 y a-t-il équilibre? Donnons au treuil une rotation virtuelle d’angle 𝛿𝜃 :

#»𝑃

#»𝐹

#»𝑅

𝑟

𝑎
𝛿𝜃

𝛿𝜃

Fig. 1.27 – Treuil
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Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 ⋅ 𝛿 #»r 1 +
#»𝐹 ⋅ 𝛿 #»r 2 = 0

−‖ #»𝑃‖ 𝑟𝛿𝜃 + ‖ #»𝐹‖ 𝑎𝛿𝜃 = 0

‖ #»𝐹‖ = 𝑚𝑔 𝑟𝑎

Nous ne pouvons pas résoudre ce problème en appliquant (1.6) page 25, 𝜕𝒱/𝜕𝜃 = 0, car nous
n’avons pas l’expression du potentiel de la force #»𝐹 . Il faudrait p. ex. attacher une masse au bras
de levier pour remplacer la force exercée.

1.11.3 Appareil de levage

Un appareil de levage dont le mécanisme n’est pas visible est tel qu’à chaque tour de manivelle la
vis s’élève d’une hauteur ℎ. Quelle valeur de la force #»𝐹 équilibre le poids #»𝑃 ?

#»𝐹

#»𝑃

𝐿

Fig. 1.28 – Appareil de levage

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝐹 ⋅ 𝐿 𝛿𝜑 #»e 𝜑 +
#»𝑃 ⋅ 𝛿ℎ ⃗𝚥 = 0

‖ #»𝐹‖ 2𝜋𝐿 − ‖ #»𝑃‖ℎ = 0

‖ #»𝐹‖ = ℎ
2𝜋𝐿 ‖

#»𝑃‖

Ce problème simple est impossible à résoudre par la mécanique de Newton car le mécanisme est
inconnu.
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1.11.4 Ciseaux de Nuremberg

Soient un ensemble de barres rigides articulées sans frottements appelé « Ciseaux de Nuremberg ».
Le point 𝐶 est fixe. Au point 𝐴 est appliquée une force verticale vers le haut

#»

f 1.

#»𝑅

#»

f 1

#»

f 2

𝛿𝑟1

𝛿𝑟2

𝐴

𝐵

𝐶

Fig. 1.29 – Ciseaux de Nuremberg

Quelle force
#»

f 2 faut-il exercer au point 𝐵 pour qu’il y ait équilibre? Si l’on communique au
système un déplacement virtuel, toutes les diagonales verticales des parallélogrammes formés
par les tiges s’allongeront d’une même longueur 𝛿𝑟2. Par conséquent, 𝛿 #»r 1 = 3𝛿 #»r 2. Prenons

#»

f 2
dirigée vers le bas.

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2)
subissant des efforts :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»

f 1 ⋅ 𝛿
#»r 1 +

#»

f 2 ⋅ 𝛿
#»r 2 = 0

‖
#»

f 1‖ 𝛿𝑟1 − ‖
#»

f 2‖ 𝛿𝑟2 = 0

(3‖
#»

f 1‖ − ‖
#»

f 2‖) 𝛿𝑟2 = 0

‖
#»

f 2‖ = 3‖
#»

f 1‖

Remarque 1.11.1
Si l’on prend

#»

f 2 dirigée vers le haut on obtient ‖
#»

f 2‖ = −3‖
#»

f 1‖ ce qui est impossible.

Pour calculer la réaction #»𝑅 on la fait travailler virtuellement. Supposons que le point 𝐵 soit fixe,
on a 𝛿 #»r 1 = −2𝛿 #»r 3, où 𝛿 #»r 3 est le déplacement virtuel vers le bas du point 𝐶. Prenons #»𝑅 dirigée
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vers le haut. Le principe des travaux virtuels s’écrit :

#»

f 1 ⋅ 𝛿
#»r 1 +

#»𝑅 ⋅ 𝛿 #»r 3 = 0

‖
#»

f 1‖ 𝛿𝑟1 − ‖ #»𝑅‖ 𝛿𝑟3 = 0

(2‖
#»

f 1‖ − ‖ #»𝑅‖) 𝛿𝑟3 = 0

‖ #»𝑅‖ = 2‖
#»

f 1‖

Les ciseaux étant à l’équilibre, on vérifie que la somme des forces est nulle :

#»𝑅 +
#»

f 1 −
#»

f 2 = 2
#»

f 1 +
#»

f 1 − 3
#»

f 1
= #»0

1.11.5 Problème à deux degrés de liberté

Trois poids sont reliés par des câbles passant par trois poulies fixes𝐴, 𝐵, 𝐶. Pour quelle disposition
des câbles y a-t-il équilibre?

#»𝑃

2 #»𝑃

2 #»𝑃𝐴

𝐵

𝐶

𝑂

Fig. 1.30 – Problème à deux degrés de liberté

Supposons que l’équilibre soit réalisé et donnons au point𝑂 les déplacements virtuels élémentaires
𝛿 #»r 2 selon 𝑂𝐵, et 𝛿 #»r 3 selon 𝑂𝐶. Seules les tensions dans les câbles comptent, un schéma
équivalent du point de vue de la mécanique est celui-ci, vu de dessus :
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𝐴

𝐶

𝐵

𝑂

#»𝑃

2 #»𝑃

2 #»𝑃

𝛼

𝛽

𝛿 #»r 2

𝛿 #»r 3

Fig. 1.31 – Problème à deux degrés de liberté. Schéma équivalent vu de dessus

On peut réaliser n’importe quel déplacement du point 𝑂 dans le plan 𝐴𝐵𝐶, le déplacement selon
𝑂𝐴 étant une combinaison linéaire des déplacements selon 𝑂𝐵 et 𝑂𝐶.

Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (𝑁 = 3) selon
deux axes :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃𝐴 ⋅ (𝛿
#»r 2 + 𝛿 #»r 3) +

#»𝑃𝐵 ⋅ (𝛿
#»r 2 + 𝛿 #»r 3) +

#»𝑃𝐶 ⋅ (𝛿
#»r 2 + 𝛿 #»r 3) = 0

#»𝑃𝐴 ⋅ 𝛿
#»r 2 +

#»𝑃𝐴 ⋅ 𝛿
#»r 3 +

#»𝑃𝐵 ⋅ 𝛿
#»r 2 +

#»𝑃𝐵 ⋅ 𝛿
#»r 3 +

#»𝑃𝐶 ⋅ 𝛿
#»r 2 +

#»𝑃𝐶 ⋅ 𝛿
#»r 3 = 0

−‖ #»𝑃‖‖𝛿 #»r 2‖ cos(𝛼) − ‖ #»𝑃‖‖𝛿 #»r 3‖ cos(𝛽) + 2‖ #»𝑃‖‖𝛿 #»r 2‖ + 2‖ #»𝑃‖‖𝛿 #»r 3‖ cos(𝛼 + 𝛽)
+2‖ #»𝑃‖‖𝛿 #»r 2‖ cos(𝛼 + 𝛽) + 2‖ #»𝑃‖‖𝛿 #»r 3‖ = 0

[− cos(𝛼) + 2 + 2 cos(𝛼 + 𝛽)] ‖𝛿 #»r 2‖ + [− cos(𝛽) + 2 + 2 cos(𝛼 + 𝛽)] ‖𝛿 #»r 3‖ = 0

Les déplacements virtuels étant indépendants, on a le système :

{
2 + 2 cos(𝛼 + 𝛽) − cos(𝛼) = 0
2 + 2 cos(𝛼 + 𝛽) − cos(𝛽) = 0

⇒ {
cos(𝛼) = cos(𝛽)
2 + 2 cos(𝛼 + 𝛽) − cos(𝛼) = 0

On ne traite pas le cas 𝛼 = −𝛽 qui implique que les poids 𝐵 et 𝐶 soient confondus.

{
𝛼 = 𝛽
2 + 2 [2 cos2(𝛼) − 1] − cos(𝛼) = 0

⇒ {
𝛼 = 𝛽
4 cos2(𝛼) − cos(𝛼) = 0

⇒ {
𝛼 = 𝛽

cos(𝛼) = 1
4

⇒ 𝛼 = 𝛽 = 75°31′
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1.11.6 Poulie à ressort

Une poulie de rayon 𝑅 et de masse m est suspendue par un câble terminé par un ressort de
coefficient de raideur 𝑘. La force de rappel exercée par le ressort sur la poulie vaut :

#»

f = −𝑘𝑥 ⃗𝚥

On attache une masse 𝑚 au centre 𝐶 de la poulie. De quelle hauteur ℎ descend le centre de la
poulie ? L’allongement du ressort au nouvel équilibre vaut 2ℎ.

#»𝑃

C
I

2ℎ ℎ
𝑅

#»

f

Fig. 1.32 – Poulie à ressort

On imagine un déplacement virtuel vertical vers le bas du centre de gravité :

𝛿
#»

h = −‖𝛿
#»

h‖ ⃗𝚥

L’allongement virtuel du ressort compatible avec ce déplacement et avec les liaisons vaut

2𝛿
#»

h = −2‖𝛿
#»

h‖ ⃗𝚥

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :
𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 ⋅ 𝛿
#»

h +
#»

f ⋅ 2𝛿
#»

h = 0

𝑚𝑔‖𝛿
#»

h‖ − 𝑘 (2ℎ) 2‖𝛿
#»

h‖ = 0
𝑚𝑔 − 4𝑘ℎ = 0

ℎ =
𝑚𝑔
4𝑘
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Toutes les forces dérivant d’un potentiel, nous pouvons résoudre le problème grâce à (1.6) page 25.
Le potentiel est la somme des potentiels :

𝒱 = 1
2
𝑘 (2ℎ)2 −𝑚𝑔ℎ

= 2𝑘ℎ2 −𝑚𝑔ℎ

Nous avons alors :
𝜕𝒱
𝜕ℎ = 0

4𝑘ℎ − 𝑚𝑔 = 0

ℎ =
𝑚𝑔
4𝑘

De plus,
𝜕2𝒱
𝜕ℎ2 = 4𝑘 > 0

donc l’équilibre est stable.

1.11.7 Poulie différentielle de Weston

La poulie différentielle de Weston est formée de deux poulies de même axe, invariablement liées,
de rayons 𝑅1 et 𝑅2 peu différents, avec 𝑅2 < 𝑅1.

Pour quelle valeur de la force
#»

f y a-t-il équilibre?

#»𝑃

#»

f

𝛿𝜑

Fig. 1.33 – Poulie différentielle de Weston
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Communiquons aux poulies coaxiales une rotation virtuelle d’angle 𝛿𝜑. En respectant le méca-
nisme, la poulie extérieure enroule une longueur de câble 𝑅1 𝛿𝜑 et la poulie intérieure déroule
une longueur de câble 𝑅2 𝛿𝜑 : la longueur du câble sous tension diminue de (𝑅1 − 𝑅2) 𝛿𝜑. Le
poids #»𝑃 monte alors d’une hauteur (𝑅1 − 𝑅2) 𝛿𝜑/2.

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»

f ⋅ 𝛿 #»r 1 +
#»𝑃 ⋅ 𝛿 #»r 2 = 0

‖
#»

f ‖𝑅1𝛿𝜑 − ‖ #»𝑃‖ 𝑅1 − 𝑅2
2 𝛿𝜑 = 0

‖
#»

f ‖ =
‖ #»𝑃‖
2 (1 −

𝑅2
𝑅1
)

Plus 𝑅1 et 𝑅2 sont proches et plus la force
#»

f est démultipliée mais plus il faut tirer du câble.

1.11.8 Échelle contre un mur

Une échelle de masse 𝑚 et de longueur 𝐿 est appuyée contre un mur. La force de frottement
contre le mur est nulle. On cherche la valeur de la force de frottement

#»

f avec le sol pour qu’il y
ait équilibre.

1.11.8.1 Résolution par le principe des travaux virtuels
Pour s’affranchir des forces de réaction #»𝑅𝐴 et #»𝑅𝐵, effectuons un déplacement virtuel compatible
avec celles-ci, de sorte qu’elles ne travaillent pas. Ce déplacement est représenté en pointillés :

𝜃

G
𝛿𝑦𝐺

#»𝑃
#»𝑅𝐴

#»𝑅𝐵

#»

f 𝛿𝑥𝐴

𝛿𝑦𝐵

X

Y

0

Fig. 1.34 – Échelle contre un mur
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Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 ⋅ 𝛿 #»r 𝐺 +
#»

f ⋅ 𝛿 #»r 𝑓 = 0
𝑚𝑔𝛿𝑦𝐺 + 𝑓𝛿𝑥𝐴 = 0

Exprimons les déplacements virtuels en fonction de la coordonnée généralisée 𝜃. Nous avons :

{
𝑥𝐴 = 𝐿 cos(𝜃)

𝑦𝐺 = 𝐿
2 sin(𝜃)

⇒ {
𝛿𝑥𝐴 = −𝐿 sin(𝜃) 𝛿𝜃

𝛿𝑦𝐺 = 𝐿
2 cos(𝜃) 𝛿𝜃

𝑚𝑔 𝐿2 cos(𝜃) 𝛿𝜃 − 𝑓𝐿 sin(𝜃) 𝛿𝜃 = 0
𝑚𝑔
2 cos(𝜃) − 𝑓 sin(𝜃) = 0

𝑓 =
𝑚𝑔
2 cot 𝜃

Pour calculer la force de réaction #»𝑅𝐴, prenons un déplacement virtuel qui la fasse travailler et
compatible avec la liaison en 𝐵. L’échelle tourne autour de 𝐵 d’un angle 𝛿𝛼, le déplacement
virtuel est donc perpendiculaire à l’échelle est fait un angle 𝛽 avec le sol :

𝛽 + 𝜋
2 + 𝜃 = 𝜋

𝛽 = 𝜋
2 − 𝜃

A

B

𝜃

G
#»𝑃 #»𝑅𝐴

#»𝑅𝐵

#»

f
X

Y

𝛿𝛼

Fig. 1.35 – Échelle contre un mur. Calcul de la réaction du sol
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Le principe des travaux virtuels s’écrit :
#»𝑃 ⋅ 𝛿 #»r 𝐺 +

#»𝑅𝐴 ⋅ 𝛿
#»r 𝐴 +

#»

f ⋅ 𝛿 #»r 𝑓 = 0

−𝑚𝑔 𝐿2 sin(𝛽) 𝛿𝛼 + 𝑅𝐴𝐿 sin(𝛽) 𝛿𝛼 − 𝑓𝐿 cos(𝛽) 𝛿𝛼 = 0

−
𝑚𝑔
2 cos(𝜃) + 𝑅𝐴 cos(𝜃) − 𝑓 sin(𝜃) = 0

𝑅𝐴 =
𝑚𝑔
2 + 𝑓 tan(𝜃)

= 𝑚𝑔

1.11.8.2 Résolution par la mécanique de Newton
À l’équilibre la somme des forces exercées sur l’échelle est nulle :

Sur l’axe X : #»𝑅𝐵 +
#»

f = 0 ⇒ ‖ #»𝑅𝐵‖ = ‖
#»

f ‖
Sur l’axe Y : #»𝑅𝐴 +

#»𝑃 = 0 ⇒ ‖ #»𝑅𝐴‖ = 𝑚𝑔

A

B

𝜃

G

#»𝑃 #»𝑅𝐴

#»𝑅𝐵

#»

f
X

Y

O

Fig. 1.36 – Échelle contre un mur. Analyse des forces

Le moment des forces pris en un point quelconque doit aussi être nul. Prenons-le par rapport au
point O pour annuler le moment des forces de réaction :

#   »OA ×
#»

f + #   »OG × #»𝑃 = #»0

−𝐿 sin(𝜃) 𝑓 + 𝐿
2 cos(𝜃)𝑚𝑔 = 0

𝑓 =
𝑚𝑔
2 cot 𝜃

Cet exemple montre que le principe des travaux virtuels employé dans le cas d’un seul solide ne
présente pas un avantage décisif par rapport à la méthode classique. Cependant il s’impose pour
les problèmes comprenant des systèmes de solides.
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1.11.9 Poutre articulée

Une poutre de masse négligeable, composée de deux barres articulées en C, soutient une charge
#»𝑃 . Quelle est la pression exercée sur le support en B?

A

B C

D

#»𝑃
#»𝑅𝐴

#»𝑅𝐵
#»𝑅𝐷

a b

𝜌1 𝜌2

Fig. 1.37 – Poutre articulée

1.11.9.1 Résolution par le principe des travaux virtuels
Effectuons un déplacement virtuel pour lequel les liaisons ne travaillent pas :

A

𝛿 #»s 𝐵
C

𝛿 #»s 𝐷

𝛿 #»s 𝑃

Fig. 1.38 – Poutre articulée

Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (𝑁 = 3) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑅𝐵 ⋅ 𝛿
#»s 𝐵 +

#»𝑃 ⋅ 𝛿 #»s 𝑃 +
#»𝑅𝐷 ⋅ 𝛿

#»s 𝐷 = 0
‖ #»𝑅𝐵‖‖𝛿

#»s 𝐵‖ − ‖ #»𝑃‖‖𝛿 #»s 𝑃‖ = 0

soit,

‖ #»𝑅𝐵‖ = ‖ #»𝑃‖
‖𝛿 #»s 𝑃‖
‖𝛿 #»s 𝐵‖
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La relation entre les déplacements virtuels s’écrit :

⎧⎪
⎨⎪
⎩

‖𝛿 #»s 𝐵‖
𝑎 =

‖𝛿 #»s 𝐶‖
𝜌1

‖𝛿 #»s 𝑃‖
𝑏 =

‖𝛿 #»s 𝐶‖
𝜌2

⇒
‖𝛿 #»s 𝑃‖
‖𝛿 #»s 𝐵‖

=
𝑏 𝜌1
𝑎 𝜌2

par conséquent,

‖ #»𝑅𝐵‖ = ‖ #»𝑃‖
𝑏 𝜌1
𝑎 𝜌2

1.11.9.2 Résolution par la mécanique de Newton
Pour résoudre ce problème en mécanique de Newton, il faut étudier l’équilibre de chacun des
éléments de la poutre. La seconde barre exerce sur la première la force #»𝑅𝐶1, et la première barre
exerce sur la seconde la force #»𝑅𝐶2, égale et opposée à #»𝑅𝐶1 :

A D

#»𝑃
#»𝑅𝐴

#»𝑅𝐵

#»𝑅𝐷

#»𝑅𝐶2

#»𝑅𝐶1

Fig. 1.39 – Poutre articulée

On isole par la pensée la première barre. La somme des moments des forces exercés en A sur la
première barre s’écrit :

𝑎‖ #»𝑅𝐵‖ − 𝜌1‖
#»𝑅𝐶1‖ = 0

‖ #»𝑅𝐶1‖ =
𝑎
𝜌1
‖ #»𝑅𝐵‖

On isole par la pensée la seconde barre. La somme des moments des forces exercés au point D
sur la seconde barre s’écrit :

−𝜌2 ‖
#»𝑅𝐶2‖ + 𝑏‖ #»𝑃‖ = 0

‖ #»𝑅𝐶2‖ =
𝑏
𝜌2
‖ #»𝑃‖

En se servant du fait que ‖ #»𝑅𝐶1‖ = ‖ #»𝑅𝐶2‖, nous obtenons :

‖ #»𝑅𝐵‖ =
𝜌1 𝑏
𝑎 𝜌2

‖ #»𝑃‖
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L’équilibre des forces sur la première barre donne :

#»𝑅𝐴 +
#»𝑅𝐵 +

#»𝑅𝐶1 = 0
‖ #»𝑅𝐴‖ + ‖ #»𝑅𝐵‖ − ‖ #»𝑅𝐶1‖ = 0

‖ #»𝑅𝐴‖ = ‖ #»𝑅𝐶1‖ − ‖ #»𝑅𝐵‖

= 𝑏
𝜌2
‖ #»𝑃‖ −

𝜌1 𝑏
𝑎 𝜌2

‖ #»𝑃‖

= 𝑏
𝜌2
(1 −

𝜌1
𝑎 ) ‖

#»𝑃‖

La force #»𝑅𝐴 est toujours dirigée vers le haut car 𝑎 < 𝜌1.

1.11.10 Chaîne suspendue

Une chaîne de quatre tiges homogènes de masse 𝑚 et de longueur 𝐿 chacune, est fixée au plafond
par l’une de ses extrémités. Une force #»𝐹 est exercée horizontalement à l’autre extrémité.

#»𝐹

𝐺1

𝐺2

𝐺3

𝐺4

𝜃1

𝜃2

𝜃3

𝜃4

Fig. 1.40 – Chaîne suspendue

Étudions son équilibre. Soient 𝛿 #»r 1, 𝛿
#»r 2, 𝛿

#»r 3, 𝛿
#»r 4 les déplacements virtuels des centres de

gravité 𝐺1, 𝐺2, 𝐺3 et 𝐺4 des tiges, et soit 𝛿 #»r le déplacement virtuel de la force #»𝐹 . Appliquons le
principe des travaux virtuels (1.1) page 6 aux cinq parties mobiles (𝑁 = 5) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑃 ⋅ (𝛿 #»r 1 + 𝛿 #»r 2 + 𝛿 #»r 3 + 𝛿 #»r 4) +
#»𝐹 ⋅ 𝛿 #»r = 0

𝑚𝑔 (𝛿𝑦1 + 𝛿𝑦2 + 𝛿𝑦3 + 𝛿𝑦4) + 𝐹 𝛿𝑥 = 0
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où les 𝛿𝑦𝑖 et le 𝛿𝑥 sont positifs. Les relations suivantes

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑦1 = 𝐿1
2

cos(𝜃1)

𝑦2 = 𝐿 [cos(𝜃1) +
1
2

cos(𝜃2)]

𝑦3 = 𝐿 [cos(𝜃1) + cos(𝜃2) +
1
2

cos(𝜃3)]

𝑦4 = 𝐿 [cos(𝜃1) + cos(𝜃2) + cos(𝜃3) +
1
2

cos(𝜃4)]

𝑥 = 𝐿 [sin(𝜃1) + sin(𝜃2) + sin(𝜃3) + sin(𝜃4)]

donnent les expressions des déplacements virtuels :

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝛿𝑦1 = −𝐿1
2

sin(𝜃1) 𝛿𝜃1

𝛿𝑦2 = −𝐿 (sin(𝜃1) 𝛿𝜃1 +
1
2

sin(𝜃2) 𝛿𝜃2)

𝛿𝑦3 = −𝐿 (sin(𝜃1) 𝛿𝜃1 + sin(𝜃2) 𝛿𝜃2 +
1
2

sin(𝜃3) 𝛿𝜃3)

𝛿𝑦4 = −𝐿 (sin(𝜃1) 𝛿𝜃1 + sin(𝜃2) 𝛿𝜃2 + sin(𝜃3) 𝛿𝜃3 +
1
2

sin(𝜃4) 𝛿𝜃4)

𝛿𝑥 = 𝐿 (cos(𝜃1) 𝛿𝜃1 + cos(𝜃2) 𝛿𝜃2 + cos(𝜃3) 𝛿𝜃3 + cos(𝜃4) 𝛿𝜃4)

Si bien que,

𝑚𝑔 [−𝐿1
2

sin(𝜃1)𝛿𝜃1 − 𝐿 (sin(𝜃1)𝛿𝜃1 +
1
2

sin(𝜃2)𝛿𝜃2)

− 𝐿 (sin(𝜃1)𝛿𝜃1 + sin(𝜃2)𝛿𝜃2 +
1
2

sin(𝜃3)𝛿𝜃3)

− 𝐿 (sin(𝜃1)𝛿𝜃1 + sin(𝜃2)𝛿𝜃2 + sin(𝜃3)𝛿𝜃3 +
1
2

sin(𝜃4)𝛿𝜃4)]

+ 𝐹𝐿 (cos(𝜃1)𝛿𝜃1 + cos(𝜃2)𝛿𝜃2 + cos(𝜃3)𝛿𝜃3 + cos(𝜃4)𝛿𝜃4) = 0

On simplifie par 𝐿. Les 𝛿𝜃𝑖 étant indépendants, nous avons :

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−
𝑚𝑔
2 sin(𝜃1) − 3𝑚𝑔 sin(𝜃1) + 𝐹 cos(𝜃1) = 0

−
𝑚𝑔
2 sin(𝜃2) − 2𝑚𝑔 sin(𝜃2) + 𝐹 cos(𝜃2) = 0

−
𝑚𝑔
2 sin(𝜃3) − 𝑚𝑔 sin(𝜃3) + 𝐹 cos(𝜃3) = 0

−
𝑚𝑔
2 sin(𝜃4) + 𝐹 cos(𝜃4) = 0

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑚𝑔 sin(𝜃1) (
1
2
+ 3) = 𝐹 cos(𝜃1)

𝑚𝑔 sin(𝜃2) (
1
2
+ 2) = 𝐹 cos(𝜃2)

𝑚𝑔 sin(𝜃3) (
1
2
+ 1) = 𝐹 cos(𝜃3)

𝑚𝑔
2 sin(𝜃4) = 𝐹 cos(𝜃4)

⇒

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

tan(𝜃1) =
2
7

𝐹
𝑚𝑔

tan(𝜃2) =
2
5

𝐹
𝑚𝑔

tan(𝜃3) =
2
3

𝐹
𝑚𝑔

tan(𝜃4) =
2𝐹
𝑚𝑔
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1.11.11 Système isostatique

Considérons le tabouret à trois pieds suivant :

𝐴

#»𝑃𝐵

𝐶

Fig. 1.41 – Système isostatique

Donnons au tabouret une rotation virtuelle autour de la droite passant par les points de contact B
et C, de sorte que le pied A se soulève. Les réactions en B et C ne travaillent pas. Dans le triangle
équilatéral 𝐴𝐵𝐶, il reste à savoir quelle est la position du centre de gravité 𝐺 sur la hauteur 𝑂𝐴,
le point 𝑂 étant au milieu de 𝐵𝐶 :

#   »GA + #   »GB + #   »GC = #»0
#   »GO + #   »OA + #   »GO + #   »OB + #   »GO + #   »OC = #»0

3 #   »GO + #   »OA = #»0
#   »OG = 1

3
#   »OA

Lors de la rotation virtuelle le point 𝐺 se soulèvera trois fois moins que le point 𝐴.

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :
𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑅𝐴 ⋅ 𝛿
#»r 𝐴 +

#»𝑃 ⋅ 𝛿 #»r 𝐺 = 0

‖ #»𝑅𝐴‖𝛿𝑧 − 𝑚𝑔 𝛿𝑧3 = 0

‖ #»𝑅𝐴‖ =
𝑚𝑔
3
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De la même façon on trouve les réactions 𝑅𝐵 et 𝑅𝐶, égales à 𝑅𝐴. Bien entendu, par symétrie du
problème on trouve directement le résultat.

1.11.12 Système hyperstatique

Considérons le tabouret à quatre pieds suivant :

#»𝑃
𝐴

𝐶
𝐵

𝐷

Fig. 1.42 – Système hyperstatique

Donnons au tabouret une rotation virtuelle autour de la droite passant par les points de contact
𝐶 et 𝐷, de sorte que les pieds 𝐴 et 𝐵 se soulèvent. Les réactions en 𝐶 et 𝐷 ne travaillent pas.
Appliquons le principe des travaux virtuels (1.1) page 6 aux trois parties mobiles (𝑁 = 3) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑅𝐴 ⋅ 𝛿
#»r 𝐴 +

#»𝑅𝐵 ⋅ 𝛿
#»r 𝐵 +

#»𝑃 ⋅ 𝛿 #»r 𝐺 = 0

‖ #»𝑅𝐴‖𝛿𝑧 + ‖ #»𝑅𝐵‖𝛿𝑧 − 𝑚𝑔 𝛿𝑧2 = 0

‖ #»𝑅𝐴‖ + ‖ #»𝑅𝐵‖ =
𝑚𝑔
2

De la même façon on trouve les relations suivantes :

‖ #»𝑅𝐵‖ + ‖ #»𝑅𝐶‖ = ‖ #»𝑅𝐶‖ + ‖ #»𝑅𝐷‖ = ‖ #»𝑅𝐷‖ + ‖ #»𝑅𝐴‖ =
𝑚𝑔
2

En utilisant ces quatres relations, on a :

‖ #»𝑅𝐴‖ = ‖ #»𝑅𝐶‖
‖ #»𝑅𝐵‖ = ‖ #»𝑅𝐷‖

On aurait pu trouver ces deux relations directement en considérant des rotations selon les diago-
nales 𝐴𝐶 et 𝐵𝐷. On en déduit :

‖ #»𝑅𝐴‖ + ‖ #»𝑅𝐵‖ + ‖ #»𝑅𝐶‖ + ‖ #»𝑅𝐷‖ = 𝑚𝑔

Donnons au tabouret une rotation virtuelle autour de la droite parallèle à 𝐵𝐷 passant par 𝐴, de
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sorte que les pieds 𝐵, 𝐶 et 𝐷 se soulèvent :

#»𝑅𝐵 ⋅ 𝛿
#»r 𝐵 +

#»𝑅𝐶 ⋅ 𝛿
#»r 𝐶 +

#»𝑅𝐷 ⋅ 𝛿
#»r 𝐷 +

#»𝑃 ⋅ 𝛿 #»r 𝐺 = 0

‖ #»𝑅𝐶‖𝛿𝑧 + ‖ #»𝑅𝐵‖
𝛿𝑧
2 + ‖ #»𝑅𝐷‖

𝛿𝑧
2 − 𝑚𝑔 𝛿𝑧2 = 0

‖ #»𝑅𝐶‖ + ‖ #»𝑅𝐵‖ =
𝑚𝑔
2

Il est impossible de déterminer la réaction individuelle de chaque pied, car aucun déplacement
virtuel ne permet de faire travailler une seule réaction à la fois. Ce système est dit hyperstatique :
l’équilibre peut être réalisé avec un pied en moins.

1.11.13 Le levier

Pour trouver directement l’expression de la force
#»

f 2 en fonction de la réaction d’appui #»𝑅 , on
effectue une rotation virtuelle d’angle 𝛿𝛼 telle que la force

#»

f 1 ne travaille pas :

#»𝑅

#»

f 1

#»

f 2

𝛿𝛼

Fig. 1.43 – Expression de la force de levier

Appliquons le principe des travaux virtuels (1.1) page 6 aux deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝑅 ⋅ 𝛿 #»r +
#»

f 2 ⋅ 𝛿
#»r 2 = 0

‖ #»𝑅‖ 𝑎1𝛿𝛼 − ‖
#»

f 2‖ (𝑎1 + 𝑎2) 𝛿𝛼 = 0

‖
#»

f 2‖ =
‖ #»𝑅‖ 𝑎1
𝑎1 + 𝑎2

1.11.13.1 Calcul des efforts dans le levier
L’effort résultant a une composante de cisaillement #»𝑇 perpendiculaire au levier, et une composante
de dilatation-compression #»𝑁 suivant l’axe du levier.

Pour calculer l’effort tranchant #»𝑇 en un point 𝑝 du levier, on donne une translation virtuelle
verticale 𝛿 #»r = 𝛿𝑧 ⃗𝚥 à une partie du levier, p. ex. à droite de ce point :
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#»𝑅
#»

f 1
#»

f 2
#»𝑇

𝛿𝑧
𝑝

Fig. 1.44 – Effort tranchant

L’effort en compression-dilatation et le moment résultant ne travaillent pas. Choisissons de façon
arbitraire #»𝑇 vers le haut.

Le principe des travaux virtuels s’écrit :

#»𝑇 ⋅ 𝛿 #»r +
#»

f 2 ⋅ 𝛿
#»r = 0

‖ #»𝑇‖ 𝛿𝑧 − ‖
#»

f 2‖ 𝛿𝑧 = 0

‖ #»𝑇‖ = ‖
#»

f 2‖

La partie gauche de la section exerce sur la partie droite un effort tranchant vertical vers le haut,
et la partie droite exerce un effort tranchant vertical vers le bas sur la partie gauche.

Pour calculer l’effort de compression-dilatation #»𝑁 dans le levier, on donne à la partie coupée une
translation virtuelle horizontale 𝛿 #»r = 𝛿𝑥 ⃗𝚤 :

#»𝑅
#»

f 1
#»

f 2
#»𝑁𝛿𝑥

Fig. 1.45 – Effort de compression-dilatation

L’effort tranchant et le moment résultant ne travaillent pas. Choisissons arbitrairement #»𝑁 vers la
droite. Le principe des travaux virtuels s’écrit :

#»𝑁 ⋅ 𝛿 #»r = 0
‖ #»𝑁‖ 𝛿𝑥 = 0

‖ #»𝑁‖ = 0
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1.11.13.2 Calcul du moment des efforts dans le levier
Le moment résultant a une composante en torsion

↶

𝑀𝑡 suivant l’axe du levier, et une composante

en flexion

↶

𝑀𝑓 perpendiculaire au levier.

Pour calculer le moment en flexion

↶

𝑀𝑓 dans le levier, on donne à la partie coupée une rotation
virtuelle 𝛿𝜃 dans le plan.

⊗

#»𝑅
#»

f 1
#»

f 2

↶

𝑀𝑓

𝛿𝜃
𝑎

Fig. 1.46 – Moment en flexion

L’effort tranchant, l’effort en compression-dilatation, et le moment en torsion ne travaillent pas.

Choisissons arbitrairement le moment en flexion

↶

𝑀𝑓 dirigé vers l’arrière. La rotation virtuelle
d’angle 𝛿𝜃 se faisant dans le sens du moment en flexion, nous avons un signe positif devant↶

𝑀𝑓 𝛿𝜃. Le principe des travaux virtuels s’écrit :

+

↶

𝑀𝑓 𝛿𝜃 +
#»

f 2 ⋅ 𝛿
#»r 2 = 0

↶

𝑀𝑓 𝛿𝜃 + ‖
#»

f 2‖ 𝑎 𝛿𝜃 = 0

↶

𝑀𝑓 = −‖
#»

f 2‖ 𝑎

Le moment en flexion exercé par la partie gauche de la section sur la partie droite est donc dirigé
vers le lecteur.

Pour calculer le moment en torsion

↶

𝑀𝑡 dans le levier, on donne à la partie coupée une rotation
virtuelle 𝛿𝛽 selon l’axe du levier :

#»𝑅
#»

f 1

#»

f 2

↶

𝑀𝑡 𝛿𝛽

Fig. 1.47 – Moment en torsion
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L’effort tranchant, l’effort en compression-dilatation, et le moment en flexion ne travaillent pas.

Choisissons le moment en torsion

↶

𝑀𝑡 dirigé vers la droite. La rotation virtuelle d’angle 𝛿𝛽 choisie
étant dans le sens contraire du moment en torsion, le signe est négatif. Le principe des travaux
virtuels s’écrit :

−

↶

𝑀𝑡 𝛿𝛽 = 0

↶

𝑀𝑡 = 0

1.11.14 Système bielle-manivelle

Considérons la bielle-manivelle suivante supposée à l’équilibre. En 𝐵 on exerce une force #»𝐹 , en
retour le gaz dans la cavité exerce la force

#»

f .

𝛼 𝛽

#»𝐹

#»

f

𝑅

𝑂 𝐴

𝐿

𝐵

𝛿 #»r 𝐴

𝛿 #»r 𝐵

Fig. 1.48 – Système bielle-manivelle

Donnons au système un déplacement virtuel compatible avec les liaisons, c.-à-d. 𝛿 #»r 𝐵 perpendi-
culaire à 𝑅 car 𝐵 décrit un cercle. Appliquons le principe des travaux virtuels (1.1) page 6 aux
deux parties mobiles (𝑁 = 2) :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

#»𝐹 ⋅ 𝛿 #»r 𝐵 +
#»

f ⋅ 𝛿 #»r 𝐴 = 0

#»𝐹 ⋅ 𝛿 #»r 𝐵 est positif et 𝛿𝛼 est négatif :

−‖ #»𝐹‖𝑅 cos(𝛼)𝛿𝛼 − ‖
#»

f ‖𝛿[𝑂𝐴] = 0

On retrouve le fait que la composante de la force exercée selon l’axe de la manivelle [𝑂𝐵] ne sert
à rien. On suppose dans ce qui suit que la force est exercée perpendiculairement à la manivelle,
on supprime donc le cosinus alpha.

sciences-physiques.neocities.org 49

http://sciences-physiques.neocities.org


Chapitre 1 : Le principe des travaux virtuels en statique

Il reste à trouver l’expression de 𝛿[𝑂𝐴] :

[𝑂𝐴] = 𝑅 cos(𝛼) + 𝐿 cos(𝛽)

𝛿[𝑂𝐴] = 𝜕[𝑂𝐴]
𝜕𝛼 𝛿𝛼 + 𝜕[𝑂𝐴]

𝜕𝛽 𝛿𝛽

= −𝑅 sin(𝛼)𝛿𝛼 − 𝐿 sin(𝛽)𝛿𝛽

Si bien que :

‖ #»𝐹‖𝑅𝛿𝛼 − ‖
#»

f ‖ (𝑅 sin(𝛼)𝛿𝛼 + 𝐿 sin(𝛽)𝛿𝛽) = 0

(‖ #»𝐹‖ − ‖
#»

f ‖ sin(𝛼)) 𝑅𝛿𝛼 − 𝐿‖
#»

f ‖ sin(𝛽)𝛿𝛽 = 0

On ne peut pas annuler les coefficients devant les angles 𝛼 et 𝛽 car ils ne sont pas indépendants.
La relation existant entre les deux est différentiée,

𝑅 sin(𝛼) = 𝐿 sin(𝛽)
𝑅 cos(𝛼)𝛿𝛼 = 𝐿 cos(𝛽)𝛿𝛽

𝑅 cos(𝛼)𝛿𝛼 − 𝐿 cos(𝛽)𝛿𝛽 = 0

Nous avons deux équations pour deux inconnues, ‖ #»𝐹‖ et ‖
#»

f ‖, utilisons la méthode des multipli-
cateurs indéterminés de Lagrange :

(‖ #»𝐹‖ − ‖
#»

f ‖ sin(𝛼)) 𝑅𝛿𝛼 − 𝐿𝑓 sin(𝛽)𝛿𝛽 + 𝜆 (𝑅 cos(𝛼)𝛿𝛼 − 𝐿 cos(𝛽)𝛿𝛽) = 0

(‖ #»𝐹‖ − ‖
#»

f ‖ sin(𝛼) + 𝜆 cos(𝛼)) 𝑅𝛿𝛼 − (‖
#»

f ‖ sin(𝛽) + 𝜆 cos(𝛽)) 𝐿 𝛿𝛽 = 0

On obtient le système d’équations suivant :

{
‖

#»

f ‖ sin(𝛽) + 𝜆 cos(𝛽) = 0

‖ #»𝐹‖ − ‖
#»

f ‖ sin(𝛼) + 𝜆 cos(𝛼) = 0

{
𝜆 = −‖

#»

f ‖ tan(𝛽)

‖ #»𝐹‖ = ‖
#»

f ‖ sin(𝛼) − 𝜆 cos(𝛼)

‖ #»𝐹‖ = ‖
#»

f ‖ (sin(𝛼) +
sin(𝛽) cos(𝛼)

cos(𝛽) )

= ‖
#»

f ‖
sin(𝛼) cos(𝛽) + sin(𝛽) cos(𝛼)

cos(𝛽)

= ‖
#»

f ‖
sin(𝛼 + 𝛽)

cos(𝛽)

Lorsque 𝛼 et 𝛽 tendent vers zéro, sin(𝛼 + 𝛽) tend vers zéro et cos(𝛽) tend vers un. Dans ce cas, si
l’une des forces reste constante, soit ‖ #»𝐹‖ tend vers zéro, soit ‖

#»

f ‖ tend vers l’infini.
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1.11.15 Vitesses virtuelles et puissances virtuelles

Nous pouvons résoudre le problème précédent plus facilement en utilisant les notions de vitesse
virtuelle et de puissance virtuelle.

𝛼 𝛽

R

O A

L

B

I

𝛼 + 𝛽

𝜋
2
− 𝛽

𝜋
2
− 𝛼

Fig. 1.49 – Système bielle-manivelle

Soit 𝑂 l’origine, et soient #»r 𝐴 et #»r 𝐵 les vecteurs position des points 𝐴 et 𝐵. Leurs vitesses
virtuelles s’écrivent :

#»v 𝐴 = 𝛿 #»r 𝐴
d𝑡 et #»v 𝐵 =

𝛿 #»r 𝐵
d𝑡

où 𝑡 est le temps. La bielle-manivelle est supposée à l’équilibre, les points A et B n’ont donc pas
de vitesse, c’est en cela qu’elles sont virtuelles. En multipliant la somme des travaux virtuels par
d𝑡, nous obtenons la somme des puissances virtuelles :

#»𝐹 ⋅ #»v 𝐵 +
#»

f ⋅ #»v 𝐴 = 0

‖ #»𝐹‖‖ #»v 𝐵‖ − ‖
#»

f ‖‖ #»v 𝐴‖ = 0

‖ #»𝐹‖ = ‖
#»

f ‖
‖ #»v 𝐴‖
‖ #»v 𝐵‖

Soit 𝐼 le centre instantané de rotation, commun aux points A et B. C’est le point d’intersection
des droites perpendiculaires aux vitesses #»v 𝐴 et #»v 𝐵. Soit 𝜔 la vitesse angulaire commune aux
points 𝐴 et 𝐵 :

{
‖ #»v 𝐴‖ = 𝜔 [𝐼𝐴]
‖ #»v 𝐵‖ = 𝜔 [𝐼𝐵]

⇒ ‖ #»𝐹‖ = ‖
#»

f ‖ [𝐼𝐴]
[𝐼𝐵]

Dans le triangle AIB, soit ℎ la hauteur (non représentée) passant par le point 𝐼. Nous avons les
relations suivantes :

{
sin (𝜋/2 − 𝛽) = ℎ/[𝐼𝐴]
sin(𝛼 + 𝛽) = ℎ/[𝐼𝐵]

⇒ [𝐼𝐴] sin (𝜋/2 − 𝛽) = [𝐼𝐵] sin(𝛼 + 𝛽)
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[𝐼𝐴]
[𝐼𝐵]

=
sin(𝛼 + 𝛽)

cos(𝛽)
et,

‖ #»𝐹‖ = ‖
#»

f ‖
sin(𝛼 + 𝛽)

cos(𝛽)
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LE PRINCIPE DES TRAVAUX VIRTUELS EN
DYNAMIQUE
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2.1 Généralisation du principe à la dynamique

D’Alembert généralise l’utilisation du principe des travaux virtuels (1.1) page 6 en l’appliquant à la
dynamique. Dans un référentiel galiléen, donc en l’absence de forces fictives dues au mouvement
de l’observateur, cherchons les équations du mouvement d’un système de solides mobiles soumis
à des contraintes.

Soit #»𝐹 𝑖 le modèle de la force totale exercée sur la 𝑖e partie mobile du système, somme des modèles
des forces actives et des modèles des forces de contrainte :

#»𝐹 𝑖
def
= #»𝐹 (𝑎)

𝑖 + #»𝐹 (𝑐)
𝑖

Notons #»p 𝑖 la quantité de mouvement de la 𝑖e partie mobile. La relation fondamentale de la
dynamique appliquée à la 𝑖e partie en mouvement s’écrit :

#»𝐹 𝑖 =
#»ṗ 𝑖

Tout problème de dynamique peut se ramener à un problème de statique, simplement en écrivant
que

∀𝑖, #»𝐹 𝑖 −
#»ṗ 𝑖 = 0
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et en considérant que la force d’inertie #»ṗ 𝑖 est maintenant une force appliquée. En sommant sur
l’ensemble des 𝑁 parties mobiles formant le système,

∀𝛿 #»r 𝑖,
𝑁
∑
𝑖=1

( #»𝐹 𝑖 −
#»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

où chacun des 𝑁 termes est identiquement nul. En comparaison, le principe des travaux virtuels
(1.1) page 6 ne contient pas les forces de contrainte mais uniquement les forces actives. En
revanche dans le principe des travaux virtuels (1.1) page 6 les termes ne sont pas identiquement
nuls, seule la somme des termes est nulle.

D’Alembert montre alors que l’on peut s’affranchir des forces de contrainte comme dans le cas
de la statique. Pour le démontrer faisons un retour sur la statique. La somme des forces s’exerçant
sur chaque partie mobile d’un système à l’équilibre est nulle :

∀𝑖, #»𝐹 𝑖 =
#»0

En sommant 𝑁 termes nuls, nous avons :

∀𝛿 #»r 𝑖,
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅ 𝛿
#»r 𝑖 = 0

Décomposons la somme des forces s’exerçant sur chacune des 𝑁 parties mobiles du système en
une force active et une force de contrainte :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 + #»𝐹 (𝑐)

𝑖 ) ⋅ 𝛿 #»r 𝑖 = 0

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 +

𝑁
∑
𝑖=1

#»𝐹 (𝑐)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

En supposant les liaisons parfaites, appliquons le principe des travaux virtuels (1.1) page 6 pour
des 𝛿 #»r 𝑖 compatibles entre eux et avec les liaisons. Le premier terme est alors nul et il reste :

𝑁
∑
𝑖=1

#»𝐹 (𝑐)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

Cette relation constitue le principe de D’Alembert : le travail total des forces de contrainte est nul
lors d’un ensemble de déplacements virtuels compatibles entre eux et avec les liaisons, celles-ci
étant parfaites. Ce principe est équivalent au principe des travaux virtuels.

Remarque 2.1.1
Individuellement les forces de contrainte peuvent travailler lors d’un déplacement virtuel compatible avec les liaisons, seule la somme
des travaux virtuels des forces de contrainte est nulle (pour des déplacements virtuels compatibles entre eux et avec les liaisons, celles-ci
étant parfaites), voir p. ex. (1.2) page 8.

On peut donc s’affranchir des forces de contrainte et énoncer le principe des travaux virtuels
appliqué à la dynamique :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0 (2.1)

où :
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• les déplacements virtuels sont compatibles entre eux
• les déplacements virtuels sont compatibles avec les liaisons
• les liaisons sont parfaites

Chacun des termes n’est plus nul puisqu’il n’y a plus les forces de contrainte, seule la somme est
nulle.

Remarque 2.1.2
La force d’inertie, qui s’écrit

#»ṗ = 𝑚 ̈#»r lorsque la masse est constante, contient l’accélération réelle ̈#»r = 𝑑2 #»r /d𝑡2 ou d #»r est un
déplacement infinitésimal réel, et d𝑡 un élément infinitésimal de temps réel.

De la même façon que la relation fondamentale de la dynamique s’applique aussi à la statique,
le principe de travaux virtuels (2.1) s’applique à la dynamique et à la statique. Avant de voir
quelques exemples, faisons un rappel sur les coordonnées polaires.

2.2 Coordonnées polaires

Nous nous intéressons ici aux coordonnées polaires (𝜌, 𝜃) prises dans le plan (𝑥, 𝑦).

2.2.1 Expression des vecteurs de base de la base polaire orthonormée

𝑥

𝑦

𝑂 ⃗𝚤

⃗𝚥 𝑀
𝜌 b

#»e 𝜃
#»e 𝜌

𝜃
+

Fig. 2.1 – Vecteurs de la base polaire orthonormée

1. Première méthode

En se servant de la fig. 2.1, exprimons les vecteurs unitaires de base #»e 𝜌 et #»e 𝜃 en fonction
de ceux de la base rectangulaire normée ( ⃗𝚤, ⃗𝚥) :

{
#»e 𝜌 = cos(𝜃) ⃗𝚤 + sin(𝜃) ⃗𝚥
#»e 𝜃 = − sin(𝜃) ⃗𝚤 + cos(𝜃) ⃗𝚥

2. Deuxième méthode
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Soit 𝑀 un point de coordonnées rectangulaires (𝑥, 𝑦) et de coordonnées polaires (𝜌, 𝜃). Le
changement de coordonnées rectangulaires (𝑥, 𝑦) à polaires (𝜌, 𝜃) s’écrit :

{
𝜌 = √𝑥 + 𝑦

𝜃 = arctan (𝑥𝑦)

Réciproquement, le changement de coordonnées polaires à rectangulaires s’écrit :

{
𝑥 = 𝜌 cos(𝜃)
𝑦 = 𝜌 sin(𝜃)

𝜌 ⩾ 0 et 0 ⩽ 𝜃 < 2𝜋 (2.2)

Déterminons les vecteurs unitaires de base #»e 𝜌 et #»e 𝜃 en différentiant le rayon vecteur
#»r = #    »OM exprimé en coordonnées polaires (𝜌, 𝜃) dans la base rectangulaire normée ( ⃗𝚤, ⃗𝚥) :

#»r (𝑥, 𝑦) = 𝑥 ⃗𝚤 + 𝑦 ⃗𝚥
#»r (𝜌, 𝜃) = 𝜌 cos(𝜃) ⃗𝚤 + 𝜌 sin(𝜃) ⃗𝚥

d #»r (𝜌, 𝜃) = (𝜕
#»r
𝜕𝜌 )𝜃

d𝜌 + (𝜕
#»r
𝜕𝜃 )𝜌

d𝜃

= [cos(𝜃) ⃗𝚤 + sin(𝜃) ⃗𝚥]d𝜌 + 𝜌[− sin(𝜃) ⃗𝚤 + cos(𝜃) ⃗𝚥]d𝜃

Les vecteurs unitaires de la base polaire ont alors pour expression,

{
#»e 𝜌 = cos(𝜃) ⃗𝚤 + sin(𝜃) ⃗𝚥
#»e 𝜃 = − sin(𝜃) ⃗𝚤 + cos(𝜃) ⃗𝚥

et l’on a :
d #»r (𝜌, 𝜃) = #»e 𝜌 d𝜌 + 𝜌 #»e 𝜃 d𝜃

2.2.2 Expression du vecteur position

Cherchons l’expression du vecteur position en coordonnées polaires (𝜌, 𝜃) dans la base polaire
orthonormée ( #»e 𝜌,

#»e 𝜃) :

#»r (𝜌, 𝜃) = 𝜌 cos(𝜃) ⃗𝚤 + 𝜌 sin(𝜃) ⃗𝚥
= 𝜌[cos(𝜃) ⃗𝚤 + sin(𝜃) ⃗𝚥]
= 𝜌 #»e 𝜌

2.2.3 Dérivée des vecteurs de base

Nous aurons besoin de la dérivée des vecteurs de base pour exprimer la vitesse et l’accélération :

⎧

⎨
⎩

d #»e 𝜌
d𝑡 = − sin(𝜃) d𝜃d𝑡 ⃗𝚤 + cos(𝜃) d𝜃d𝑡 ⃗𝚥

d #»e 𝜃
d𝑡 = − cos(𝜃) d𝜃d𝑡 ⃗𝚤 − sin(𝜃) d𝜃d𝑡 ⃗𝚥

⇒ {
#»̇e 𝜌 = ̇𝜃 #»e 𝜃
#»̇e 𝜃 = − ̇𝜃 #»e 𝜌
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2.2.4 Expression du vecteur vitesse

Le vecteur vitesse est la dérivée première du vecteur position par rapport au temps. En coordonnées
polaires, dans la base polaire orthonormée, il a pour expression :

#»v = d #»r
d𝑡

= d
d𝑡 (𝜌

#»e 𝜌)

= ̇𝜌 #»e 𝜌 + 𝜌 #»̇e 𝜌

#»v = ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜃 #»e 𝜃 (2.3)

2.2.5 Expression du vecteur accélération

Le vecteur accélération est la dérivée première du vecteur vitesse par rapport au temps. En
coordonnées polaires, dans la base polaire orthonormée, il a pour expression :

#»a = d #»v
d𝑡

= d
d𝑡 ( ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜃 #»e 𝜃)

= ̈𝜌 #»e 𝜌 + ̇𝜌 #»̇e 𝜌 + ̇𝜌 ̇𝜃 #»e 𝜃 + 𝜌 ̈𝜃 #»e 𝜃 + 𝜌 ̇𝜃 #»̇e 𝜃
= ̈𝜌 #»e 𝜌 + ̇𝜌 ̇𝜃 #»e 𝜃 + ̇𝜌 ̇𝜃 #»e 𝜃 + 𝜌 ̈𝜃 #»e 𝜃 − 𝜌 ̇𝜃2 #»e 𝜌

#»a = ( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 + (2 ̇𝜌 ̇𝜃 + 𝜌 ̈𝜃) #»e 𝜃 (2.4)

2.3 Exemples

Exemple 2.3.1 : Volant d’inertie
Une masse 𝑚 est attachée à une corde enroulée autour d’une poulie de masse 𝑀, de rayon
𝑅 et de moment d’inertie 𝐼. Quelle est l’accélération de la masse 𝑚?
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+

#»𝑃

𝑅

𝛿𝜑

𝛿 #»r

𝑀

𝑚

Fig. 2.2 – Volant d’inertie

La position du système ne dépend que de l’angle 𝜑 de rotation de la poulie. Donnons à la
poulie une rotation virtuelle d’angle 𝛿𝜑. Le déplacement virtuel de 𝑚 vers le bas s’écrit :

𝑟 = 𝑅𝜑
𝛿𝑟 = 𝑅𝛿𝜑
𝛿 #»r = −𝑅𝛿𝜑 ⃗𝚥

Pour calculer la force d’inertie #»ṗ𝑀 de la poulie en rotation, considérons un élément de
masse d𝑀 de cette poulie, à la distance 𝜌 du centre. Son vecteur déplacement virtuel 𝛿 #»s a
pour expression

𝑠 = 𝜌𝜑
𝛿𝑠 = 𝜌 𝛿𝜑

𝛿 #»s =
𝜌
𝑅 𝛿𝑟

#»e 𝜃

où #»e 𝜃 est un vecteur polaire unitaire partout perpendiculaire au rayon de la poulie. La
norme de la force d’inertie de l’élément d𝑀 s’écrit :

‖ #»ṗ d𝑀‖ = d𝑀 ̈𝑠
= d𝑀𝜌 ̈𝜑

= d𝑀
𝜌
𝑅 ̈𝑟

Le travail virtuel de la force d’inertie de l’élément d𝑀 s’écrit :
#»ṗ d𝑀 ⋅ 𝛿 #»s = d𝑀

𝜌
𝑅 ̈𝑟 #»e 𝜃 ⋅

𝜌
𝑅 𝛿𝑟

#»e 𝜃

= ̈𝑟 𝛿𝑟
𝑅2 𝜌2d𝑀

Le travail virtuel de la force d’inertie de la poulie s’écrit :

#»ṗ𝑀 ⋅ 𝛿 #»s =
ˆ 𝑀

0

#»ṗ d𝑀 ⋅ 𝛿 #»s

= ̈𝑟 𝛿𝑟
𝑅2

ˆ 𝑀

0
𝜌2 d𝑀

= 𝐼
𝑅2 ̈𝑟 𝛿𝑟
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Appliquons le principe des travaux virtuels (2.1) page 54 pour les deux parties mobiles
(𝑁 = 2), la masse et la poulie, pour des déplacements virtuels compatibles entre eux et
avec les liaisons :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 − #»ṗ𝑚) ⋅ 𝛿
#»r − #»ṗ𝑀 ⋅ 𝛿 #»s = 0

𝑚𝑔𝛿𝑟 − 𝑚 ̈𝑟𝛿𝑟 − 𝐼
𝑅2 ̈𝑟 𝛿𝑟 = 0

̈𝑟 (𝑚 + 𝐼
𝑅2 ) = 𝑚𝑔

̈𝑟 =
𝑔

1 + 𝐼/ (𝑚𝑅2)

2.4 Comparaison avec la mécanique de Newton

Exemple 2.4.1 : Deux masses reliées par une poulie
Deux masses sont attachées à une corde passant par une poulie. Quelle est l’accélération
de ces masses?

a) Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique à la masse 𝑚1 :

𝑚1
̈#»r 1 = ∑

#»

f (𝑒)

= #»𝑃 1 +
#»𝑇

#»𝑇

#»𝑇

#»𝑃 1

#»𝑃 2

Fig. 2.3 – Masses reliées par une poulie

En projetant sur l’axe verticale orienté vers le haut :

𝑚1 ̈𝑟1 = −𝑚1𝑔 + 𝑇 (2.5)

sciences-physiques.neocities.org 59

http://sciences-physiques.neocities.org


Chapitre 2 : Le principe des travaux virtuels en dynamique

̈𝑟1 est la composante verticale de l’accélération de la masse𝑚1, elle peut être positive,
négative ou nulle. Pour le vecteur déplacement réel,

∀𝑡, d #»r 1 = −d #»r 2 ⇒ #»̇r 1 = − #»̇r 2 ⇒ ̈#»r 1 = − ̈#»r 2

et pour la composante verticale,
̈𝑟2 = − ̈𝑟1

qui donne pour la masse 𝑚2 :

𝑚2 ̈𝑟2 = −𝑚2𝑔 + 𝑇
𝑚2 ̈𝑟1 = 𝑚2𝑔 − 𝑇

En additionnant avec (2.5) :

(𝑚1 +𝑚2) ̈𝑟1 = (𝑚2 −𝑚1) 𝑔

̈𝑟1 =
𝑚2 −𝑚1
𝑚1 +𝑚2

𝑔

On vérifie que ̈𝑟1 = 0 pour 𝑚1 = 𝑚2. L’accélération ̈𝑟1 est bien positive (donc vers le
haut) si 𝑚2 > 𝑚1.
Pour obtenir la tension dans la corde on soustrait les deux expressions :

(𝑚1 −𝑚2) ̈𝑟1 = − (𝑚1 +𝑚2) 𝑔 + 2𝑇

𝑇 = 1
2
[(𝑚1 +𝑚2) 𝑔 + (𝑚1 −𝑚2) ̈𝑟1]

= 1
2
[(
𝑚1 +𝑚2)

2

𝑚1 +𝑚2
𝑔 + (𝑚1 −𝑚2)

𝑚2 −𝑚1
𝑚1 +𝑚2

𝑔]

=
𝑔
2 [

𝑚2
1 + 2𝑚1𝑚2 +𝑚2

2 −𝑚2
1 + 2𝑚1𝑚2 −𝑚2

2
𝑚1 +𝑚2

]

= 2𝑔 𝑚1𝑚2
𝑚1 +𝑚2

On vérifie que pour 𝑚1 = 𝑚2 on a bien 𝑇 = 𝑚1𝑔.
b) Résolution par le principe des travaux virtuels

Donnons à la masse 𝑚1 un déplacement virtuel 𝛿 #»r 1 vertical vers le haut :

𝛿 #»r 1 = ‖𝛿 #»r 1‖ ⃗𝚥

Le déplacement virtuel 𝛿 #»r 2 de la masse 𝑚2 compatible avec 𝛿 #»r 1 et avec la liaison
est tel que :

𝛿 #»r 2 = −𝛿 #»r 1
= −‖𝛿 #»r 1‖ ⃗𝚥

Le travail virtuel de la force d’inertie de la masse 𝑚1 s’écrit :
#»ṗ 1 ⋅ 𝛿

#»r 1 = 𝑚1 ̈𝑟1 ⃗𝚥 ⋅ ‖𝛿 #»r 1‖ ⃗𝚥
= 𝑚1 ̈𝑟1‖𝛿

#»r 1‖
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Celui de la masse 𝑚2 s’écrit :
#»ṗ 2 ⋅ 𝛿

#»r 2 = −𝑚2 ̈𝑟2 ⃗𝚥 ⋅ ‖𝛿 #»r 1‖ ⃗𝚥
= −𝑚2 ̈𝑟2‖𝛿

#»r 1‖
= 𝑚2 ̈𝑟1‖𝛿

#»r 1‖

Appliquons le principe des travaux virtuels (2.1) page 54, pour les deux parties
mobiles (𝑁 = 2), les masses 𝑚1 et 𝑚2, pour des déplacements virtuels compatibles
entre eux et avec les liaisons. On ne considère alors que les forces actives, la somme
des travaux virtuels des forces de contrainte (réaction de l’axe de la poulie et tension
de la corde) est nulle :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 1 −
#»ṗ 1) ⋅ 𝛿

#»r 1 + ( #»𝑃 2 −
#»ṗ 2) ⋅ 𝛿

#»r 2 = 0
−𝑚1𝑔 − 𝑚1 ̈𝑟1 +𝑚2𝑔 − 𝑚2 ̈𝑟1 = 0
(𝑚2 −𝑚1) 𝑔 − (𝑚1 +𝑚2) ̈𝑟1 = 0

̈𝑟1 =
𝑚2 −𝑚1
𝑚1 +𝑚2

𝑔

Pour obtenir l’expression de la tension dans la corde on choisit un déplacement
virtuel non compatible avec la liaison :

𝛿 #»r 1 = 𝛿 #»r 2 = ‖𝛿 #»r 1‖ ⃗𝚥

Nous avons alors :

( #»𝑃 1 +
#»𝑇 − #»ṗ 1) ⋅ 𝛿

#»r 1 + ( #»𝑃 2 +
#»𝑇 − #»ṗ 2) ⋅ 𝛿

#»r 2 = 0
−𝑚1𝑔 + 𝑇 −𝑚1 ̈𝑟1 −𝑚2𝑔 + 𝑇 +𝑚2 ̈𝑟1 = 0
− (𝑚1 +𝑚2) 𝑔 + 2𝑇 + (𝑚2 −𝑚1) ̈𝑟1 = 0

𝑇 = 1
2
[(𝑚1 +𝑚2) 𝑔 + (𝑚1 −𝑚2) ̈𝑟1]

Exemple 2.4.2 : Palan
Reprenons l’exemple du palan (fig. 1.14 page 14). Quelle est l’accélération de la masse
𝑚2 ?

a) Résolution par la mécanique de Newton Le premier sous-système étudié est constitué
de la première poulie et de la première masse. Appliquons le principe fondamental
de la dynamique :

𝑚1
̈#»r 1 = ∑

#»

f (𝑒)

= #»𝑃 1 + 2 #»𝑇

En projetant sur l’axe vertical dirigé vers le haut :

𝑚1 ̈𝑟1 = −𝑚1𝑔 + 2𝑇
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#»𝑇 #»𝑇 #»𝑇

#»𝑃 1

#»𝑃 2

Fig. 2.4 – Palan : inventaire des forces

Pour le vecteur déplacement réel,

∀𝑡, d #»r 1 = −1
2
d #»r 2 ⇒ #»̇r 1 = −1

2

#»̇r 2 ⇒ ̈#»r 1 = −1
2
̈#»r 2

et pour la composante verticale,

̈𝑟1 = −1
2
̈𝑟2

si bien que

−1
2
𝑚1 ̈𝑟2 = −𝑚1𝑔 + 2𝑇

𝑚1 ̈𝑟2 = 2𝑚1𝑔 − 4𝑇

Le second sous-système étudié est la masse 𝑚2. Appliquons le principe fondamental
de la dynamique :

𝑚2
̈#»r 2 = ∑

#»

f (𝑒)

= #»𝑃 2 +
#»𝑇

𝑚2 ̈𝑟2 = −𝑚2𝑔 + 𝑇

Par conséquent :

(𝑚1 + 4𝑚2) ̈𝑟2 = (2𝑚1 − 4𝑚2)𝑔

̈𝑟2 =
2𝑚1 − 4𝑚2
𝑚1 + 4𝑚2

𝑔

On vérifie que pour 𝑚1 = 2𝑚2 on a bien ̈𝑟2 = 0. Pour 𝑚1 > 2𝑚2 l’accélération de
la masse 𝑚2 est positive, c.-à-d. vers le haut.

b) Résolution par le principe des travaux virtuels
Donnons à la masse 𝑚1 un déplacement virtuel 𝛿 #»r 1 vertical vers le haut :

𝛿 #»r 1 = ‖𝛿 #»r 1‖ ⃗𝚥
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𝑃1

𝑃2

𝛿 #»r 1

𝛿 #»r 2

Fig. 2.5 – Palan : déplacements virtuels

Le déplacement virtuel 𝛿 #»r 2 de la masse 𝑚2 compatible avec 𝛿 #»r 1 et avec la liaison
est tel que :

𝛿 #»r 2 = −2𝛿 #»r 1 = −2‖𝛿 #»r 1‖ ⃗𝚥

Appliquons le principe des travaux virtuels (2.1) page 54, pour les deux parties
mobiles (𝑁 = 2), les masses 𝑚1 et 𝑚2, pour des déplacements virtuels compatibles
entre eux et avec les liaisons :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 1 −
#»ṗ 1) ⋅ 𝛿

#»r 1 + ( #»𝑃 2 −
#»ṗ 2) ⋅ 𝛿

#»r 2 = 0

( #»𝑃 1 −
#»ṗ 1) ⋅ ‖𝛿

#»r 1‖ ⃗𝚥 − 2 (
#»ṗ 2 −

#»𝑃 2) ⋅ ‖𝛿
#»r 1‖ ⃗𝚥 = 0

−𝑚1𝑔 − 𝑚1 ̈𝑟1 + 2𝑚2 ̈𝑟2 + 2𝑚2𝑔 = 0

Pour le vecteur déplacement réel

d #»r 1 = −1
2
d #»r 2 ⇒ #»̇r 1 = −1

2

#»̇r 2 ⇒ ̈#»r 1 = −1
2

̈#»r 2

et pour la composante verticale,

̈𝑟1 = −1
2
̈𝑟2

si bien que :

−𝑚1𝑔 +
1
2
𝑚1 ̈𝑟2 + 2𝑚2 ̈𝑟2 + 2𝑚2𝑔 = 0

(2𝑚2 −𝑚1) 𝑔 + (1
2
𝑚1 + 2𝑚2) ̈𝑟2 = 0

̈𝑟2 =
2𝑚1 − 4𝑚2
𝑚1 + 4𝑚2

𝑔
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Exemple 2.4.3 : Masse glissant sans frottements sur un plan incliné
Une masse 𝑚 glisse sans frottements sur un plan incliné. Quelle est l’équation de son
mouvement?

𝛼

#»𝑃

#»𝑅

𝑚

𝑞(𝑡)

Fig. 2.6 – Masse glissant sans frottements sur un plan incliné

a) Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique à la masse 𝑚 :

𝑚 ̈#»q = ∑
#»

f (𝑒)

= #»𝑅 + #»𝑃

En projetant sur les axes tangent et orthogonal au plan incliné :

{
‖ #»𝑃‖ sin(𝛼) = 𝑚 ̈𝑞
𝑅 − ‖ #»𝑃‖ cos(𝛼) = 0

⇒ {
̈𝑞 = 𝑔 sin(𝛼)
𝑅 = 𝑚𝑔 cos(𝛼)

En notant 𝑞0 et ̇𝑞0 les conditions initiales sur la position et la vitesse, cherchons la
solution 𝑞(𝑡) en intégrant cette équation différentielle du 2nd ordre par rapport au
temps :

̈𝑞(𝑡) = 𝑔 sin(𝛼)
̇𝑞(𝑡) = 𝑔 sin(𝛼) 𝑡 + ̇𝑞0
𝑞(𝑡) = 1

2
𝑔 sin(𝛼) 𝑡2 + ̇𝑞0𝑡 + 𝑞0

b) Résolution par le principe des travaux virtuels
Le principe des travaux virtuels pour la seule partie mobile (𝑁 = 1), la masse 𝑚,
pour un déplacement virtuel compatible avec les liaisons, s’écrit :

𝑁
∑
𝑖=1

#»𝐹 (𝑎)
𝑖 ⋅ 𝛿 #»r 𝑖 = 0

( #»𝑃 + #»𝑅 − #»ṗ ) ⋅ 𝛿 #»r = 0

On choisit un déplacement virtuel confondu avec le déplacement réel, donc compa-
tible avec la liaison supposée parfaite. Le travail virtuel de la réaction #»𝑅 du plan sur
la masse est alors nul, et nous avons :

[𝑚𝑔 sin(𝛼) − 𝑚 ̈𝑞] 𝛿𝑞 = 0
̈𝑞 = 𝑔 sin(𝛼)
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Exemple 2.4.4 : Masse glissant sans frottements sur un plan incliné motorisé
Une masse 𝑚 glisse sans frottements sur un plan incliné se déplaçant horizontalement
selon une fonction du temps connue 𝑥(𝑡). Quelle est l’équation de son mouvement?

𝑋

𝑌

𝛼

̈#»q

𝑚 #»𝑅

𝑥(𝑡) #»𝑃

𝑂

Fig. 2.7 – Masse glissant sur un plan incliné motorisé

a) Résolution par la mécanique de Newton
Soit ̈#»x l’accélération du plan incliné, et soit ̈#»q l’accélération de la masse 𝑚 relati-
vement au plan incliné. L’accélération de la masse 𝑚 dans un référentiel galiléen
est la somme des accélérations ̈#»q + ̈#»x . Appliquons la relation fondamentale de la
dynamique à la masse 𝑚 :

𝑚( ̈#»q + ̈#»x ) = ∑
#»

f (𝑒)

= #»𝑃 + #»𝑅

Le vecteur accélération ̈#»q est parallèle au plan incliné. En projetant sur les axes
parallèle et perpendiculaire au plan incliné, nous avons :

{
𝑃 sin(𝛼) = 𝑚 ̈𝑞 + 𝑚 ̈𝑥 cos(𝛼)
−𝑃 cos(𝛼) + 𝑅 = 𝑚 ̈𝑥 sin(𝛼)

⇒ {
̈𝑞 = 𝑔 sin(𝛼) − ̈𝑥 cos(𝛼)
𝑅 = 𝑚 ( ̈𝑥 sin(𝛼) + 𝑔 cos(𝛼))

Lorsque ̈𝑥 = 0 on retrouve le résultat de l’exemple précédent, et lorsque

𝑔 sin(𝛼) − ̈𝑥 cos(𝛼) < 0
𝑔 sin(𝛼) < ̈𝑥 cos(𝛼)
𝑔 tan(𝛼) < ̈𝑥

le vecteur ̈#»q est vers le haut, la masse 𝑚 remonte le plan incliné.
b) Résolution par le principe des travaux virtuels
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𝑋

𝑌

𝛼

𝑚

𝑞2(𝑡)

𝑞1(𝑡)
#»𝑃

𝑂

Fig. 2.8 – Masse glissant sans frottements sur un plan incliné motorisé

Le système n’a qu’un seul degré de liberté car la fonction 𝑞1(𝑡) est donnée. Choisis-
sons 𝑞2 comme coordonnée généralisée. Le déplacement virtuel étant compatible
avec la liaison, le principe des travaux virtuels pour la seule partie mobile (𝑁 = 1),
la masse 𝑚, s’écrit :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

[ #»𝑃 − 𝑚( ̈#»q 1 +
̈#»q 2)] ⋅ 𝛿

#»q 2 = 0

Avec
𝛿 #»q 2 = 𝛿𝑞2 [cos(𝛼) ⃗𝚤 − sin(𝛼) ⃗𝚥]

nous avons :

𝑚𝑔 sin(𝛼) − 𝑚 [ ̈𝑞1 cos(𝛼) + ̈𝑞2] = 0
̈𝑞2 = 𝑔 sin(𝛼) − ̈𝑞1 cos(𝛼)

Exemple 2.4.5 : Masse sur une trappe
Reprenons l’ex. 1.7.3 de la page 21. Une masse 𝑀 est posée sur une trappe qui s’ouvre
d’un angle 𝜃(𝑡) donné en fonction du temps. Quelle est l’équation de son mouvement?

𝑜
𝜃 = 𝑓(𝑡)

𝛿 #»r

d #»r

#»𝑅

#»𝑃

𝑀
#»r

⃗𝚤
⃗𝚥

Fig. 2.9 – Masse sur une trappe
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a) Résolution par la mécanique de Newton
Appliquons la relation fondamentale de la dynamique à la masse 𝑀 :

𝑀 ̈#»r = ∑
#»

f (𝑒)

= #»𝑅 + #»𝑃

(2.4) page 57 donne l’expression de l’accélération en coordonnées polaires dans la
base polaire orthonormée ( #»e 𝜌,

#»e 𝜃) de centre 𝑜 :

̈#»r = ( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 + (𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃

Nous avons alors :

{
𝑀𝑔 sin(𝜃) = 𝑀 ( ̈𝜌 − 𝜌 ̇𝜃2)
𝑅 − 𝑀𝑔 cos(𝜃) = 𝑀 (𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃)

⇒ {
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 sin(𝜃) = 0
𝑀 [𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 cos(𝜃)] = 𝑅

Nous obtenons deux équations pour deux inconnues, 𝜌(𝑡) et 𝑅(𝑡).
b) Résolution par le principe des travaux virtuels

Le déplacement infinitésimal réel s’écrit,

d #»r = d (𝜌 #»e 𝜌)
= d𝜌 #»e 𝜌 + 𝜌d #»e 𝜌
= d𝜌 #»e 𝜌 + 𝜌d𝜃 #»e 𝜃

et le travail réel de la force de contrainte #»𝑅 est non nul :
#»𝑅 ⋅ d #»r = 𝑅 #»e 𝜃 ⋅ (d𝜌

#»e 𝜌 + 𝜌d𝜃 #»e 𝜃)
= 𝑅𝜌d𝜃

Choisissons le déplacement virtuel de sorte que la force de contrainte ne travaille
pas,

𝛿 #»r = 𝛿𝜌 #»e 𝜌
Le déplacement virtuel de la coordonnée 𝜌 est noté 𝛿𝜌. Il ne s’inscrit pas dans le
temps, il n’est pas fonction du temps, ni explicitement ni implicitement, contrairement
à la différentielle d𝜌 qui est une fonction implicite du temps. La difficulté tient au
fait qu’en physique tout déplacement réel dans l’espace est une fonction explicite ou
à défaut implicite du temps. Ce n’est pas le cas en mathématique ou un déplacement
n’est pas nécessairement fonction d’un paramètre. En ce sens, un déplacement virtuel
est un déplacement mathématique sans paramètre.
Le travail virtuel de #»𝑅 est alors nul :

#»𝑅 ⋅ 𝛿 #»r = 𝑅 #»e 𝜃 ⋅ 𝛿𝜌
#»e 𝜌

= 0

Le principe des travaux virtuels s’écrit :
𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 − #»ṗ ) ⋅ 𝛿 #»r = 0
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(2.4) page 57 donne l’expression de l’accélération en coordonnées polaires dans la
base polaire orthonormée ( #»e 𝜌,

#»e 𝜃) :

[𝑀𝑔 sin(𝜃) #»e 𝜌 −𝑀𝑔 cos(𝜃) #»e 𝜃 −𝑀( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌
−𝑀(𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃] ⋅ 𝛿𝜌

#»e 𝜌 = 0
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 sin(𝜃) = 0

Pour trouver l’expression de la réaction de la trappe sur la masse 𝑀, on choisit un
déplacement virtuel pour lequel cette réaction travaille. Avec un déplacement virtuel
selon #»e 𝜃, nous avons :

[𝑅 + 𝑀𝑔 sin(𝜃) #»e 𝜌 −𝑀𝑔 cos(𝜃) #»e 𝜃 −𝑀( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌
−𝑀(𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃] ⋅ 𝜌𝛿𝜃

#»e 𝜃 = 0
𝑅 −𝑀𝑔 cos(𝜃) − 𝑀 (𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) = 0
𝑅 = 𝑀[𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 cos(𝜃)]

68 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 3

LA MÉCANIQUE DE LAGRANGE

Sommaire
3.1 Équations de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Propriétés du lagrangien et des équations de Lagrange . . . . . . . . . . . 89

3.3 Intégrales premières du mouvement . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Impulsions généralisées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5 Applications de la mécanique de Lagrange . . . . . . . . . . . . . . . . . . 116

3.1 Équations de Lagrange

Repartons du principe des travaux virtuels appliqué à la dynamique (2.1) page 54, pour un système
à 𝑁 parties mobiles, dans un référentiel galiléen non avons

𝑁
∑
𝑖=1

(
#»ṗ 𝑖 −

#»𝐹 𝑖) ⋅ 𝛿
#»r 𝑖 = 0

𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅ 𝛿

#»r 𝑖 −
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅ 𝛿
#»r 𝑖 = 0 (3.1)

où l’on rappelle que #»𝐹 𝑖 est la somme des modèles des forces s’exerçant sur la 𝑖e partie mobile.
Nous pouvons essayer de remplacer les produits scalaires par des scalaires. Le produit scalaire
d’une force d’inertie par un déplacement donne une énergie cinétique. En mécanique de Newton,



Chapitre 3 : La mécanique de Lagrange

pour faire apparaitre les vitesses (donc l’énergie cinétique), on écrit :
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅ d

#»r 𝑖 =
𝑁
∑
𝑖=1

𝑚𝑖
d #»̇r 𝑖
d𝑡 ⋅ d #»r 𝑖

=
𝑁
∑
𝑖=1

𝑚𝑖 d
#»̇r 𝑖 ⋅

d #»r 𝑖
d𝑡

=
𝑁
∑
𝑖=1

𝑚𝑖 d
#»v 𝑖 ⋅

#»v 𝑖

=
𝑁
∑
𝑖=1

d (1
2
𝑚𝑖

#»v 2𝑖 )

= d
𝑁
∑
𝑖=1

1
2
𝑚𝑖

#»v 2𝑖

Avec les déplacements virtuels nous ne pouvons pas tenir le même raisonnement car 𝛿 #»r 𝑖 n’est
pas une fonction implicite du temps par l’intermédiaire des coordonnées comme l’est d #»r 𝑖. Il
représente une longueur, et non une distance parcourue. Le terme 𝛿 #»r 𝑖/d𝑡 est bien homogène à
une vitesse, une longueur divisée par une durée, mais ce n’est pas la vitesse réelle de la 𝑖e partie
mobile. 𝛿 #»r 𝑖 est fonction des variations infinitésimales des coordonnées 𝛿𝑥𝑘 de la 𝑖e partie mobile
dans deux positions d’équilibre infiniment proches :

𝛿 #»r 𝑖 =
𝑚
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑥𝑘

𝛿𝑥𝑘 (3.2)

En remplaçant dans (3.1) nous avons :
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝑚
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑥𝑘

𝛿𝑥𝑘 −
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝑚
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑥𝑘

𝛿𝑥𝑘 = 0

𝑚
∑
𝑘=1

(
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑥𝑘

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑥𝑘

) 𝛿𝑥𝑘 = 0 (3.3)

Les 𝑚 coordonnées 𝑥𝑘 ne sont pas toujours indépendantes si bien que la somme sur 𝑘 est nulle
mais pas chacun de ses termes. Il nous faut utiliser les coordonnées généralisées 𝑞𝑗 (déf. 1.7.2
page 19) car elles sont indépendantes. Pour cela nous devons supposer que le système est holonome
(§ 1.7.3 page 19) pour utiliser les équations de liaison et supprimer les coordonnées superflues.
On effectue alors le changement de coordonnées suivant :

∀𝑘 = 1,… ,𝑚 𝑥𝑘 = 𝑓𝑘(𝑞1,… , 𝑞𝑛) 𝑛 ⩽ 𝑚 (3.4)

Nous avons alors,
𝑛
∑
𝑗=1

(
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

) 𝛿𝑞𝑗 = 0

∀𝛿𝑞𝑗, (
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

) 𝛿𝑞𝑗 = 0

∀𝑗 = 1,… , 𝑛
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

= 0

Pour le second terme on pose la définition suivante :
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Définition 3.1.1 : Force généralisée
On appelle force généralisée selon le degré de liberté 𝑗, la quantité

𝑄𝑗
def
=

𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

où l’on rappelle que #»𝐹 𝑖 est la somme des modèles des forces s’exerçant sur la 𝑖e partie
mobile.

Avec cette définition :

∀𝑗 = 1,… , 𝑛
𝑁
∑
𝑖=1

𝑚𝑖
̈#»r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

= 𝑄𝑗

Intégrons par parties le terme de droite :

∀𝑗 = 1,… , 𝑛
𝑁
∑
𝑖=1

[ dd𝑡 (𝑚𝑖
#»̇r 𝑖 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

) − 𝑚𝑖
#»̇r 𝑖 ⋅

d
d𝑡 (

𝜕 #»r 𝑖
𝜕𝑞𝑗

)] = 𝑄𝑗 (3.5)

Établissons maintenant les deux relations suivantes

𝜕 #»̇r 𝑖
𝜕 ̇𝑞𝑗

=
𝜕 #»r 𝑖
𝜕𝑞𝑗

et d
d𝑡 (

𝜕 #»r 𝑖
𝜕𝑞𝑗

) = 𝜕
𝜕𝑞𝑗

(
d #»r 𝑖
d𝑡 )

pour les remplacer dans (3.5). Pour la première relation, notons que le vecteur position de la 𝑖e
partie mobile dépend des coordonnées généralisées, et explicitement du temps lorsqu’une liaison
est rhéonome ou pour un référentiel en mouvement :

d #»r 𝑖(𝑞𝑘, 𝑡) =
𝑛
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑞𝑘

d𝑞𝑘 +
𝜕 #»r 𝑖
𝜕𝑡 d𝑡

d #»r 𝑖
d𝑡 =

𝑛
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕 #»r 𝑖
𝜕𝑡 (3.6)

𝜕
𝜕 ̇𝑞𝑗

(
d #»r 𝑖
d𝑡 ) =

𝜕
𝜕 ̇𝑞𝑗

(
𝑛
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕 #»r 𝑖
𝜕𝑡 )

𝜕 #»̇r 𝑖
𝜕 ̇𝑞𝑗

=
𝑛
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑞𝑘

𝜕 ̇𝑞𝑘
𝜕 ̇𝑞𝑗

En utilisant l’indépendance des coordonnées généralisées (1.3) page 19 :

𝜕 #»̇r 𝑖
𝜕 ̇𝑞𝑗

=
𝜕 #»r 𝑖
𝜕𝑞𝑗

(3.7)

Établissons la seconde relation. Nous avons :

d (
𝜕 #»r 𝑖
𝜕𝑞𝑗

) =
𝑛
∑
𝑘=1

𝜕2 #»r 𝑖
𝜕𝑞𝑘𝜕𝑞𝑗

d𝑞𝑘 +
𝜕2 #»r 𝑖
𝜕𝑡𝜕𝑞𝑗

d𝑡

d
d𝑡 (

𝜕 #»r 𝑖
𝜕𝑞𝑗

) =
𝑛
∑
𝑘=1

𝜕2 #»r 𝑖
𝜕𝑞𝑘𝜕𝑞𝑗

̇𝑞𝑘 +
𝜕2 #»r 𝑖
𝜕𝑡𝜕𝑞𝑗

(3.8)
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D’autre part, en dérivant par rapport à 𝑞𝑗 la relation (3.6) page précédente :

𝜕
𝜕𝑞𝑗

(
d #»r 𝑖
d𝑡 ) =

𝜕
𝜕𝑞𝑗

(
𝑛
∑
𝑘=1

𝜕 #»r 𝑖
𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕 #»r 𝑖
𝜕𝑡 )

=
𝑛
∑
𝑘=1

(
𝜕2 #»r 𝑖
𝜕𝑞𝑗𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕 #»r 𝑖
𝜕𝑞𝑘

𝜕 ̇𝑞𝑘
𝜕𝑞𝑗

) + 𝜕
𝜕𝑞𝑗

(
𝜕 #»r 𝑖
𝜕𝑡 )

Les coordonnées généralisées et les vitesses généralisées ne dépendant pas explicitement l’une
de l’autre, le terme 𝜕 ̇𝑞𝑘/𝜕𝑞𝑗 est nul :

𝜕
𝜕𝑞𝑗

(
d #»r 𝑖
d𝑡 ) =

𝑛
∑
𝑘=1

𝜕2 #»r 𝑖
𝜕𝑞𝑗𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕2 #»r 𝑖
𝜕𝑞𝑗𝜕𝑡

Comparons avec (3.8). Les dérivations partielles 𝜕/𝜕𝑞𝑗 et 𝜕/𝜕𝑞𝑘 étant continues, nous pouvons
les intervertir, d’où la seconde relation :

d
d𝑡 (

𝜕 #»r 𝑖
𝜕𝑞𝑗

) = 𝜕
𝜕𝑞𝑗

(
d #»r 𝑖
d𝑡 ) (3.9)

Avec (3.7) et (3.9), (3.5) page précédente devient :

∀𝑗 = 1,… , 𝑛
𝑁
∑
𝑖=1

[ dd𝑡 (𝑚𝑖
#»̇r 𝑖 ⋅

𝜕 #»̇r 𝑖
𝜕 ̇𝑞𝑗

) − 𝑚𝑖
#»̇r 𝑖 ⋅

𝜕 #»̇r 𝑖
𝜕𝑞𝑗

] = 𝑄𝑗

d
d𝑡

𝑁
∑
𝑖=1

𝑚𝑖
#»v 𝑖 ⋅

𝜕 #»v 𝑖
𝜕 ̇𝑞𝑗

−
𝑁
∑
𝑖=1

𝑚𝑖
#»v 𝑖 ⋅

𝜕 #»v 𝑖
𝜕𝑞𝑗

= 𝑄𝑗

d
d𝑡 (

𝜕
𝜕 ̇𝑞𝑗

𝑁
∑
𝑖=1

1
2
𝑚𝑖

#»v 2𝑖 ) −
𝜕
𝜕𝑞𝑗

𝑁
∑
𝑖=1

1
2
𝑚𝑖

#»v 2𝑖 = 𝑄𝑗

Définition 3.1.2 : Énergie cinétique
On appelle énergie cinétique d’un solide 𝑖, la quantité

𝒯𝑖
def
= 1

2
𝑚𝑖

#»v 2𝑖

L’énergie cinétique est un scalaire, elle est additive. Notons𝒯 l’énergie cinétique totale du système
(la somme des énergies cinétiques de toutes les parties mobiles) :

𝒯
def
= 1

2

𝑁
∑
𝑖=1

𝑚𝑖
#»v 2𝑖

Nous avons alors 𝑛 relations, une pour chaque coordonnée généralisée 𝑞𝑗 du système :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= 𝑄𝑗 (3.10)
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Remarque 3.1.1
Supposons le changement de variables de coordonnées généralisées rectangulaires à des coordonnées généralisées quelconques :

∀𝑘 = 1,… ,𝑛 𝑥𝑘 = 𝑓𝑘(𝑞1,… , 𝑞𝑛)

d𝑥𝑘 =
𝑛
∑
𝑗=1

𝜕𝑓𝑘
𝜕𝑞𝑗

d𝑞𝑗

𝑥̇𝑘 =
𝑛
∑
𝑗=1

𝜕𝑓𝑘
𝜕𝑞𝑗

̇𝑞𝑗

𝒯 = 1
2
𝑚

𝑛
∑
𝑘=1

𝑥̇2𝑘

= 1
2
𝑚

𝑛
∑
𝑘=1

𝑛
∑
𝑗=1

(𝜕𝑓𝑘𝜕𝑞𝑗
)
2

̇𝑞2𝑗

En coordonnées généralisées, l’énergie cinétique reste une fonction quadratique des vitesses généralisées mais peut dépendre des
coordonnées, le terme 𝜕𝒯/𝜕𝑞𝑗 est alors non nul. Par exemple en coordonnées polaires :

𝒯 = 1
2
𝑚𝜌2 ̇𝜃2

Remarque 3.1.2
Les 𝑛 équations différentielles (3.10) page ci-contre du 2nd ordre par rapport au temps, sont équivalentes à la relation fondamentale de la
dynamique :

∑
𝑘

#»

f (𝑒)
𝑘 = d #»p

d𝑡

Cette dernière est une écriture vectorielle qui donne 𝑛 relations, une par coordonnée, également du 2nd ordre par rapport au temps du
fait des termes d’accélération.

3.1.1 Modèles de forces dérivant toutes d’une énergie potentielle

Lorsque chaque modèle de force
#»

f s’exerçant sur la 𝑖e partie mobile dérive d’une énergie
potentielle, la somme #»𝐹 𝑖 de ces modèles de force dérive alors d’une énergie potentielle totale 𝒱𝑖
qui est la somme des énergies potentielles des forces individuelles. Selon chaque degré de liberté
𝑗, la force généralisée s’écrit :

∀𝑗 = 1,… , 𝑛 𝑄𝑗 = −
𝑁
∑
𝑖=1

#     »grad𝑖 (𝒱𝑖) ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

= −
𝑁
∑
𝑖=1

𝜕𝒱𝑖
𝜕𝑞𝑗

∀𝑗 = 1,… , 𝑛 𝑄𝑗 = −𝜕𝒱𝜕𝑞𝑗
(3.11)

sciences-physiques.neocities.org 73

http://sciences-physiques.neocities.org


Chapitre 3 : La mécanique de Lagrange

Remarque 3.1.3
Le principe des travaux virtuels en statique (1.1) page 6 s’écrit :

𝑁
∑
𝑖=1

( #»𝐹 𝑖 ⋅
𝑛
∑
𝑗=1

𝜕 #»r 𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗) = 0

𝑛
∑
𝑗=1

𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0

𝑛
∑
𝑗=1

𝑄𝑗 𝛿𝑞𝑗 = 0

𝑛
∑
𝑗=1

𝜕𝒱
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0

et l’on retrouve (1.6) page 25 :

∀𝑗 = 1,… ,𝑛 𝜕𝒱
𝜕𝑞𝑗

= 0

Les équations de Lagrange deviennent :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= −𝜕𝒱𝜕𝑞𝑗
(3.12)

Si l’énergie potentielle totale 𝒱(𝑞, 𝑡) ne dépend pas des vitesses généralisées ̇𝑞, nous pouvons
ajouter le terme nul 𝜕𝒱/𝜕 ̇𝑞𝑗 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 [

𝜕
𝜕 ̇𝑞𝑗

(𝒯 − 𝒱)] − 𝜕
𝜕𝑞𝑗

(𝒯 − 𝒱) = 0

Définition 3.1.3 : Lagrangien
La fonction des 𝑛 coordonnées généralisées 𝑞, des 𝑛 vitesses généralisées ̇𝑞, et du temps

ℒ(𝑞, ̇𝑞, 𝑡)
def
= 𝒯(𝑞, ̇𝑞, 𝑡) − 𝒱(𝑞, 𝑡)

est appelée fonction de Lagrange ou lagrangien du système.

Remarque 3.1.4
Le modèle de force de la relation fondamentale de la dynamique, devenu modèle d’énergie potentielle, est intégré au lagrangien. Il
faudra donc trouver un modèle de lagrangien adapté au problème à résoudre. La « physique »du problème est donc contenue dans le
lagrangien. De plus, on note que par l’intermédiaire de l’énergie potentielle, le lagrangien dépend du choix de l’origine des énergies
potentielles.

Remarque 3.1.5
L’énergie potentielle est fonction du temps lorsque le système est dans un champ extérieur variable, p. ex. une particule chargée dans un
champ électrique variable.

Nous obtenons les 𝑛 équations de Lagrange, une par coordonnée généralisée :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0 (3.13)

Une équation par coordonnée ne signifie pas que les variables sont séparées, car le lagrangien peut
contenir toutes les variables (ex. du pendule double 3.5.2 page 117). Ces 𝑛 équations différentielles
du 2nd ordre par rapport au temps sont équivalentes à la relation fondamentale de la dynamique
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lorsque tous les modèles de force dérivent d’un potentiel. Chaque intégration de l’une de ces
équations différentielles faisant apparaitre une constante, il faudra spécifier 2𝑛 conditions initiales
pour déterminer les 𝑛 coordonnées généralisées indépendantes : 𝑛 conditions initiales sur les ̇𝑞 et
𝑛 sur les 𝑞.

Exemple 3.1.1 : Masse glissant sans frottements sur un plan incliné
Une masse 𝑚 glisse sans frottements sur un plan incliné. Quelle est l’équation de son
mouvement?

𝛼

𝑚

𝑞(𝑡)

Fig. 3.1 – Masse glissant sans frottements sur un plan incliné

Si nous choisissons comme coordonnée la hauteur 𝑦 de la masse par rapport au sol alors
l’énergie cinétique

𝒯 = 1
2
𝑚( ̇𝑥2 + ̇𝑦2)

fait nécessairement apparaitre la coordonnée 𝑥. Or nous n’avons besoin que d’une seule
coordonnée pour désigner la position de la masse, la coordonnée généralisée 𝑞 (fig. 3.1) qui
tient compte de la liaison entre la masse et le plan incliné. En prenant l’origine de l’énergie
potentielle de gravitation au sommet du plan incliné, le lagrangien a pour expression :

ℒ
def
=𝒯 − 𝒱

=1
2
𝑚 ̇𝑞2 +𝑚𝑔𝑞 sin(𝛼)

L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞 ) −

𝜕ℒ
𝜕𝑞 = 0

d
d𝑡 (𝑚 ̇𝑞) − 𝑚𝑔 sin(𝛼) = 0

̈𝑞 − 𝑔 sin(𝛼) = 0 (3.14)
̇𝑞 = 𝑔 sin(𝛼) 𝑡 + ̇𝑞0

𝑞 = 1
2
𝑔 sin(𝛼) 𝑡2 + ̇𝑞0𝑡 + 𝑞0

Exemple 3.1.2 : Pendule mathématique, simple, plan, gravitationnel

Une masse 𝑚 est attachée à une corde de longueur 𝜌 faisant un angle 𝜃(𝑡) avec la verticale.
Quelle est l’équation du mouvement de la masse 𝑚?
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𝑚

𝜌

𝜃(𝑡)

Fig. 3.2 – Pendule mathématique, simple, plan, gravitationnel

Ce pendule est dit « mathématique »par opposition au pendule physique pour lequel on
considère le moment d’inertie du pendule. Le système n’a qu’un degré de liberté. Il n’y
a donc qu’une coordonnée généralisée, l’angle 𝜃(𝑡) que fait le pendule avec le temps.
Écrivons le changement de coordonnées, de cartésiennes à polaires :

{
𝑥 = 𝜌 sin(𝜃)
𝑦 = −𝜌 cos(𝜃)

⇒ {
̇𝑥 = 𝜌 ̇𝜃 cos(𝜃)
̇𝑦 = 𝜌 ̇𝜃 sin(𝜃)

L’énergie cinétique a pour expression

𝒯 = 1
2
𝑚( ̇𝑥2 + ̇𝑦2)

= 1
2
𝑚[𝜌2 ̇𝜃2 cos2(𝜃) + 𝜌2 ̇𝜃2 sin2(𝜃)]

= 1
2
𝑚𝜌2 ̇𝜃2

et l’énergie potentielle s’écrit :

𝒱 = 𝑚𝑔𝑦
= −𝑚𝑔𝜌 cos(𝜃)

D’où le lagrangien :

ℒ = 𝒯 − 𝒱

= 1
2
𝑚( ̇𝑥2 + ̇𝑦2) − 𝑚𝑔𝑦

= 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 cos(𝜃)

L’équation de Lagrange s’écrit :
d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0

𝑚 d
d𝑡 (𝜌

2 ̇𝜃) + 𝑚𝑔𝜌 sin(𝜃) = 0

𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

76 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 3 : La mécanique de Lagrange

Exemple 3.1.3 : Pendule attaché à un point tournant

Dans le plan horizontal (𝑥, 𝑦), un pendule de longueur 𝜌 est attaché à un point tournant
à vitesse angulaire constante 𝜔 sur un cercle de rayon 𝑅. Quelle est l’équation de son
mouvement?

𝑥

𝑦

𝑅
𝜔𝑡 𝜌

𝜃

Fig. 3.3 – Pendule tournant dans le plan horizontal

Le passage des coordonnées polaires aux coordonnées rectangulaires (rectilignes et ortho-
gonales) s’écrit :

{
𝑥 = 𝑅 cos(𝜔𝑡) + 𝜌 cos(𝜔𝑡 + 𝜃)
𝑦 = 𝑅 sin(𝜔𝑡) + 𝜌 sin(𝜔𝑡 + 𝜃)

⇒ {
̇𝑥 = −𝑅𝜔 sin(𝜔𝑡) − 𝜌(𝜔 + ̇𝜃) sin(𝜔𝑡 + 𝜃)
̇𝑦 = 𝑅𝜔 cos(𝜔𝑡) + 𝜌(𝜔 + ̇𝜃) cos(𝜔𝑡 + 𝜃)

Il n’y a pas d’énergie potentielle, le lagrangien est simplement l’énergie cinétique :

ℒ = 𝒯 = 𝑚
2
( ̇𝑥2 + ̇𝑦2)

= 𝑚
2
[𝑅2𝜔2 sin2(𝜔𝑡) + 2𝑅𝜔 sin(𝜔𝑡)𝜌(𝜔 + ̇𝜃) sin(𝜔𝑡 + 𝜃) + 𝜌2(𝜔 + ̇𝜃)2 sin2(𝜔𝑡 + 𝜃)

+𝑅2𝜔2 cos2(𝜔𝑡) + 2𝑅𝜔 cos(𝜔𝑡)𝜌(𝜔 + ̇𝜃) cos(𝜔𝑡 + 𝜃) + 𝜌2(𝜔 + ̇𝜃)2 cos2(𝜔𝑡 + 𝜃)]
= 𝑚

2
[𝑅2𝜔2 + 2𝑅𝜌𝜔(𝜔 + ̇𝜃) cos(𝜃) + 𝜌2(𝜔 + ̇𝜃)2]

La seule coordonnée généralisée est l’angle 𝜃. L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝜃

) − 𝜕𝒯
𝜕𝜃 = 0

d
d𝑡 [𝑚𝑅𝜌𝜔 cos(𝜃) + 𝑚𝜌2(𝜔 + ̇𝜃)] + 𝑚𝑅𝜌𝜔(𝜔 + ̇𝜃) sin(𝜃) = 0

𝜌 ̈𝜃 + 𝑅𝜔2 sin(𝜃) = 0

Cette équation en 𝜃 est similaire à celle du mouvement d’un pendule simple plan dans un
champ de gravitation 𝑅𝜔2.
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3.1.2 Énergie potentielle généralisée

Lorsque les modèles de force dérivent tous d’une énergie potentielle généralisée 𝒰(𝑞, ̇𝑞, 𝑡) telle
que,

∀𝑗 = 1,… , 𝑛 𝑄𝑗 =
d
d𝑡 (

𝜕𝒰
𝜕 ̇𝑞𝑗

) − 𝜕𝒰
𝜕𝑞𝑗

alors, à partir de (3.10) page 72 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= 𝑄𝑗

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= d
d𝑡 (

𝜕𝒰
𝜕 ̇𝑞𝑗

) − 𝜕𝒰
𝜕𝑞𝑗

∀𝑗 = 1,… , 𝑛 d
d𝑡 [

𝜕
𝜕 ̇𝑞𝑗

(𝒯 − 𝒰)] − 𝜕
𝜕𝑞𝑗

(𝒯 − 𝒰) = 0

En définissant le lagrangien généralisé par

ℒ(𝑞, ̇𝑞, 𝑡)
def
= 𝒯(𝑞, ̇𝑞, 𝑡) − 𝒰(𝑞, ̇𝑞, 𝑡)

nous retrouvons les équations de Lagrange (3.13) page 74 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

Exemple 3.1.4 : Particule chargée en mouvement dans un champ électromagnétique

Le champ électrique #»E et le champ magnétique #»𝐵 dérivent du potentiel scalaire 𝜙 ( #»r , 𝑡)
et du potentiel vecteur #»𝐴 ( #»r , 𝑡) :

{
#»E = −

#     »grad (𝜙) − 𝜕 #»𝐴
𝜕𝑡

#»𝐵 = # »rot ( #»𝐴)

où le vecteur # »rot ( #»𝐴) est le rotationnel de #»𝐴 . Soit 𝑞 la charge électrique de la particule, et
soit #»v sa vitesse dans le champ électromagnétique. Sur cette particule s’exerce une force
électromagnétique, appelée force de Lorentz, dont le modèle a pour expression :

#»𝐹 = 𝑞 ( #»E + #»v × #»𝐵)

= 𝑞 [−
#     »grad (𝜙) − 𝜕 #»𝐴

𝜕𝑡 +
#»v × # »rot ( #»𝐴)]
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En projetant sur les axes :

𝐹𝑥 = 𝑞 {−
#     »grad (𝜙)||𝑥 −

𝜕 #»𝐴
𝜕𝑡
|
|
|𝑥
+ [ #»v × # »rot ( #»𝐴)]

𝑥
}

𝐹𝑦 = 𝑞{−
#     »grad (𝜙)||𝑦 −

𝜕 #»𝐴
𝜕𝑡
|
|
|𝑦
+ [ #»v × # »rot ( #»𝐴)]

𝑦
}

𝐹𝑧 = 𝑞 {−
#     »grad (𝜙)||𝑧 −

𝜕 #»𝐴
𝜕𝑡
|
|
|𝑧
+ [ #»v × # »rot ( #»𝐴)]

𝑧
}

Par exemple, pour la composante en 𝑥 :

𝐹𝑥 = 𝑞 [−
𝜕𝜙
𝜕𝑥 −

𝜕𝐴𝑥
𝜕𝑡 + 𝑣𝑦 (

𝜕𝐴𝑦

𝜕𝑥 −
𝜕𝐴𝑥
𝜕𝑦 ) − 𝑣𝑧 (

𝜕𝐴𝑥
𝜕𝑧 − 𝜕𝐴𝑧

𝜕𝑥 )]

Or

d𝐴𝑥 =
𝜕𝐴𝑥
𝜕𝑡 d𝑡 +

𝜕𝐴𝑥
𝜕𝑥 d𝑥 +

𝜕𝐴𝑥
𝜕𝑦 d𝑦 +

𝜕𝐴𝑥
𝜕𝑧 d𝑧

d𝐴𝑥
d𝑡 =

𝜕𝐴𝑥
𝜕𝑡 +

𝜕𝐴𝑥
𝜕𝑥 ̇𝑥 +

𝜕𝐴𝑥
𝜕𝑦 ̇𝑦 +

𝜕𝐴𝑥
𝜕𝑧 ̇𝑧

𝜕𝐴𝑥
𝜕𝑡 =

d𝐴𝑥
d𝑡 − 𝑣𝑥

𝜕𝐴𝑥
𝜕𝑥 − 𝑣𝑦

𝜕𝐴𝑥
𝜕𝑦 − 𝑣𝑧

𝜕𝐴𝑥
𝜕𝑧

nous donne :

𝐹𝑥 = 𝑞 [−
𝜕𝜙
𝜕𝑥 −

d𝐴𝑥
d𝑡 + 𝑣𝑥

𝜕𝐴𝑥
𝜕𝑥 + 𝑣𝑦

𝜕𝐴𝑥
𝜕𝑦 + 𝑣𝑧

𝜕𝐴𝑥
𝜕𝑧

+𝑣𝑦 (
𝜕𝐴𝑦

𝜕𝑥 −
𝜕𝐴𝑥
𝜕𝑦 ) − 𝑣𝑧 (

𝜕𝐴𝑥
𝜕𝑧 − 𝜕𝐴𝑧

𝜕𝑥 )]

= 𝑞 (−
𝜕𝜙
𝜕𝑥 −

d𝐴𝑥
d𝑡 + 𝑣𝑥

𝜕𝐴𝑥
𝜕𝑥 + 𝑣𝑦

𝜕𝐴𝑦

𝜕𝑥 + 𝑣𝑧
𝜕𝐴𝑧
𝜕𝑥 )

= 𝑞 [−
𝜕𝜙
𝜕𝑥 +

𝜕
𝜕𝑥 (

#»v ⋅ #»𝐴) −
d𝐴𝑥
d𝑡 ]

= 𝑞 {− 𝜕
𝜕𝑥 (𝜙 −

#»v ⋅ #»𝐴) − d
d𝑡 [

𝜕
𝜕𝑣𝑥

( #»v ⋅ #»𝐴)]}

𝐹𝑥 = − 𝜕
𝜕𝑥 [𝑞 (𝜙 −

#»v ⋅ #»𝐴)] + d
d𝑡 {

𝜕
𝜕𝑣𝑥

[𝑞 (𝜙 − #»v ⋅ #»𝐴)]}

On pose,
𝒰 = 𝑞 (𝜙 − #»𝐴 ⋅ #»v )

l’énergie potentielle généralisée qui engendre la force de Lorentz :

𝐹𝑥 =
d
d𝑡 (

𝜕𝒰
𝜕𝑣𝑥

) − 𝜕𝒰
𝜕𝑥

En prenant le lagrangien généralisé,

ℒ
def
= 𝒯 −𝒰

= 1
2
𝑚𝑣2 − 𝑞 (𝜙 − #»𝐴 ⋅ #»v ) (3.15)

sciences-physiques.neocities.org 79

http://sciences-physiques.neocities.org


Chapitre 3 : La mécanique de Lagrange

les équations de Lagrange donnent les équations du mouvement de la particule chargée
dans le champ électromagnétique.
Lorsque le champ magnétique est uniforme, c.-à-d. constant dans l’espace, une condition
suffisante pour avoir #»𝐵 = # »rot ( #»𝐴) est que #»𝐴 = 1

2
#»𝐵 × #»r . Soit donc à montrer que si #»𝐵 est

uniforme et #»𝐴 = 1
2

#»𝐵 × #»r alors #»𝐵 = # »rot ( #»𝐴). Par hypothèse :

#»𝐴 = 1
2

#»𝐵 × #»r

# »rot ( #»𝐴) = 1
2

# »rot ( #»𝐵 × #»r ) = 1
2
(
𝜕𝑥
𝜕𝑦
𝜕𝑧
) × [(

𝐵𝑥
𝐵𝑦
𝐵𝑧
) × (

𝑥
𝑦
𝑧
)]

# »rot ( #»𝐴) = 1
2
(
𝜕𝑥
𝜕𝑦
𝜕𝑧
) × [

(𝐵𝑥𝑦 − 𝐵𝑦𝑥) − (𝐵𝑧𝑥 − 𝐵𝑥𝑧)
(𝐵𝑦𝑧 − 𝐵𝑧𝑦) − (𝐵𝑥𝑦 − 𝐵𝑦𝑥)
(𝐵𝑧𝑥 − 𝐵𝑥𝑧) − (𝐵𝑦𝑧 − 𝐵𝑧𝑦)

]

= 1
2
[
𝜕𝑦(𝐵𝑥𝑦 − 𝐵𝑦𝑥) − 𝜕𝑧(𝐵𝑧𝑥 − 𝐵𝑥𝑧)
𝜕𝑧(𝐵𝑦𝑧 − 𝐵𝑧𝑦) − 𝜕𝑥(𝐵𝑥𝑦 − 𝐵𝑦𝑥)
𝜕𝑥(𝐵𝑧𝑥 − 𝐵𝑥𝑧) − 𝜕𝑦(𝐵𝑦𝑧 − 𝐵𝑧𝑦)

]

Le champ magnétique #»𝐵 étant uniforme, ses dérivations partielles dans l’espace sont
nulles :

# »rot ( #»𝐴) = 1
2
(
2𝐵𝑥
2𝐵𝑦
2𝐵𝑧

)

= #»𝐵

Si #»𝐵 est uniforme le lagrangien généralisé s’écrit :

ℒ
def
= 𝒯 −𝒰

= 1
2
𝑚𝑣2 − 𝑞 [𝜙 − 1

2
( #»𝐵 × #»r ) ⋅ #»v ]

3.1.3 Forces ne dérivant pas toutes d’une énergie potentielle

Lorsque les modèles de force ne dérivent pas tous d’une énergie potentielle, nous pouvons
séparer les forces s’exerçant sur une partie mobile en une somme de force dérivant d’une énergie
potentielle et une somme de forces ne dérivant pas d’une énergie potentielle (notée avec une
barre) :

#»𝐹 𝑖 = −
#     »grad𝑖 (𝒱𝑖) +

̄#»𝐹 𝑖

Les équations de Lagrange s’écrivent,

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

=
𝑁
∑
𝑖=1
(−

#     »grad𝑖 (𝒱𝑖) +
̄#»𝐹 𝑖) ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗
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∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= −
𝑁
∑
𝑖=1

#     »grad𝑖 (𝒱𝑖) ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

+
𝑁
∑
𝑖=1

̄#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= −
𝑁
∑
𝑖=1

𝜕𝒱
𝜕𝑞𝑗

+
𝑁
∑
𝑖=1

̄#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 𝑄̄𝑗

dans lesquelles le lagrangien contient les énergies potentielles de toutes les forces dérivant d’une
énergie potentielle indépendante des vitesses généralisées et où la barre sur 𝑄 rappelle que ces
forces généralisées ne dérivent pas d’une énergie potentielle.

Exemple 3.1.5 : Forces de frottements sec
Soit une masse 𝑚 glissant avec frottements sur un plan incliné. Quelle est l’équation de
son mouvement?

𝛼

𝑚

𝑞(𝑡)

#»𝑃

#»

f

Fig. 3.4 – Masse glissant avec frottements sur un plan incliné

On prend comme modèle de force de frottements cinétiques, une force proportionnelle à la
composante du poids qui s’exerce sur le plan incliné, et s’opposant au déplacement de la
masse :

#»

f = −𝜇𝑚𝑔 cos(𝛼)
#»v
𝑣

En utilisant la coordonnée généralisée 𝑞, l’énergie cinétique s’écrit :

𝒯 = 1
2
𝑚 ̇𝑞2

Le lagrangien s’écrit,
ℒ = 1

2
𝑚 ̇𝑞2 +𝑚𝑔𝑞 sin(𝛼)

et l’équation de Lagrange a pour expression :
d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞 ) −

𝜕ℒ
𝜕𝑞 = 𝑄̄

d
d𝑡 (𝑚 ̇𝑞) − 𝑚𝑔 sin(𝛼) =

#»

f ⋅ 𝜕
#»r
𝜕𝑞

̈𝑞 − 𝑔 sin(𝛼) = −𝜇𝑔 cos(𝛼)
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Exemple 3.1.6 : Forces de frottements visqueux
Les forces de frottements visqueux (proportionnels à la vitesse), s’écrivent :

#»

f = −𝜇 #»v

Nous pouvons les réécrire sous la forme :
#»

f = −
#     »grad #»v (

1
2
𝜇𝑣2)

Avec 𝜙 la fonction de dissipation de Rayleigh, définie par

𝜙
def
= 1

2
𝜇𝑣2

nous avons :
#»

f = −
#     »grad #»v (𝜙)

En partant de la déf. 3.1.1 page 71 de la force généralisée, nous avons :

𝑄̄𝑗 =
𝑁
∑
𝑖=1

#»

f 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

= −
𝑁
∑
𝑖=1

#     »grad #»v (𝜙𝑖) ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

En utiliant (3.7) page 71 :

𝑄̄𝑗 = −
𝑁
∑
𝑖=1

#     »grad #»v (𝜙𝑖) ⋅
𝜕 #»v 𝑖
𝜕 ̇𝑞𝑗

= −
𝑁
∑
𝑖=1

𝜕𝜙𝑖
𝜕 ̇𝑞𝑗

= −
𝜕𝜙
𝜕 ̇𝑞𝑗

Les équations de Lagrange s’écrivent alors

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

+
𝜕𝜙
𝜕 ̇𝑞𝑗

= 0

pour lesquelles il reste à préciser les fonctions scalaires ℒ et 𝜙.

Soit un mobile se déplaçant dans un fluide, dans le champ de pesanteur terrestre. La force
de frottement étant supposée proportionnelle à la vitesse, la fonction de dissipation a pour
expression :

𝜙 =
𝜇
2 ( ̇𝑥2 + ̇𝑦2)

En prenant le zéro de l’énergie potentielle au fond du fluide, le lagrangien s’écrit,

ℒ = 𝑚
2 ( ̇𝑥2 + ̇𝑦2) − 𝑚𝑔𝑦

Les équations de Lagrange donnent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥 ) −

𝜕ℒ
𝜕𝑥 +

𝜕𝜙
𝜕 ̇𝑥 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦 ) −

𝜕ℒ
𝜕𝑦 +

𝜕𝜙
𝜕 ̇𝑦 = 0

⇒ {
𝑚 ̈𝑥 + 𝜇 ̇𝑥 = 0
𝑚 ̈𝑦 + 𝜇 ̇𝑦 + 𝑚𝑔 = 0
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3.1.4 Forces de contraintes généralisées

Soit un système holonome à 𝑛 degrés de liberté, donc à 𝑛 coordonnées indépendantes. L’emploi
des coordonnées généralisées fait disparaitre les forces de liaison. Cependant, on peut ne pas
les utiliser et conserver 𝑛 + 𝑘 coordonnées 𝑥𝑗 non indépendantes, et trouver l’expression des 𝑘
équations de liaison holonome.

Ces 𝑘 équations de liaison holonome s’écrivent :

∀𝑖 = 1,… , 𝑘 𝑓𝑖(𝑥1,… , 𝑥𝑛+𝑘, 𝑡) = 0 (3.16)

Imaginons un déplacement virtuel du système, donc à temps constant. Si ce déplacement virtuel
est compatible avec les liaisons alors les équations de liaison (3.16) sont encore valables dans
cette nouvelle position :

∀𝑖 = 1,… , 𝑘 𝑓𝑖(𝑥1 + 𝛿𝑥1,… , 𝑥𝑛+𝑘 + 𝛿𝑥𝑛+𝑘, 𝑡) = 0 (3.17)

où 𝑡 ne varie pas. Soustrayons (3.16) de (3.17) :

∀𝑖 = 1,… , 𝑘 𝑓𝑖(𝑥1 + 𝛿𝑥1,… , 𝑥𝑛+𝑘 + 𝛿𝑥𝑛+𝑘, 𝑡) − 𝑓𝑖(𝑥1,… , 𝑥𝑛+𝑘, 𝑡) = 0
∀𝑖 = 1,… , 𝑘 𝛿𝑡𝑓𝑖(𝑥1,… , 𝑥𝑛+𝑘, 𝑡) = 0

qui est la variation à temps constant de chaque 𝑓𝑖, et qui s’écrit :

∀𝑖 = 1,… , 𝑘
𝑛+𝑘
∑
𝑗=1

𝜕𝑓𝑖
𝜕𝑥𝑗

𝛿𝑥𝑗 = 0 (3.18)

À partir de (3.3) page 70, l’équation de la dynamique valable pour tous types de contraintes et de
coordonnées s’écrit,

𝑛+𝑘
∑
𝑗=1

[ dd𝑡 (
𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅ (
𝜕 #»r 𝑖
𝜕𝑥𝑗

)
𝑡
] 𝛿𝑥𝑗 = 0

où les 𝛿𝑥𝑗 ne sont pas indépendants. On suppose sans perte de généralité, que ce sont les 𝑛
premières coordonnées 𝑥𝑗 qui sont indépendantes. Les expressions entre crochets devant les 𝑛
premiers 𝛿𝑥𝑗 sont donc nulles :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

−
𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅ (
𝜕 #»r 𝑖
𝜕𝑥𝑗

)
𝑡
= 0

Les forces généralisées sont (au maximum) au nombre de 𝑛, une force généralisée par degré de
liberté : ajouter des coordonnées superflues n’ajoute pas de forces. On suppose donc à nouveau
sans perte de généralité que ces forces s’expriment en fonction des 𝑛 premières coordonnées,
supposées indépendantes (cf. rmq 3.1.6 page 85),

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

− 𝑄𝑗 = 0
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si bien qu’il reste :
𝑛+𝑘
∑

𝑗=𝑛+1
[ dd𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

] 𝛿𝑥𝑗 = 0 (3.19)

Les 𝑛 premières coordonnées étant supposées indépendantes, les 𝑛 premiers 𝛿𝑥𝑗 dans (3.18) sont
indépendants, et leurs coefficients respectifs sont nuls afin que la somme soit nulle :

∀𝑖 = 1,… , 𝑘 ∀𝑗 = 1,… , 𝑛
𝜕𝑓𝑖
𝜕𝑥𝑗

= 0 (3.20)

Les équations de liaison ne sont donc pas des fonctions explicites des 𝑛 premières coordonnées.
Il reste :

∀𝑖 = 1,… , 𝑘
𝑛+𝑘
∑

𝑗=𝑛+1

𝜕𝑓𝑖
𝜕𝑥𝑗

𝛿𝑥𝑗 = 0 (3.21)

En introduisant 𝑘 multiplicateurs indéterminés 𝜆𝑖 entre l’éq. (3.19) et les 𝑘 éq. (3.21), nous
obtenons :

𝑛+𝑘
∑

𝑗=𝑛+1
[ dd𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

] 𝛿𝑥𝑗 =
𝑘
∑
𝑖=1

𝜆𝑖
𝑛+𝑘
∑

𝑗=𝑛+1

𝜕𝑓𝑖
𝜕𝑥𝑗

𝛿𝑥𝑗

𝑛+𝑘
∑

𝑗=𝑛+1
[ dd𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

−
𝑘
∑
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

] 𝛿𝑥𝑗 = 0

Les conditions sur les multiplicateurs 𝜆𝑖 pour que chacun des 𝑘 termes soit nul sont les suivantes :

∀𝑗 = 𝑛 + 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

−
𝑘
∑
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

= 0

Les équations de la dynamique sont données par le système d’équations suivant :

⎧⎪
⎨
⎪
⎩

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

− 𝑄𝑗 = 0

∀𝑗 = 𝑛 + 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

−
𝑘
∑
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

= 0

(3.20) de la présente page permettent d’écrire ce système d’équations sous la forme :

∀𝑗 = 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

− 𝑄𝑗 −
𝑘
∑
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

= 0 (3.22)

Ces équations montrent que les 𝜆 𝜕𝑥𝑓 sont homogènes à des forces généralisées. On les appelle
forces de contraintes généralisées.

Lorsque toutes les forces dérivent d’une énergie potentielle indépendante des vitesses généralisées,
d’après la définition (3.1.1) page 71 de la force généralisée et (3.11) page 73 :

𝑁
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑥𝑗

= −
𝜕𝒱(𝑥𝑗, 𝑡)
𝜕𝑥𝑗

On peut ajouter le terme nul 𝜕𝒱/𝜕 ̇𝑥𝑗, et avec la déf. 3.1.3 page 74 du lagrangien :

∀𝑗 = 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥𝑗

) − 𝜕ℒ
𝜕𝑥𝑗

−
𝑘
∑
𝑖=1

𝜆𝑖
𝜕𝑓𝑖
𝜕𝑥𝑗

= 0
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Exemple 3.1.7 : Cylindre roulant sans glisser sur un plan incliné
Un cylindre de masse 𝑚 et de rayon 𝑟, roule sans glisser sur un plan incliné. Quelle est
l’équation de son mouvement?

𝜃

𝛼

𝑚

𝑟

𝑥

Fig. 3.5 – Cylindre roulant sur un plan incliné

Soit 𝜃 l’angle de rotation du cylindre. En l’absence de glissement, la distance 𝑟𝜃 sur le
cylindre est égale à celle parcourue 𝑥. La condition de roulement sans glissement est
l’équation de liaison

𝑟𝜃 − 𝑥 = 0 (3.23)

de la forme,
𝑓 (𝑥, 𝜃) = 0

avec,

⎧

⎨
⎩

𝜕𝑓
𝜕𝑥 = −1

𝜕𝑓
𝜕𝜃 = 𝑟

En choisissant 𝑥 − 𝑟𝜃 = 0 les signes seraient inversés. Il n’y a qu’un seul degré de liberté
mais nous utilisons les deux coordonnées 𝑥 et 𝜃 reliées par l’équation de contrainte (3.23).
L’expression de l’énergie cinétique comporte un terme en translation et un terme en rotation,

𝒯 = 1
2
𝑚 ̇𝑥2 + 1

2
𝐽 ̇𝜃2

dans laquelle on conserve les deux variables 𝑥 et 𝜃. En choisissant l’origine de l’énergie
potentielle au sommet du plan incliné, le lagrangien s’écrit :

ℒ = 1
2
𝑚 ̇𝑥2 + 1

2
𝐽 ̇𝜃2 +𝑚𝑔𝑥 sin(𝛼)

Remarque 3.1.6
On peut aussi choisir indifféremment de prendre :

ℒ = 1
2
𝑚𝑥̇2 + 1

2
𝐽 ̇𝜃2 +𝑚𝑔𝑟𝜃 sin(𝛼)
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Les équations de Lagrange s’écrivent,

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥 ) −

𝜕ℒ
𝜕𝑥 = 𝜆

𝜕𝑓
𝜕𝑥

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 𝜆
𝜕𝑓
𝜕𝜃

⇒
⎧

⎨
⎩

d
d𝑡 (𝑚 ̇𝑥) − 𝑚𝑔 sin(𝛼) = −𝜆

d
d𝑡 (𝐽

̇𝜃) = 𝜆𝑟

⇒ {
𝑚 ̈𝑥 − 𝑚𝑔 sin(𝛼) + 𝜆 = 0

𝜆 = 𝐽 ̈𝜃
𝑟

L’équation de liaison (3.23) page précédente donne,

𝑟𝜃 = 𝑥
𝑟 ̈𝜃 = ̈𝑥

d’où
𝜆 = 𝐽 ̈𝑥/𝑟2 ⇒ ̈𝑥 = 𝑟2𝜆/𝐽

⎧

⎨
⎩

𝑚 ̈𝑥 − 𝑚𝑔 sin(𝛼) + 𝐽 ̈𝑥
𝑟2 = 0

𝑚𝑟2𝜆
𝐽 − 𝑚𝑔 sin(𝛼) + 𝜆 = 0

⇒ {
̈𝑥 (𝑚𝑟2 + 𝐽) − 𝑚𝑟2𝑔 sin(𝛼) = 0
𝜆 (𝑚𝑟2 + 𝐽) − 𝑚𝐽𝑔 sin(𝛼) = 0

⇒
⎧

⎨
⎩

̈𝑥 − 𝑚𝑟2

𝑚𝑟2 + 𝐽 𝑔 sin(𝛼) = 0

𝜆 = 𝐽
𝑚𝑟2 + 𝐽 𝑚𝑔 sin(𝛼)

Pour un cylindre plein, de longueur 𝑙, le moment d’inertie s’écrit,

𝐽 =
˚

𝑉
r2𝑑𝑚

= 𝜌
ˆ 𝑟

0
r2 2𝜋r𝑙 dr

= 1
2
𝜌𝜋𝑟4𝑙

= 1
2
𝑚𝑟2

et l’on obtient,

{
̈𝑥 − 2

3
𝑔 sin(𝛼) = 0

𝜆 = 1
3
𝑚𝑔 sin(𝛼)

Les forces de contraintes généralisées s’écrivent,

⎧

⎨
⎩

𝑓𝑥
def
= 𝜆

𝜕𝑓
𝜕𝑥

𝑓𝜃
def
= 𝜆

𝜕𝑓
𝜕𝜃

⇒ {
𝑓𝑥 = −1

3
𝑚𝑔 sin(𝛼)

𝑓𝜃 =
1
3
𝑟𝑚𝑔 sin(𝛼)

𝑓𝑥 est la force de frottement sur la ligne de contact du cylindre avec le plan incliné. 𝑓𝜃 est
le moment de cette force de frottement par rapport à l’axe du cylindre, qui provoque la
rotation du cylindre sans glissement.
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Pour un cylindre creux, de longueur 𝑙, le moment d’inertie s’écrit,

𝐽 = 𝑟2
˚

𝑉
𝑑𝑚

𝐽 = 𝑚𝑟2

et l’on obtient,

{
̈𝑥 − 1

2
𝑔 sin(𝛼) = 0

𝜆 = 1
2
𝑚𝑔 sin(𝛼)

Les forces de contraintes généralisées s’écrivent,

{
𝑓𝑥 = −1

2
𝑚𝑔 sin(𝛼)

𝑓𝜃 =
1
2
𝑟𝑚𝑔 sin(𝛼)

On vérifie que l’on obtient le même résultat en utilisant directement l’équation de contrainte
(3.23) page 85 dans l’expression de l’énergie cinétique. Par exemple pour le cylindre plein :

𝒯 = 1
2
𝑚 ̇𝑥2 + 1

4
𝑚𝑟2 ̇𝜃2

= 3
4
𝑚 ̇𝑥2

Le lagrangien s’écrit :
ℒ = 3

4
𝑚 ̇𝑥2 +𝑚𝑔𝑥 sin(𝛼)

L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥 ) −

𝜕ℒ
𝜕𝑥 = 0

d
d𝑡 (

3
2
𝑚 ̇𝑥) − 𝑚𝑔 sin(𝛼) = 0

̈𝑥 − 2
3
𝑔 sin(𝛼) = 0

3.1.5 Liaisons non-holonomes

Lorsque les liaison sont non-holonomes il n’existe pas de méthode générale pour éliminer les
coordonnées superflues. Cependant, dans le cas particulier où elles sont données sous forme
différentielle non intégrable, on peut éliminer les équations de la dynamique dépendantes grâce
aux multiplicateurs indéterminés de Lagrange.

Considérons un système à 𝑛 degrés de liberté, et à 𝑛 + 𝑘 coordonnées dépendantes 𝑥𝑗, dont les 𝑘
liaisons non-holonomes sont données sous la forme

∀𝑖 = 1,… , 𝑘
𝑛+𝑘
∑
𝑗=1

𝑎𝑖𝑗 d𝑥𝑗 + 𝑎𝑖𝑡 d𝑡 = 0

où les 𝑎𝑖𝑗 et les 𝑎𝑖𝑡 sont en général fonction du temps et des 𝑥𝑗. Ces équations différentielles sont
supposées non intégrables, car sinon on se ramènerait au cas de liaisons holonomes.
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Exemple 3.1.8 : Équation de liaison sous forme différentielle intégrable
La condition de roulement sans glissement de l’ex. 3.1.7 page 85 est intégrable. Qu’il y
ait glissement ou non, dans le référentiel galiléen lié au plan incliné, la vitesse d’un point
quelconque du cylindre est la composition vectorielle d’une vitesse de rotation autour de
l’axe du cylindre, et de la vitesse en translation du cylindre. En l’absence de glissement, la
vitesse en rotation et la vitesse en translation des points au contact du plan incliné sont
égales en norme (et de même direction mais de sens opposé) :

𝑟 ̇𝜃 = ̇𝑥

Cette liaison s’écrit sous forme différentielle,

𝑟d𝜃 − d𝑥 = 0

Les coefficients 𝑎𝑖𝑗 et 𝑎𝑖𝑡 s’écrivent donc (une seule liaison donc 𝑘 = 1) :

{
𝑎𝜃 = 𝑟
𝑎𝑥 = −1
𝑎𝑡 = 0

Elle s’intègre en une équation holonome

𝑟𝜃 − 𝑥 = 0

où les constantes d’intégration 𝜃0 et 𝑥0 sont choisies nulles.

Lorsque les équations différentielles sont non intégrables, les déplacements virtuels ayant lieu à
temps constant, nous avons

∀𝑖 = 1,… , 𝑘
𝑛+𝑘
∑
𝑗=1

𝑎𝑖𝑗 𝛿𝑥𝑗 = 0

Par analogie avec (3.22) page 84 du § précédent, en introduisant 𝑘 multiplicateurs de Lagrange,
les 𝑛 + 𝑘 équations de la dynamique s’écrivent

∀𝑗 = 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

− 𝑄𝑗 −
𝑘
∑
𝑖=1

𝜆𝑖 𝑎𝑖𝑗 = 0

et lorsque toutes les forces dérivent d’une énergie potentielle indépendante des vitesses générali-
sées :

∀𝑗 = 1,… , 𝑛 + 𝑘 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥𝑗

) − 𝜕ℒ
𝜕𝑥𝑗

−
𝑘
∑
𝑖=1

𝜆𝑖 𝑎𝑖𝑗 = 0

Exemple 3.1.9 : Équations de liaison sous forme différentielle non intégrable
Reprenons l’ex. 1.7.4 page 22 du disque roulant sans glissement sur un plan horizontal. Ce
système se déplace dans le plan, il est à 𝑛 = 2 degrès de liberté. Les 𝑘 = 2 équations de
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liaison du disque avec le sol s’écrivent :

{
d𝑥 − 𝑟 sin(𝜑) d𝜃 = 0
d𝑦 + 𝑟 cos(𝜑) d𝜃 = 0

⇔ {
𝑎11𝛿𝑥1 + 𝑎13𝛿𝑥3 = 0
𝑎21𝛿𝑥1 + 𝑎23𝛿𝑥3 = 0

(3.24)

(𝑥, 𝑦, 𝜃, 𝜑) sont les 𝑛 + 𝑘 = 4 coordonnées dépendantes. Soient 𝑀 la masse du disque, 𝐴
son moment d’inertie par rapport à son axe et 𝐵 son moment d’inertie par rapport à un axe
qui lui est perpendiculaire et qui passe par son centre. Le lagrangien a pour expression :

ℒ = 1
2
𝑀( ̇𝑥2 + ̇𝑦2) + 1

2
𝐴 ̇𝜃2 + 1

2
𝐵 ̇𝜑2

Les équations de Lagrange s’écrivent :

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥 ) −

𝜕ℒ
𝜕𝑥 − (𝜆1 𝑎11 + 𝜆2 𝑎21 + 𝜆3 𝑎31 + 𝜆4 𝑎41) = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦 ) −

𝜕ℒ
𝜕𝑦 − (𝜆1 𝑎11 + 𝜆2 𝑎21 + 𝜆3 𝑎23 + 𝜆4 𝑎24) = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 − (𝜆1 𝑎11 + 𝜆2 𝑎21 + 𝜆3 𝑎31 + 𝜆4 𝑎41) = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜑 ) −

𝜕ℒ
𝜕𝜑 − (𝜆1 𝑎11 + 𝜆2 𝑎21 + 𝜆3 𝑎23 + 𝜆4 𝑎24) = 0

⇒
⎧
⎪

⎨
⎪
⎩

𝑀 ̈𝑥 − 𝜆1 = 0
𝑀 ̈𝑦 − 𝜆2 = 0
𝐴 ̈𝜃 + 𝜆1𝑟 sin(𝜑) − 𝜆2𝑟 cos(𝜑) = 0
𝐵 ̈𝜑 = 0

Les six variables (𝑥, 𝑦, 𝜃, 𝜑, 𝜆1, 𝜆2) sont déterminées à partir de ces quatre équations et
des conditions de liaison (3.24). Il faut également fixer les valeurs initiales de deux des
variables 𝑥, 𝑦, 𝜃, 𝜑, ainsi que leurs dérivées par rapport au temps.

3.2 Propriétés du lagrangien et des équations de Lagrange

3.2.1 Équivalence avec la relation fondamentale de la dynamique

Montrons d’abord que les équations de la dynamique de Newton impliquent celles de Lagrange.
Les équations du mouvement de l’une des parties mobiles s’écrivent sous forme vectorielle

∑
𝑘

#»

f (𝑒)
𝑘 =

d #»p
d𝑡
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où le membre de gauche est la somme des forces extérieures exercées sur la partie mobile étudiée,
et #»p est son vecteur quantité de mouvement. Cette relation vectorielle qui regroupe trois relations
scalaires est appelée relation fondamentale de la dynamique. L’égalité n’est pas stricte car les
#»

f (𝑒)
𝑘 sont des modèles de forces exercées sur la partie mobile. Remplaçons la somme des forces

par une unique force :
#»𝐹 = #»ṗ

Si chaque modèle de force exercée sur la 𝑖e partie mobile dérive d’une énergie potentielle, cette
relation devient :

−
#     »grad (𝒱) = #»ṗ

𝒱 est un modèle d’énergie potentielle. Si la masse 𝑚 de la partie mobile étudiée est constante :

−
#     »grad (𝒱) = 𝑚 #»a

En coordonnées rectangulaires (𝑥𝑗) :

∀𝑗 = 1, 2, 3 𝑚 ̈𝑥𝑗 = −𝜕𝒱𝜕𝑥𝑗
(3.25)

Pour retrouver les équations de Lagrange, introduisons l’énergie cinétique totale du système :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖
#»v 2𝑖

En coordonnées rectangulaires :

𝒯 = 1
2

𝑁
∑
𝑖=1

(𝑚𝑖

3
∑
𝑗=1

̇𝑥2𝑖𝑗)

Pour l’une des parties mobiles (valeur de 𝑖 fixée) :

∀𝑗 = 1, 2, 3 𝜕𝒯
𝜕 ̇𝑥𝑗

= 𝑚 ̇𝑥𝑗 ⇒ ∀𝑗 = 1, 2, 3 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) = 𝑚 ̈𝑥𝑗

Remplaçons dans les équations de Newton (3.25) de la présente page, pour la partie mobile
étudiée :

∀𝑗 = 1, 2, 3 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) = −𝜕𝒱𝜕𝑥𝑗
En soustrayant le terme nul 𝜕𝒯/𝜕𝑥𝑗

∀𝑗 = 1, 2, 3 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑥𝑗

) − 𝜕𝒯
𝜕𝑥𝑗

= −𝜕𝒱𝜕𝑥𝑗
(3.26)

nous trouvons les équations de Lagrange (3.12) page 74 en coordonnées rectangulaires. Pour
comprendre l’origine de ce terme nul à soustraire, effectuons quelques changements de coordon-
nées.

a) Transformation des coordonnées rectangulaires (𝑥, 𝑦, 𝑧) en coordonnées obliques (recti-
lignes non orthogonales) (𝑥′, 𝑦′, 𝑧′) :

{
𝑥′ = 𝑥 − 𝑦/ tan(𝛼)
𝑦′ = 𝑦/ sin(𝛼)
𝑧′ = 𝑧

⇒ {
𝑥 = 𝑥′ + 𝑦′ cos(𝛼)
𝑦 = 𝑦′ sin(𝛼)
𝑧 = 𝑧′

⇒ {
̇𝑥 = ̇𝑥′ + ̇𝑦′ cos(𝛼)
̇𝑦 = ̇𝑦′ sin(𝛼)
̇𝑧 = ̇𝑧′
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L’énergie potentielle totale du système est indépendante du système de coordonnées dans
lequel on l’exprime :

𝒱(𝑥, 𝑦, 𝑧) = 𝒱(𝑥′, 𝑦′, 𝑧′)
= 𝒱′(𝑥′, 𝑦′, 𝑧′)

De même, l’énergie cinétique totale du système est indépendante du système de coordonnées
dans lequel on l’exprime :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝑥2𝑖 + ̇𝑦2𝑖 + ̇𝑧2𝑖 )

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 [( ̇𝑥′𝑖 + ̇𝑦′𝑖 cos(𝛼))2 + ( ̇𝑦′𝑖 sin(𝛼))2 + ( ̇𝑧′𝑖)2]

= 𝒯′

Ce n’est pas une fonction explicite des nouvelles coordonnées (𝑥′, 𝑦′, 𝑧′). L’absence du
terme 𝜕𝒯/𝜕𝑥𝑗 n’est pas due au caractère orthogonal du système de coordonnées choisi.

b) Transformation des coordonnées rectangulaires en coordonnées cylindriques (curvilignes
orthogonales) (𝜌, 𝜙, 𝑧) :

⎧

⎨
⎩

𝜌 = √𝑥2 + 𝑦2

𝜙 = arctan(𝑦, 𝑥)
𝑧 = 𝑧

⇒ {
𝑥 = 𝜌 cos(𝜙)
𝑦 = 𝜌 sin(𝜙)
𝑧 = 𝑧

⇒
⎧
⎨
⎩

̇𝑥 = ̇𝜌 cos(𝜙) − 𝜌 ̇𝜙 sin(𝜙)
̇𝑦 = ̇𝜌 sin(𝜙) + 𝜌 ̇𝜙 cos(𝜙)
̇𝑧 = ̇𝑧

𝜌 ⩾ 0, 0 ⩽ 𝜙 < 2𝜋, −∞ < 𝑧 < +∞

L’énergie potentielle totale du système est indépendante du système de coordonnées dans
lequel on l’exprime :

𝒱(𝑥, 𝑦, 𝑧) = 𝒱(𝜌, 𝜙, 𝑧)

L’énergie cinétique totale du système est indépendante du système de coordonnées dans
lequel on l’exprime :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝑥2𝑖 + ̇𝑦2𝑖 + ̇𝑧2𝑖 )

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 [( ̇𝜌𝑖 cos(𝜙𝑖) − 𝜌𝑖 ̇𝜙𝑖 sin(𝜙𝑖))
2
+ ( ̇𝜌𝑖 sin(𝜙𝑖) + 𝜌𝑖 ̇𝜙𝑖 cos(𝜙𝑖))

2
+ ( ̇𝑧𝑖)2]

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝜌2𝑖 + 𝜌2𝑖 ̇𝜙2𝑖 + ̇𝑧2𝑖 )

C’est une fonction explicite de la coordonnée 𝜌. Pour l’une des parties mobiles :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯
𝜕 ̇𝜌 = 𝑚 ̇𝜌

𝜕𝒯
𝜕 ̇𝜙

= 𝑚𝜌2 ̇𝜙

𝜕𝒯
𝜕 ̇𝑧 = 𝑚 ̇𝑧

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝜌 ) = 𝑚 ̈𝜌

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝜙

) = 2𝑚 ̇𝜌𝜌 ̇𝜙 + 𝑚𝜌2 ̈𝜙

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑧 ) = 𝑚 ̈𝜌

et

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯
𝜕𝜌 = 𝜌 ̇𝜙2

𝜕𝒯
𝜕𝜙 = 0

𝜕𝒯
𝜕𝑧 = 0
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Le terme 𝜕𝒯/𝜕𝑥𝑗 est donc dû au caractère curviligne des coordonnées.

Cherchons les équations du mouvement en coordonnées cylindriques. Les vecteurs unitaires
de la base cylindrique ont pour expression :

⎧

⎨
⎩

#»e 𝜌 = cos(𝜙) ⃗𝚤 + sin(𝜙) ⃗𝚥
#»e 𝜙 = − sin(𝜙) ⃗𝚤 + cos(𝜙) ⃗𝚥
#»e 𝑧 =

#»

k

Le vecteur position s’écrit :
#»r (𝜌, 𝜙, 𝑧) = 𝜌 cos(𝜙) ⃗𝚤 + 𝜌 sin(𝜙) ⃗𝚥 + 𝑧

#»

k

= 𝜌(cos(𝜙) ⃗𝚤 + sin(𝜙) ⃗𝚥) + 𝑧
#»

k
= 𝜌 #»e 𝜌 + 𝑧 #»e 𝑧

Nous avons besoin de la dérivée des vecteurs de base pour exprimer la vitesse et l’accélé-
ration :

⎧⎪
⎨⎪
⎩

#»̇e 𝜌 = − sin(𝜙) ̇𝜙 ⃗𝚤 + cos(𝜙) ̇𝜙 ⃗𝚥
#»̇e 𝜙 = − cos(𝜙) ̇𝜙 ⃗𝚤 − sin(𝜙) ̇𝜙 ⃗𝚥
#»̇e 𝑧 =

#»

k̇

⇒
⎧

⎨
⎩

#»̇e 𝜌 = ̇𝜙 #»e 𝜙
#»̇e 𝜙 = − ̇𝜙 #»e 𝜌
#»̇e 𝑧 = 0

Le vecteur vitesse est la dérivée première du vecteur position par rapport au temps :

#»v = d
d𝑡 (𝜌

#»e 𝜌 + 𝑧 #»e 𝑧)

= ̇𝜌 #»e 𝜌 + 𝜌 #»̇e 𝜌 + ̇𝑧 #»e 𝑧
= ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜃 #»e 𝜃 + ̇𝑧 #»e 𝑧

Le vecteur accélération est la dérivée première du vecteur vitesse par rapport au temps :

#»a = d
d𝑡 ( ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜙 #»e 𝜙 + ̇𝑧 #»e 𝑧)

= ̈𝜌 #»e 𝜌 + ̇𝜌 #»̇e 𝜌 + ̇𝜌 ̇𝜙 #»e 𝜙 + 𝜌 ̈𝜙 #»e 𝜙 + 𝜌 ̇𝜙 #»̇e 𝜙 + ̈𝑧 #»e 𝑧
= ̈𝜌 #»e 𝜌 + ̇𝜌 ̇𝜙 #»e 𝜙 + ̇𝜌 ̇𝜙 #»e 𝜙 + 𝜌 ̈𝜙 #»e 𝜙 − 𝜌 ̇𝜙2 #»e 𝜌 + ̈𝑧 #»e 𝑧
= ( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 + (2 ̇𝜌 ̇𝜃 + 𝜌 ̈𝜃) #»e 𝜃 + ̈𝑧 #»e 𝑧

En coordonnées cylindriques le vecteur gradient s’écrit :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝐹𝜌 = −𝜕𝒱𝜕𝜌

𝐹𝜙 = −1𝜌
𝜕𝒱
𝜕𝜙

𝐹𝑧 = −𝜕𝒱𝜕𝑧
En coordonnées cylindriques les équations de Newton s’écrivent :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑚 ̈𝜌 − 𝑚𝜌 ̇𝜙2 = −𝜕𝒱𝜕𝜌

2𝑚 ̇𝜌 ̇𝜙 + 𝑚𝜌 ̈𝜙 = −1𝜌
𝜕𝒱
𝜕𝜙

𝑚 ̈𝑧 = −𝜕𝒱𝜕𝑧
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En remplaçant les termes présents dans les équations de Newton ci-dessus, nous retrouvons
les équations de Lagrange :

⎧
⎪
⎪

⎨
⎪
⎪
⎩

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝜌 ) −

𝜕𝒯
𝜕𝜌 = −𝜕𝒱𝜕𝜌

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝜙

) − 𝜕𝒯
𝜕𝜙 = −𝜕𝒱𝜕𝜙

d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑧 ) −

𝜕𝒯
𝜕𝑧 = −𝜕𝒱𝜕𝑧

⇒ ∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= −𝜕𝒱𝜕𝑞𝑗

Dans (3.26) page 90, il reste à remplacer les coordonnées rectangulaires (𝑥𝑗) par des coordonnées
généralisées (𝑞𝑗) :

{
∀𝑗 = 1,… , 𝑛 𝑞𝑗 = 𝑞𝑗(𝑥1,… , 𝑥𝑛, 𝑡)
∀𝑗 = 1,… , 𝑛 𝑥𝑗 = 𝑥𝑗(𝑞1,… , 𝑞𝑛, 𝑡)

La dépendance explicite en 𝑡 permet le passage à des référentiels en mouvement (voir § suivant).
L’énergie cinétique totale du système s’écrit :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖
#»v 2𝑖

Cherchons les équations du mouvement de l’une des parties mobiles :

∀𝑗 = 1,… , 𝑛 𝜕𝒯
𝜕 ̇𝑞𝑗

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖
𝜕 #»v 2𝑖
𝜕 ̇𝑞𝑗

=
𝑁
∑
𝑖=1

𝑚𝑖
#»v 𝑖

𝜕 #»v 𝑖
𝜕 ̇𝑞𝑗

Avec (3.7) page 71 :

∀𝑗 = 1,… , 𝑛 𝜕𝒯
𝜕 ̇𝑞𝑗

=
𝑁
∑
𝑖=1

(𝑚𝑖
#»v 𝑖

𝜕 #»r 𝑖
𝜕𝑞𝑗

)

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) =
𝑁
∑
𝑖=1

[𝑚𝑖
#»a 𝑖

𝜕 #»r 𝑖
𝜕𝑞𝑗

+𝑚𝑖
#»v 𝑖

d
d𝑡 (

𝜕 #»r 𝑖
𝜕𝑞𝑗

)]

Avec (3.9) page 72 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) =
𝑁
∑
𝑖=1

#»𝐹 𝑖
𝜕 #»r 𝑖
𝜕𝑞𝑗

+
𝑁
∑
𝑖=1

𝑚𝑖
#»v 𝑖

𝜕 #»v 𝑖
𝜕𝑞𝑗

Avec la déf. 3.1.1 page 71 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) = 𝑄𝑗 +
𝜕𝒯
𝜕𝑞𝑗

Nous retrouvons les équations de Lagrange (3.10) page 72 en coordonnées généralisées.

Montrons à présent que les équations de la dynamique de Lagrange impliquent celles de Newton.
En coordonnées rectangulaires dans l’espace, le lagrangien de l’une des parties mobiles s’écrit :

ℒ = 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2) − 𝒱(𝑥, 𝑦, 𝑧, 𝑡)
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Nous avons alors

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑥 ) −

𝜕ℒ
𝜕𝑥 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦 ) −

𝜕ℒ
𝜕𝑦 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑧 ) −

𝜕ℒ
𝜕𝑧 = 0

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡 (𝑚 ̇𝑥) − 𝜕𝒱

𝜕𝑥 = 0

d
d𝑡 (𝑚 ̇𝑦) − 𝜕𝒱

𝜕𝑦 = 0

d
d𝑡 (𝑚 ̇𝑧) − 𝜕𝒱

𝜕𝑧 = 0

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

d𝑝𝑥
d𝑡 = 𝜕𝒱

𝜕𝑥
d𝑝𝑦
d𝑡 = 𝜕𝒱

𝜕𝑦
d𝑝𝑧
d𝑡 = 𝜕𝒱

𝜕𝑧

⇒
d #»p
d𝑡 = −

#     »grad (𝒱)

qui est l’équation fondamentale de la dynamique de Newton dans le cas de forces conservatives
(forces dérivant d’un potentiel de force, aussi appelé énergie potentielle).

Remarque 3.2.1
En coordonnées rectangulaires, les équations de Lagrange peuvent s’écrire sous forme vectorielle :

⎧
⎪⎪
⎨
⎪⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕𝑥̇ ) −

𝜕ℒ
𝜕𝑥 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦 ) −

𝜕ℒ
𝜕𝑦 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑧 ) −

𝜕ℒ
𝜕𝑧 = 0

⇔ d
d𝑡 (

𝜕ℒ
𝜕 #»v ) −

𝜕ℒ
𝜕 #»r

= 0

Remarque 3.2.2
Par dérivée d’une grandeur scalaire par rapport à un vecteur, 𝜕 #»vℒ et 𝜕 #»r ℒ, on entend un vecteur dont les composantes sont égales aux
dérivées de cette grandeur par rapport aux composantes correspondantes du vecteur.
Le vecteur 𝜕 #»r ℒ de composantes 𝜕𝑥ℒ,𝜕𝑦ℒ,𝜕𝑧ℒ, est le gradient du lagrangien.

3.2.2 Covariance par changement de référentiel galiléen

a) Soit ℛ un référentiel galiléen de système de coordonnées rectangulaires (𝑥, 𝑦, 𝑧, 𝑡), et soit
ℛ′ un second référentiel galiléen de système de coordonnées rectangulaires (𝑥′, 𝑦′, 𝑧′, 𝑡′)
de même orientation, en mouvement à vitesse relative uniforme 𝑣 selon l’axe des 𝑥. La
transformation de Galilée des coordonnées spatio-temporelles permet le passage d’un
référentiel à l’autre :

⎧⎪
⎨
⎪
⎩

𝑥′ = 𝑥 − 𝑣𝑡
𝑦′ = 𝑦
𝑧′ = 𝑧
𝑡′ = 𝑡

⇒ {
̇𝑥′ = ̇𝑥 − 𝑣
̇𝑦′ = ̇𝑦
̇𝑧′ = ̇𝑧

L’énergie potentielle totale du système ne dépend pas du référentiel dans lequel on l’ex-
prime :

𝒱(𝑥, 𝑦, 𝑧) = 𝒱′(𝑥′, 𝑦′, 𝑧′)
Les équations de Newton sont covariantes par changement de référentiel galiléen, par la
transformation de Galilée. Cela signifie qu’elles sont invariantes de forme fonctionnelle,
la fonction reste la même mais les variables changent. Autrement dit, par changement de
référentiel galiléen par la transformation de Galilée, les équations de Newtons s’écrivent
pareil, en remplaçant 𝑥 par 𝑥′. Dans ℛ′ :

∀𝑗 = 1, 2, 3 𝑚 ̈𝑥′𝑗 = − 𝜕𝒱
𝜕𝑥′𝑗

(3.27)
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L’énergie cinétique totale du système dépend du référentiel dans lequel on l’exprime :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝑥2𝑖 + ̇𝑦2𝑖 + ̇𝑧2𝑖 )

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 [( ̇𝑥′𝑖 − 𝑣)2 + ̇𝑦′2𝑖 + ̇𝑧′2𝑖 )]

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝑥′2
𝑖 − 2 ̇𝑥′𝑖𝑣 + 𝑣2 + ̇𝑦′2𝑖 + ̇𝑧′2𝑖 )

= 𝒯′ + 1
2

𝑁
∑
𝑖=1

𝑚𝑖 (−2 ̇𝑥′𝑖𝑣 + 𝑣2)

Dans le référentiel ℛ′, pour l’une des parties mobiles :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯′

𝜕 ̇𝑥′ = 𝑚 ̇𝑥′ +𝑚𝑣

𝜕𝒯′

𝜕 ̇𝑦′ = 𝑚 ̇𝑦′

𝜕𝒯′

𝜕 ̇𝑧′ = 𝑚 ̇𝑧′

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑥′ ) = 𝑚 ̈𝑥′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑦′ ) = 𝑚 ̈𝑦′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑧′ ) = 𝑚 ̈𝑧′

et

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯′

𝜕𝑥′ = 0

𝜕𝒯′

𝜕𝑦′ = 0

𝜕𝒯′

𝜕𝑧′ = 0

En remplaçant dans les équations de Newton (3.27) page ci-contre, nous retrouvons les
équations de Lagrange dans ℛ′ :

∀𝑗 = 1, 2, 3 d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑥′𝑗
) − 𝜕𝒯′

𝜕𝑥′𝑗
= −𝜕𝒱

′

𝜕𝑥′𝑗

Les équations de Lagrange sont covariantes par changement de référentiel galiléen, elles
conservent la même écriture.

b) Changement de coordonnées du référentiel galiléen ℛ au référentiel ℛ′ en mouvement de
rotation uniforme à la vitesse angulaire 𝜔 dans le sens trigonométrique autour de l’axe des
𝑧 :

{
𝑥 = 𝑥′ cos(𝜔𝑡) − 𝑦′ sin(𝜔𝑡)
𝑦 = 𝑥′ sin(𝜔𝑡) + 𝑦′ cos(𝜔𝑡)
𝑧 = 𝑧′

⇒ {
̇𝑥 = ̇𝑥′ cos(𝜔𝑡) − ̇𝑦′ sin(𝜔𝑡) − 𝜔[𝑥′ sin(𝜔𝑡) + 𝑦′ cos(𝜔𝑡)]
̇𝑦 = ̇𝑥′ sin(𝜔𝑡) + ̇𝑦′ cos(𝜔𝑡) + 𝜔[𝑥′ cos(𝜔𝑡) − 𝑦′ sin(𝜔𝑡)]
̇𝑧 = ̇𝑧′

⎧
⎪⎪

⎨
⎪⎪
⎩

̇𝑥2 = [ ̇𝑥′ cos(𝜔𝑡) − ̇𝑦′ sin(𝜔𝑡)]2 − 2𝜔[ ̇𝑥′ cos(𝜔𝑡) − ̇𝑦′ sin(𝜔𝑡)][𝑥′ sin(𝜔𝑡) + 𝑦′ cos(𝜔𝑡)]
+ 𝜔2[𝑥′ sin(𝜔𝑡) + 𝑦′ cos(𝜔𝑡)]2

̇𝑦2 = [ ̇𝑥′ sin(𝜔𝑡) + ̇𝑦′ cos(𝜔𝑡)]2 + 2𝜔[ ̇𝑥′ sin(𝜔𝑡) + ̇𝑦′ cos(𝜔𝑡)][𝑥′ cos(𝜔𝑡) − 𝑦′ sin(𝜔𝑡)]
+ 𝜔2[𝑥′ cos(𝜔𝑡) − 𝑦′ sin(𝜔𝑡)]2

̇𝑧2 = ̇𝑧′2

̇𝑥2 + ̇𝑦2 + ̇𝑧2 = ̇𝑥′2 + ̇𝑦′2 + ̇𝑧′2 + 𝜔2(𝑥′2 + 𝑦′2) + 2𝜔( ̇𝑦′𝑥′ − ̇𝑥′𝑦′)
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L’énergie cinétique totale du système s’écrit :

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖 ( ̇𝑥2𝑖 + ̇𝑦2𝑖 + ̇𝑧2𝑖 )

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 [ ̇𝑥′2 + ̇𝑦′2 + ̇𝑧′2 + 𝜔2(𝑥′2 + 𝑦′2) + 2𝜔( ̇𝑦′𝑥′ − ̇𝑥′𝑦′)]

= 𝒯′ + 1
2

𝑁
∑
𝑖=1

𝑚𝑖 [𝜔2(𝑥
′2 + 𝑦′2) + 2𝜔( ̇𝑦′𝑥′ − ̇𝑥′𝑦′)]

Pour l’une des parties mobiles :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯′

𝜕 ̇𝑥′ = 𝑚 ̇𝑥′ +𝑚𝜔𝑦′

𝜕𝒯′

𝜕 ̇𝑦′ = 𝑚 ̇𝑦′ −𝑚𝜔𝑥′

𝜕𝒯′

𝜕 ̇𝑧′ = 𝑚 ̇𝑧′

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑥′ ) = 𝑚 ̈𝑥′ +𝑚𝜔 ̇𝑦′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑦′ ) = 𝑚 ̈𝑦′ −𝑚𝜔 ̇𝑥′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑧′ ) = 𝑚 ̈𝑧′

et

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝒯′

𝜕𝑥′ = −𝑚𝜔2𝑥′ −𝑚𝜔 ̇𝑦′

𝜕𝒯′

𝜕𝑦′ = −𝑚𝜔2𝑦′ +𝑚𝜔 ̇𝑥′

𝜕𝒯′

𝜕𝑧′ = 0

Le terme 𝜕𝒯/𝜕𝑥𝑗 est donc aussi dû au caractère non galiléen du référentiel.

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑥′ ) −
𝜕𝒯′

𝜕𝑥′ = 𝑚 ̈𝑥′ +𝑚𝜔2𝑥′ + 2𝑚𝜔 ̇𝑦′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑦′ ) −
𝜕𝒯′

𝜕𝑦′ = 𝑚 ̈𝑦′ +𝑚𝜔2𝑦′ − 2𝑚𝜔 ̇𝑥′

d
d𝑡 (

𝜕𝒯′

𝜕 ̇𝑧′ ) −
𝜕𝒯′

𝜕𝑧′ = 𝑚 ̈𝑧′

𝑚𝜔2𝑥′, 𝑚𝜔2𝑦′, 0 sont les composantes de la force centrifuge, 2𝑚𝜔 ̇𝑦′, −2𝑚𝜔 ̇𝑥′, 0 celles de la force
de Coriolis. Toutes les forces fictives, pas seulement centrifuge et de Coriolis, sont comprises dans
l’expression de l’énergie cinétique totale du système exprimée dans le référentiel en mouvement.

3.2.3 Similitude mécanique

Les équations du mouvement sont invariantes lorsque l’on multiplie le lagrangien par une
constante :

∀𝑗 = 1,… , 𝑛 d
d𝑡 [

𝜕 (𝑐 𝑠𝑡𝑒 × ℒ)
𝜕 ̇𝑞𝑗

] −
𝜕 (𝑐 𝑠𝑡𝑒 × ℒ)

𝜕𝑞𝑗
= 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

Cette circonstance permet la similitude mécanique. Soient 𝑘, 𝛼, 𝛽, 𝛾 des constantes. Supposons la
transformation suivante :

#»r → 𝛼 #»r , 𝑡 → 𝛽𝑡, 𝑚 → 𝛾𝑚
L’énergie cinétique se transforme alors ainsi

1
2
𝑚𝑣2 → 1

2
𝛾𝑚 𝛼2

𝛽2 𝑣
2

𝒯 → 𝛾𝛼2

𝛽2 𝒯
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Si l’énergie potentielle est une fonction homogène des coordonnées

𝒱(𝛼 #»r 1, 𝛼
#»r 2,… , 𝛼 #»r 𝑛) = 𝛼𝑘𝒱( #»r 1,

#»r 2,… , #»r 𝑛)

alors
𝒯 − 𝒱 → 𝛾𝛼2

𝛽2 𝒯 − 𝛼𝑘𝒱

Pour que le Lagrangien soit multiplié par une constante il faut et il suffit que

𝛾𝛼2

𝛽2 = 𝛼𝑘

𝛾𝛼2−𝑘 = 𝛽2

On a alors
ℒ → 𝛼𝑘ℒ

Exemple 3.2.1
Dans un champ de force homogène, p. ex. en restant proche de la surface de la Terre,
l’énergie potentielle est une fonction linaire de la hauteur, du type𝑚𝑔ℎ. Donc 𝛾 n’intervient
pas puisque 𝑚 est présente linéairement dans 𝒯 et 𝒱, et 𝑘 = 1 :

𝛼 = 𝛽2

Les carrés des temps de chute sont dans le même rapport que les hauteurs de chute.

Exemple 3.2.2
Pour de petites oscillations mécaniques, l’énergie potentielle est quadratique en 𝑥, du type
1
2
𝑘𝑥2, donc 𝑘 = 2 :

𝛾 = 𝛽2

La période des oscillations est indépendante de leur amplitude, mais varie comme la racine
carrée du rapport des masses oscillantes.

Exemple 3.2.3
Dans le cas de l’interaction newtonienne, l’énergie potentielle est linéaire en 𝑚 et est une
fonction inverse de la distance, donc 𝑘 = −1 :

𝛼3 = 𝛽2

Pour les orbites elliptiques, les carrés des temps de révolution sont proportionnels aux
cubes de leurs dimensions. C’est la troisième loi de Kepler.

Si l’énergie potentielle est simplement multipliée par une constante

𝒱 → 𝑘𝒱

alors
𝒯 − 𝒱 → 𝛾𝛼2

𝛽2 𝒯 − 𝑘𝒱
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Pour que le Lagrangien soit multiplié par une constante il faut et il suffit que

𝛾𝛼2

𝛽2 = 𝑘

On a alors
ℒ → 𝑘ℒ

3.2.4 Caractère scalaire du lagrangien

Les quantités considérées sont toutes des scalaires, et non plus des vecteurs comme en mécanique
de Newton. La mécanique analytique exploite directement le fait que la plupart des modèles de
force en physique dérivent d’une énergie potentielle :

#»𝐹 = −
#     »grad (𝒱)

# »rot #»𝐹 = − # »rot #     »grad (𝒱)
= #»0

soit,

{
𝜕𝑦𝐹𝑧 (𝑥, 𝑦, 𝑧) − 𝜕𝑧𝐹𝑦 (𝑥, 𝑦, 𝑧) = 0
𝜕𝑧𝐹𝑥 (𝑥, 𝑦, 𝑧) − 𝜕𝑥𝐹𝑧 (𝑥, 𝑦, 𝑧) = 0
𝜕𝑥𝐹𝑦 (𝑥, 𝑦, 𝑧) − 𝜕𝑦𝐹𝑥 (𝑥, 𝑦, 𝑧) = 0

Les trois composantes de la force #»𝐹 sont reliées entre-elles par trois équations, ce qui explique
pourquoi on peut les remplacer par l’unique scalaire 𝒱.

3.2.5 Additivité du lagrangien

Soient deux systèmes physiques indépendants, d’énergies cinétiques respectives 𝒯1 et 𝒯2, et
d’énergies potentielles respectives 𝒱1 et 𝒱2. Pour le système global nous avons :

𝒯 = 𝒯1 + 𝒯2
𝒱 = 𝒱1 + 𝒱2

𝒯 − 𝒱 = (𝒯1 + 𝒯2) − (𝒱1 + 𝒱2)
= (𝒯1 − 𝒱1) + (𝒯2 − 𝒱2)

ℒ = ℒ1 + ℒ2

La fonction de Lagrange est donc additive.

3.2.6 Invariance de jauge du lagrangien

Le lagrangien est défini à la dérivée totale par rapport au temps d’une fonction 𝑓 des 𝑛 coordonnées
généralisées 𝑞(𝑡) et du temps près. Autrement dit, le lagrangien,

𝐿(𝑞(𝑡), ̇𝑞(𝑡), 𝑡) = ℒ(𝑞(𝑡), ̇𝑞(𝑡), 𝑡) ±
d𝑓[𝑞(𝑡), 𝑡]

d𝑡 (3.28)
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donne les mêmes équations du mouvement que le lagrangien ℒ seul. Nous pouvons aussi écrire
l’équivalence suivante :

ℒ(𝑞, ̇𝑞, 𝑡) ≡ ℒ(𝑞, ̇𝑞, 𝑡) ±
d𝑓(𝑞, 𝑡)
d𝑡

Remarque 3.2.3
Le choix d’un signe positif ou négatif est bien entendu affaire de convention.

En effet, montrons que :

∀𝑗 = 1,… , 𝑛 d
d𝑡 {

𝜕
𝜕 ̇𝑞𝑗

[
d𝑓(𝑞, 𝑡)
d𝑡 ]} − 𝜕

𝜕𝑞𝑗
[
d𝑓(𝑞, 𝑡)
d𝑡 ] = 0

Écrivons la dérivée totale de 𝑓 par rapport au temps :

d𝑓 =
𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑞𝑖

d𝑞𝑖 +
𝜕𝑓
𝜕𝑡 d𝑡

d𝑓
d𝑡 =

𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕𝑓
𝜕𝑡

Soit donc à prouver que :

∀𝑗 = 1,… , 𝑛 d
d𝑡 [

𝜕
𝜕 ̇𝑞𝑗

(
𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕𝑓
𝜕𝑡 )] −

𝜕
𝜕𝑞𝑗

(
𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕𝑓
𝜕𝑡 ) = 0

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕𝑓
𝜕𝑞𝑗

) − (
𝑛
∑
𝑖=1

𝜕2𝑓
𝜕𝑞𝑗𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕2𝑓
𝜕𝑞𝑗𝜕𝑡

) = 0 (3.29)

Écrivons la différentielle de 𝜕𝑓/𝜕𝑞𝑗 puis sa dérivée totale par rapport au temps :

d (
𝜕𝑓
𝜕𝑞𝑗

) =
𝑛
∑
𝑘=1

𝜕
𝜕𝑞𝑘

(
𝜕𝑓
𝜕𝑞𝑗

) d𝑞𝑘 +
𝜕
𝜕𝑡 (

𝜕𝑓
𝜕𝑞𝑗

) d𝑡

=
𝑛
∑
𝑘=1

𝜕2𝑓
𝜕𝑞𝑘𝜕𝑞𝑗

d𝑞𝑘 +
𝜕2𝑓
𝜕𝑡𝜕𝑞𝑗

d𝑡

d
d𝑡 (

𝜕𝑓
𝜕𝑞𝑗

) =
𝑛
∑
𝑘=1

𝜕2𝑓
𝜕𝑞𝑘𝜕𝑞𝑗

̇𝑞𝑘 +
𝜕2𝑓
𝜕𝑡𝜕𝑞𝑗

La variable muette 𝑘 peut être remplacée par 𝑖, et (3.29) est bien nulle. Le lagrangien subit une
transformation de jauge ou est dit invariant de jauge.
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Exemple 3.2.4

Soit la fonction 𝑓(𝑞1, 𝑞2, 𝑡) = 𝑞1𝑞22 + 𝑞31𝑡2 :

d𝑓 =
𝜕𝑓
𝜕𝑞1

d𝑞1 +
𝜕𝑓
𝜕𝑞2

d𝑞2 +
𝜕𝑓
𝜕𝑡 d𝑡

d𝑓
d𝑡 =

𝜕𝑓
𝜕𝑞1

̇𝑞1 +
𝜕𝑓
𝜕𝑞2

̇𝑞2 +
𝜕𝑓
𝜕𝑡

= 𝑞22 ̇𝑞1 + 3𝑞21𝑡2 ̇𝑞1 + 2𝑞2𝑞1 ̇𝑞2 + 2𝑡𝑞31

Les lagrangiens ℒ(𝑞1, 𝑞2, 𝑡) et 𝐿(𝑞1, 𝑞2, 𝑡) = ℒ + 𝑞22 ̇𝑞1 + 3𝑞21𝑡2 ̇𝑞1 + 2𝑞2𝑞1 ̇𝑞2 + 2𝑡𝑞31 sont
équivalents pour décrire l’évolution d’un système.

3.2.7 Condition nécessaire et suffisante pour avoir un lagrangien

Une condition nécessaire et suffisante pour qu’une fonction ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) soit un lagrangien est
qu’elle soit la dérivée totale par rapport au temps d’une fonction des coordonnées et du temps :

ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) =
d𝐹(𝑞(𝑡), 𝑡)

d𝑡
Autrement dit ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) est un lagrangien si et seulement si ℱ = 𝑑𝐹(𝑞(𝑡), 𝑡)/d𝑡.

• condition suffisante

Soit à démontrer que si ℱ = 𝑑𝐹(𝑞(𝑡), 𝑡)/d𝑡 alors ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) est un lagrangien.

Par hypothèse :

ℱ =
d𝐹(𝑞, 𝑡)
d𝑡

= 1
d𝑡

𝑛
∑
𝑗=1

𝜕𝐹
𝜕𝑞𝑗

d𝑞𝑗 +
𝜕𝐹
𝜕𝑡 d𝑡

=
𝑛
∑
𝑗=1

𝜕𝐹(𝑞, 𝑡)
𝜕𝑞𝑗

̇𝑞𝑗 +
𝜕𝐹(𝑞, 𝑡)
𝜕𝑡

𝐹(𝑞, 𝑡) n’étant pas fonction des ̇𝑞 on en déduit :

∀𝑗 = 1,… , 𝑛 𝜕ℱ
𝜕 ̇𝑞𝑗

= 𝜕𝐹
𝜕𝑞𝑗

(𝑞, 𝑡)

d (𝜕ℱ𝜕 ̇𝑞𝑗
) =

𝑛
∑
𝑖=1

𝜕2𝐹
𝜕𝑞𝑖𝜕𝑞𝑗

d𝑞𝑖 +
𝜕2𝐹
𝜕𝑡𝜕𝑞𝑗

d𝑡

d
d𝑡 (

𝜕ℱ
𝜕 ̇𝑞𝑗

) =
𝑛
∑
𝑖=1

𝜕2𝐹
𝜕𝑞𝑗𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕2𝐹
𝜕𝑞𝑗𝜕𝑡

D’autre part :

∀𝑖 = 1,… , 𝑛 𝜕ℱ
𝜕𝑞𝑖

=
𝑛
∑
𝑗=1

𝜕2𝐹
𝜕𝑞𝑖𝜕𝑞𝑗

̇𝑞𝑗 +
𝜕2𝐹
𝜕𝑞𝑖𝜕𝑡

𝜕ℱ
𝜕𝑞𝑗

=
𝑛
∑
𝑖=1

𝜕2𝐹
𝜕𝑞𝑗𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕2𝐹
𝜕𝑞𝑗𝜕𝑡
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En comparant ces deux résultats,

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℱ
𝜕 ̇𝑞𝑗

) = 𝜕ℱ
𝜕𝑞𝑗

ℱ est donc bien un lagrangien quelle que soit sa forme fonctionnelle et quelle que soit la
dépendance temporelle des coordonnées 𝑞𝑗(𝑡).

• condition nécessaire

Démontrons que ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) est un lagrangien seulement si ℱ = 𝑑𝐹(𝑞(𝑡), 𝑡)/d𝑡, autre-
ment dit si ℱ( ̇𝑞(𝑡), 𝑞(𝑡), 𝑡) est un lagrangien alors ℱ = 𝑑𝐹(𝑞(𝑡), 𝑡)/d𝑡.

Par hypothèse :
∀𝑖 = 1,… , 𝑛 d

d𝑡 (
𝜕ℱ
𝜕 ̇𝑞𝑖

) = 𝜕ℱ
𝜕𝑞𝑖

(3.30)

Dans le cas général 𝜕ℱ/𝜕 ̇𝑞𝑖 est une fonction de ̇𝑞𝑗, 𝑞𝑗, 𝑡

d (𝜕ℱ𝜕 ̇𝑞𝑖
) =

𝑛
∑
𝑗=1

𝜕2ℱ
𝜕 ̇𝑞𝑗𝜕 ̇𝑞𝑖

d ̇𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕𝑞𝑗𝜕 ̇𝑞𝑖

d𝑞𝑗 +
𝜕2ℱ
𝜕𝑡𝜕 ̇𝑞𝑖

d𝑡

d
d𝑡 (

𝜕ℱ
𝜕 ̇𝑞𝑖

) =
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕 ̇𝑞𝑗𝜕 ̇𝑞𝑖

̈𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕𝑞𝑗𝜕 ̇𝑞𝑖

̇𝑞𝑗 +
𝜕2ℱ
𝜕𝑡𝜕 ̇𝑞𝑖

si bien que (3.30) devient :

∀𝑖 = 1,… , 𝑛
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕 ̇𝑞𝑗𝜕 ̇𝑞𝑖

̈𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕𝑞𝑗𝜕 ̇𝑞𝑖

̇𝑞𝑗 +
𝜕2ℱ
𝜕𝑡𝜕 ̇𝑞𝑖

= 𝜕ℱ
𝜕𝑞𝑖

𝜕ℱ(𝑞, ̇𝑞, 𝑡)/𝜕𝑞𝑖 n’étant pas une fonction des ̈𝑞𝑗

∀𝑖 = 1,… , 𝑛
𝑛
∑
𝑗=1

𝜕2ℱ
𝜕 ̇𝑞𝑗𝜕 ̇𝑞𝑖

= 0

et ℱ est donc une fonction linéaire des ̇𝑞, de la forme :

ℱ(𝑞, ̇𝑞, 𝑡) =
𝑛
∑
𝑗=1

𝐺𝑗(𝑞, 𝑡) ̇𝑞𝑗 + 𝐻(𝑞, 𝑡) (3.31)

Nous avons alors d’une part,

∀𝑗 = 1,… , 𝑛 𝜕ℱ
𝜕 ̇𝑞𝑗

= 𝐺𝑗(𝑞, 𝑡)

d (𝜕ℱ𝜕 ̇𝑞𝑗
) =

𝑛
∑
𝑖=1

𝜕𝐺𝑗
𝜕𝑞𝑖

d𝑞𝑖 +
𝜕𝐺𝑗
𝜕𝑡 d𝑡

d
d𝑡 (

𝜕ℱ
𝜕 ̇𝑞𝑗

) =
𝑛
∑
𝑖=1

𝜕𝐺𝑗
𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕𝐺𝑗
𝜕𝑡

et d’autre part :

∀𝑖 = 1,… , 𝑛 𝜕ℱ
𝜕𝑞𝑖

=
𝑛
∑
𝑗=1

𝜕𝐺𝑗
𝜕𝑞𝑖

̇𝑞𝑗 +
𝜕𝐻
𝜕𝑞𝑖

𝜕ℱ
𝜕𝑞𝑗

=
𝑛
∑
𝑖=1

𝜕𝐺𝑖
𝜕𝑞𝑗

̇𝑞𝑖 +
𝜕𝐻
𝜕𝑞𝑗
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Injectons ces deux résultats dans les équations de Lagrange (3.30) prisent pour hypothèses :

∀𝑗 = 1,… , 𝑛
𝑛
∑
𝑖=1

𝜕𝐺𝑗
𝜕𝑞𝑖

̇𝑞𝑖 +
𝜕𝐺𝑗
𝜕𝑡 =

𝑛
∑
𝑖=1

𝜕𝐺𝑖
𝜕𝑞𝑗

̇𝑞𝑖 +
𝜕𝐻
𝜕𝑞𝑗

𝑛
∑
𝑖=1

(
𝜕𝐺𝑗
𝜕𝑞𝑖

−
𝜕𝐺𝑖
𝜕𝑞𝑗

) ̇𝑞𝑖 +
𝜕𝐺𝑗
𝜕𝑡 = 𝜕𝐻

𝜕𝑞𝑗

𝜕𝐻(𝑞, 𝑡)/𝜕𝑞𝑗 n’étant pas fonction des ̇𝑞𝑖

⎧⎪
⎨⎪
⎩

∀𝑗 = 1,… , 𝑛
𝜕𝐺𝑗
𝜕𝑡 = 𝜕𝐻

𝜕𝑞𝑗
(3.32)

∀𝑖, 𝑗 = 1,… , 𝑛
𝜕𝐺𝑗
𝜕𝑞𝑖

=
𝜕𝐺𝑖
𝜕𝑞𝑗

Par exemple :
𝜕𝐺1
𝜕𝑞2

= 𝜕𝐺2
𝜕𝑞1

Cela implique

∀𝑖, 𝑗 = 1,… , 𝑛 𝐺𝑗(𝑞, 𝑡) =
𝜕𝐹(𝑞, 𝑡)
𝜕𝑞𝑗

car on a bien :
𝜕2𝐹(𝑞, 𝑡)
𝜕𝑞2𝜕𝑞1

=
𝜕2𝐹(𝑞, 𝑡)
𝜕𝑞1𝜕𝑞2

Les équations de Lagrange (3.32) donnent alors :

∀𝑗 = 1,… , 𝑛
𝜕2𝐹(𝑞, 𝑡)
𝜕𝑡𝜕𝑞𝑗

=
𝜕𝐻(𝑞, 𝑡)
𝜕𝑞𝑗

𝜕𝐹(𝑞, 𝑡)
𝜕𝑡 = 𝐻(𝑞, 𝑡)

D’après (3.31) la fonction ℱ doit donc être de la forme :

ℱ(𝑞, ̇𝑞, 𝑡) =
𝑛
∑
𝑗=1

𝜕𝐹(𝑞, 𝑡)
𝜕𝑞𝑗

̇𝑞𝑗 +
𝜕𝐹(𝑞, 𝑡)
𝜕𝑡

=
d𝐹(𝑞, 𝑡)
d𝑡

3.2.8 Covariance des équations de Lagrange par changement de coordonnées

Lorsque nous avons établi les équations de Lagrange (3.10) page 72, nous n’avons pas fait d’hy-
pothèse sur le système de coordonnées généralisées utilisé. Par conséquent les équations de
Lagrange sont valables dans tout système de coordonnées généralisées. Elles sont covariantes
(invariantes de forme fonctionnelle) par changement de coordonnées. Nous pouvons démontrer
cette covariance. Soit L(𝑄, 𝑄̇(𝑞, ̇𝑞, 𝑡), 𝑡) le nouveau lagrangien exprimé dans les nouvelles coor-
données (𝑄(𝑞, 𝑡), 𝑄̇, 𝑡). À chaque instant 𝑡 les lagrangiens nouveau et ancien sont égaux puisqu’il
ne s’agit que d’un changement de coordonnées :

L(𝑄𝑗, 𝑄̇𝑗, 𝑡) = ℒ(𝑞, ̇𝑞, 𝑡)

102 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 3 : La mécanique de Lagrange

Dans le cas d’un seul degré de liberté (une seule coordonnée généralisée) :

dL(𝑄𝑗, 𝑄̇𝑗, 𝑡) = dℒ(𝑞, ̇𝑞, 𝑡)

= dℒ
d𝑞 d𝑞 +

dℒ
d ̇𝑞 d ̇𝑞 + dℒ

d𝑡 d𝑡

= dℒ
d𝑞 (

𝜕𝑞
𝜕𝑄 d𝑄 +

𝜕𝑞
𝜕𝑡 d𝑡) +

dℒ
d ̇𝑞 (

𝜕 ̇𝑞
𝜕𝑄 d𝑄 +

𝜕 ̇𝑞
𝜕𝑄̇

d𝑄̇ +
𝜕 ̇𝑞
𝜕𝑡 d𝑡) +

dℒ
d𝑡 d𝑡

= (dℒd𝑞
𝜕𝑞
𝜕𝑄 + dℒ

d ̇𝑞
𝜕 ̇𝑞
𝜕𝑄) d𝑄 + (dℒd ̇𝑞

𝜕 ̇𝑞
𝜕𝑄̇

) d𝑄̇ + (dℒd𝑞
𝜕𝑞
𝜕𝑡 +

dℒ
d ̇𝑞

𝜕 ̇𝑞
𝜕𝑡 +

dℒ
d𝑡 ) d𝑡

= 𝜕L
𝜕𝑄 d𝑄 + 𝜕L

𝜕𝑄̇
d𝑄̇ + 𝜕L

𝜕𝑡 d𝑡

Or nous avons également

d𝑞 =
𝜕𝑞
𝜕𝑄 d𝑄 +

𝜕𝑞
𝜕𝑡 d𝑡

̇𝑞 =
𝜕𝑞
𝜕𝑄 𝑄̇ +

𝜕𝑞
𝜕𝑡

𝜕 ̇𝑞
𝜕𝑄̇

=
𝜕𝑞
𝜕𝑄

Si bien que nous avons les trois relations

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕L
𝜕𝑄 = dℒ

d𝑞
𝜕𝑞
𝜕𝑄 + dℒ

d ̇𝑞
𝜕 ̇𝑞
𝜕𝑄

𝜕L
𝜕𝑄̇

= dℒ
d ̇𝑞

𝜕𝑞
𝜕𝑄

𝜕L
𝜕𝑡 =

dℒ
d𝑞

𝜕𝑞
𝜕𝑡 +

dℒ
d ̇𝑞

𝜕 ̇𝑞
𝜕𝑡 +

dℒ
d𝑡

(3.33a)

(3.33b)

(3.33c)

Donc

d
d𝑡 (

𝜕L
𝜕𝑄̇

) − 𝜕L
𝜕𝑄 = d

d𝑡 (
dℒ
d ̇𝑞

𝜕𝑞
𝜕𝑄) − (dℒd𝑞

𝜕𝑞
𝜕𝑄 + dℒ

d ̇𝑞
𝜕 ̇𝑞
𝜕𝑄)

=
𝜕𝑞
𝜕𝑄

d
d𝑡 (

dℒ
d ̇𝑞 ) +

dℒ
d ̇𝑞

d
d𝑡 (

𝜕𝑞
𝜕𝑄) −

dℒ
d𝑞

𝜕𝑞
𝜕𝑄 − dℒ

d ̇𝑞
𝜕 ̇𝑞
𝜕𝑄

=
𝜕𝑞
𝜕𝑄 [ dd𝑡 (

𝜕ℒ
𝜕 ̇𝑞 ) −

dℒ
d𝑞 ]

Ainsi, la nullité du membre de droite implique celle du membre de gauche. Si le système possède
plusieurs degrés de liberté

d
d𝑡 (

𝜕L
𝜕𝑄̇𝑗

) − 𝜕L
𝜕𝑄𝑗

= ∑
𝑘

𝜕𝑞𝑘
𝜕𝑄𝑗

[ dd𝑡 (
𝜕ℒ
𝜕 ̇𝑞𝑘

) − dℒ
d𝑞𝑘

]

Les équations de Lagrange se transforment comme les composantes covariantes d’un vecteur de
l’espace de configuration.

Contrairement aux équations de Lagrange, les équations de Newton ne sont pas covariantes par
changement de coordonnées. En effet, soit un mobile soumis à une force dérivant d’une énergie
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potentielle 𝒱, les équations de Newton de la dynamique en coordonnées rectangulaires (𝑥, 𝑦)
s’écrivent :

⎧

⎨
⎩

𝑚 ̈𝑥 = −
𝜕𝒱 (𝑥, 𝑦)

𝜕𝑥

𝑚 ̈𝑦 = −
𝜕𝒱 (𝑥, 𝑦)

𝜕𝑦
En passant en coordonnées polaires (𝜌, 𝜃), nous n’avons pas :

⎧
⎨
⎩

���������
𝑚 ̈𝜌 = −

𝜕𝒱 (𝜌, 𝜃)
𝜕𝜌

���������

𝑚 ̈𝜃 = −
𝜕𝒱 (𝜌, 𝜃)

𝜕𝜃

3.3 Intégrales premières du mouvement

Les intégrales premières sont des fonctions des coordonnées généralisées 𝑞 et des vitesses
généralisées ̇𝑞, qui se conservent au cours du mouvement. Une intégrale première est donc de la
forme :

𝑓(𝑞, ̇𝑞) = 𝑐 𝑠𝑡𝑒

Ces équations différentielles sont du 1er ordre en 𝑡 (dérivée première par rapport au temps des
variables 𝑞), alors qu’en mécanique de Newton les équations différentielles du mouvement sont
du 2nd ordre en 𝑡 par les termes d’accélération. Ces dernières sont intégrées une première fois.

La résolution de l’équation du mouvement d’un système mécanique ayant 𝑛 degrés de liberté
nécessite 𝑛 conditions initiales sur les coordonnées et 𝑛 sur les vitesses, soit 2𝑛 constantes.
Les coordonnées généralisées et les vitesses généralisées sont des fonctions du temps et de ces
constantes :

∀𝑗 = 1,… , 𝑛 𝑞𝑗 = 𝑞𝑗 (𝑡, 𝑞01 ,… , 𝑞0𝑛, ̇𝑞01…, ̇𝑞0𝑛)
∀𝑗 = 1,… , 𝑛 ̇𝑞𝑗 = ̇𝑞𝑗 (𝑡, 𝑞01 ,… , 𝑞0𝑛, ̇𝑞01…, ̇𝑞0𝑛)

Dans l’ex. 2.4.3 page 64, nous avions trouvé 𝑞(𝑡) = 1
2
𝑔 sin(𝛼) 𝑡2 + ̇𝑞0𝑡 + 𝑞0. Il est toujours

possible d’effectuer une translation dans le temps, qui correspond à un changement d’origine du
temps :

𝜏 = 𝑡 + 𝑡0
Cela permet de supprimer l’une des constantes (ex. 3.3.2 page 106), constantes que l’on note 𝐶
dans ce qui suit :

∀𝑗 = 1,… , 𝑛 𝑞𝑗 = 𝑞𝑗 (𝜏, 𝐶1,… , 𝐶2𝑛−1)
∀𝑗 = 1,… , 𝑛 ̇𝑞𝑗 = ̇𝑞𝑗 (𝜏, 𝐶1,… , 𝐶2𝑛−1)

En inversant ces relations, nous avons :

∀𝑖 = 1,… , 2𝑛 − 1 𝐶𝑖 = 𝐶𝑖(𝑞, ̇𝑞)
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Nous pouvons par conséquent former au plus 2𝑛− 1 intégrales premières du mouvement pour un
système à 𝑛 degrés de liberté. Cependant, toutes les intégrales premières sont loin de jouer un
rôle d’égale importance en mécanique 1.

Exemple 3.3.1 : Masse glissant sans frottements sur un plan incliné
Une masse 𝑚 glisse sans frottements sur un plan incliné. Quelle est l’équation de son
mouvement?

𝛼

#»𝑃

#»𝑅

𝑚

𝑞(𝑡)

Fig. 3.6 – Masse glissant sans frottements sur un plan incliné

À 𝑛 = 1 degré de liberté correspond 2𝑛 − 1 = 1 intégrale première. La force de pesanteur,
seule force extérieure, dérive d’une énergie potentielle, donc l’énergie mécanique est une
intégrale première. Elle nous fournira une équation, pour une variable, donc la solution
𝑞(𝑡). En prenant l’origine de l’énergie potentielle de pesanteur au sommet du plan incliné,
l’énergie mécanique s’écrit

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚 ̇𝑞2 −𝑚𝑔𝑞 sin(𝛼)

= 𝑐 𝑠𝑡𝑒

C’est une équation différentielle du 1er ordre par rapport au temps, qui s’intègre par
séparation des variables. Pour une énergie potentielle quelconque :

1
2
𝑚 ̇𝑞2 = ℰ − 𝒱(𝑞)

d𝑞
d𝑡 = √

2
𝑚
[ℰ − 𝒱(𝑞)]

𝑡 = √
𝑚
2

ˆ
d𝑞

√ℰ − 𝒱(𝑞)
+ 𝑐 𝑠𝑡𝑒

Remarque 3.3.1
Vérifions que ℰ est bien une intégrale première des équations différentielles du 2nd ordre par rapport au temps, du mouvement.
En la dérivant nous devons retrouver l’équation différentielle (3.14) page 75 :

dℰ
d𝑡 = 0

d
d𝑡 [

1
2
𝑚 ̇𝑞2 −𝑚𝑔𝑞 sin(𝛼)] = 0

𝑚 ̇𝑞 ̈𝑞 −𝑚𝑔 ̇𝑞 sin(𝛼) = 0
̈𝑞 − 𝑔 sin(𝛼) = 0

1. L. Landau, Mécanique (Éditions Mir Moscou, 1982).
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Exemple 3.3.2 : Pendule mathématique, simple, plan, gravitationnel
Le pendule mathématique, simple, plan, gravitationnel (voir fig. 3.2 page 76), n’a qu’un
degré de liberté, l’angle 𝜃 avec la verticale, donc une seule intégrale première, l’énergie
mécanique :

1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌[1 − cos(𝜃)] = ℰ

Pour de petites oscillations, cos(𝜃) ≈ 1 − 1
2
𝜃2 :

1
2
𝑚𝜌2 ̇𝜃2 + 1

2
𝑚𝑔𝜌𝜃2 = ℰ

L’amplitude est maximale, 𝜃 = 𝜃𝑚𝑎𝑥, lorsque ̇𝜃 = 0 :
1
2
𝑚𝑔𝜌𝜃2𝑚𝑎𝑥 = ℰ

𝜃𝑚𝑎𝑥 = ±
√

2ℰ
𝑚𝑔𝜌

Nous avons alors
𝑚𝑔𝜌
2ℰ

𝜌
𝑔

̇𝜃2 = 1 −
𝑚𝑔𝜌
2ℰ 𝜃2

𝜌
𝑔 (

̇𝜃
𝜃𝑚𝑎𝑥

)
2

= 1 − ( 𝜃
𝜃𝑚𝑎𝑥

)
2

√
𝜌
𝑔

̇𝜃
𝜃𝑚𝑎𝑥

= ±
√
1 − ( 𝜃

𝜃𝑚𝑎𝑥
)
2

On pose 𝛼 = 𝜃/𝜃𝑚𝑎𝑥, soit 𝛼̇ = ̇𝜃/𝜃𝑚𝑎𝑥 :

√
𝜌
𝑔 𝛼̇ = ±√1 − 𝛼2

ˆ 𝑡1

𝑡2
d𝑡 = ±

√
𝜌
𝑔

ˆ 𝛼1

𝛼2

d𝛼
√1 − 𝛼2

𝑡2 − 𝑡1 = ±
√

𝜌
𝑔 [arcsin (

𝜃2
𝜃𝑚𝑎𝑥

) − arcsin (
𝜃1
𝜃𝑚𝑎𝑥

)]

La période 𝑇 est le temps de quatre fois le trajet de 𝜃1 = 0 à 𝜃2 = 𝜃𝑚𝑎𝑥 :

𝑇 = 4
√

𝜌
𝑔 [arcsin(1) − arcsin(0)]

= 2𝜋
√

𝜌
𝑔

Posons qu’à l’instant initial 𝑡1 = 0, l’angle est maximal 𝜃1 = 𝜃𝑚𝑎𝑥 :

𝑡2 = ±
√

𝜌
𝑔 [arcsin (

𝜃2
𝜃𝑚𝑎𝑥

) − arcsin(1)]

𝑡 = ±
√

𝜌
𝑔 arcsin ( 𝜃

𝜃𝑚𝑎𝑥
) ∓ 𝑇

4
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On suppose 𝜃 et 𝜃𝑚𝑎𝑥 de même signe :

𝑡 =
√

𝜌
𝑔 arcsin ( 𝜃

𝜃𝑚𝑎𝑥
) − 𝑇

4

𝜃 = 𝜃𝑚𝑎𝑥 sin [√
𝑔
𝜌 (𝑡 +

𝑇
4 )]

On pose 𝜔
def
= √𝑔/𝜌 la pulsation :

𝜃 = 𝜃𝑚𝑎𝑥 sin [𝜔 (𝑡 + 𝑇
4 )]

3.3.1 Énergie généralisée

Dans le cas général, le lagrangien dépend des coordonnées généralisées, des vitesses généralisées
et du temps explicitement, ℒ (𝑞, ̇𝑞, 𝑡) :

dℒ (𝑞, ̇𝑞, 𝑡) = ∑
𝑗

𝜕ℒ
𝜕𝑞𝑗

d𝑞𝑗 +∑
𝑗

𝜕ℒ
𝜕 ̇𝑞𝑗

d ̇𝑞𝑗 +
𝜕ℒ
𝜕𝑡 d𝑡

dℒ
d𝑡 = ∑

𝑗

𝜕ℒ
𝜕𝑞𝑗

̇𝑞𝑗 +∑
𝑗

𝜕ℒ
𝜕 ̇𝑞𝑗

̈𝑞𝑗 +
𝜕ℒ
𝜕𝑡

En utilisant les équations de Lagrange (3.13) page 74,

dℒ
d𝑡 = ∑

𝑗

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) ̇𝑞𝑗 +∑
𝑗

𝜕ℒ
𝜕 ̇𝑞𝑗

̈𝑞𝑗 +
𝜕ℒ
𝜕𝑡

= ∑
𝑗

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗) +
𝜕ℒ
𝜕𝑡

si bien que,
d
d𝑡 (∑𝑗

̇𝑞𝑗
𝜕ℒ
𝜕 ̇𝑞𝑗

− ℒ) = −𝜕ℒ𝜕𝑡

Définition 3.3.1 : Fonction énergie
On définit l’énergie généralisée a par :

𝐻(𝑞, ̇𝑞, 𝑡)
def
= ∑

𝑗
̇𝑞𝑗
𝜕ℒ
𝜕 ̇𝑞𝑗

− ℒ

a. Notée 𝐻 par Lagrange en l’honneur de Huygens

Nous avons alors :
d𝐻
d𝑡 = −𝜕ℒ𝜕𝑡

Lorsque le lagrangien ne dépend pas explicitement du temps, l’énergie généralisée se conserve
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au cours du mouvement :
d
d𝑡 𝐻(𝑞, ̇𝑞) = 0

𝐻(𝑞, ̇𝑞) = 𝑐 𝑠𝑡𝑒

Remarque 3.3.2
Disons de suite que l’énergie généralisée n’est pas l’énergie mécanique, même si souvent elles ont même valeur. Nous verrons que
lorsqu’elle est exprimée avec les variables 𝑞 et 𝑝, on l’appelle hamiltonien du système (cf. rmq 4.2.3 page 132).

Exemple 3.3.3 : Masse glissant sans frottements sur un plan incliné
Une masse 𝑚 glisse sans frottements sur un plan incliné. Quelle est l’équation de son
mouvement?
Le lagrangien a pour expression :

ℒ = 1
2
𝑚 ̇𝑞2 +𝑚𝑔𝑞 sin(𝛼)

Il ne dépend pas explicitement du temps, donc l’énergie généralisée se conserve :

𝐻 = ̇𝑞 𝜕ℒ𝜕 ̇𝑞 − ℒ

= 𝑚 ̇𝑞2 − 1
2
𝑚 ̇𝑞2 −𝑚𝑔𝑞 sin(𝛼)

= 1
2
𝑚 ̇𝑞2 −𝑚𝑔𝑞 sin(𝛼)

= 𝑐 𝑠𝑡𝑒

Nous retrouvons l’intégrale première de l’énergie mécanique de l’ex. 3.3.1 page 105.

3.3.2 Coordonnées cycliques

Définition 3.3.2 : Coordonnées cycliques
Une coordonnée généralisée 𝑞𝑗 qui n’apparait pas explicitement dans le lagrangien (mais
dont la dérivée par rapport au temps apparait), est dite cyclique ou ignorable :

𝑞𝑗 est cyclique ssi 𝜕ℒ𝜕𝑞𝑗
= 0

Soit 𝑞𝑗 une coordonnée cyclique, en partant de l’équation de Lagrange pour cette variable,

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) = 0

𝜕ℒ
𝜕 ̇𝑞𝑗

= 𝑐 𝑠𝑡𝑒

𝜕 ̇𝑞𝑗𝐿 est donc une intégrale première du mouvement.
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Exemple 3.3.4
En coordonnées rectangulaires, si la coordonnée 𝑥 est cyclique :

𝜕ℒ
𝜕 ̇𝑥 = 𝑐 𝑠𝑡𝑒

Si de plus l’énergie potentielle ne dépend pas de la vitesse :

𝜕ℒ
𝜕 ̇𝑥 = 𝜕

𝜕𝑣𝑥
(𝒯 − 𝒱)

= 1
2
𝑚
𝜕𝑣2𝑥
𝜕𝑣𝑥

= 𝑚𝑣𝑥
= p𝑥

Remarque 3.3.3
Notez que 𝑚𝑣𝑥 est bien du 1er ordre en 𝑡 par rapport à la variable 𝑥.

3.4 Impulsions généralisées

D’après l’ex. 3.3.4 précédent, p𝑥 étant la composante du vecteur quantité de mouvement (ou
impulsion) selon l’axe des 𝑥, nous posons la définition :

Définition 3.4.1 : Impulsion généralisée
Les dérivées partielles du lagrangien par rapport aux vitesses généralisées forment les
composantes du vecteur impulsion généralisée #»𝑝 :

𝑝𝑗
def
= 𝜕ℒ

𝜕 ̇𝑞𝑗

Remarque 3.4.1
Historiquement le terme « impulsion »désignait une variation de quantité de mouvement. Par extension elle désigne la quantité de
mouvement elle-même.

Prenons le cas d’un mobile libre (ou isolé) dans le plan.
• en coordonnées rectangulaires (𝑥, 𝑦) dans la base rectangulaire normée ( ⃗𝚤, ⃗𝚥), le vecteur

quantité de mouvement a pour expression :
#»p = 𝑚 ̇𝑥 ⃗𝚤 + 𝑚 ̇𝑦 ⃗𝚥

Les composantes du vecteur quantité de mouvement sont donc :

{
p𝑥 = 𝑚 ̇𝑥
p𝑦 = 𝑚 ̇𝑦
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Les composantes du vecteur impulsion généralisée ont pour expression :

ℒ = 1
2𝑚 ( ̇𝑥2 + ̇𝑦2)

⎧

⎨
⎩

𝑝𝑥 =
𝜕ℒ
𝜕 ̇𝑥

𝑝𝑦 =
𝜕ℒ
𝜕 ̇𝑦

⇒ {
𝑝𝑥 = 𝑚 ̇𝑥
𝑝𝑦 = 𝑚 ̇𝑦

En l’absence de champ magnétique, les vecteurs quantité de mouvement et impulsion
généralisée sont confondus :

#»𝑝 = #»p

Les vecteurs ayant une existence propre, ils sont indépendants du système de coordonnées
et de la base dans lesquels ont les exprime. Une égalité vectorielle vraie dans un système
de coordonnées est vraie dans tout système de coordonnées. Vérifions-le en passant en
coordonnées polaires.

• (2.3) page 57 donne l’expression de la vitesse en coordonnées polaires dans la base polaire
orthonormée ( #»e 𝜌,

#»e 𝜃). Le vecteur quantité de mouvement a alors pour expression :

#»p = 𝑚 ̇𝜌 #»e 𝜌 +𝑚𝜌 ̇𝜃 #»e 𝜃

Les composantes du vecteur quantité de mouvement sont donc :

{
p𝜌 = 𝑚 ̇𝜌
p𝜃 = 𝑚𝜌 ̇𝜃

Les composantes du vecteur impulsion généralisée ont pour expression :

ℒ = 1
2𝑚( ̇𝜌2 + 𝜌2 ̇𝜃2)

⎧⎪
⎨⎪
⎩

𝑝𝜌 =
𝜕ℒ
𝜕 ̇𝜌

𝑝𝜃 =
𝜕ℒ
𝜕 ̇𝜃

⇒ {
𝑝𝜌 = 𝑚 ̇𝜌
𝑝𝜃 = 𝑚𝜌2 ̇𝜃

Elles ne sont pas identiques à celles du vecteur quantité de mouvement, pour autant les vec-
teurs sont égaux. Dans la base polaire naturelle (§ 3.4.2 page ci-contre), le vecteur quantité de
mouvement a pour expression :

#»p = 𝑚 ̇𝜌𝒆𝜌 +𝑚 ̇𝜃𝒆𝜃
Les composantes contravariante du vecteur quantité de mouvement dans la base polaire naturelle
sont alors :

{
p𝜌 = 𝑚 ̇𝜌
p𝜃 = 𝑚 ̇𝜃

Ses composantes covariantes dans la base polaire naturelle sont données par :

{
p𝜌 =

#»p ⋅ 𝒆𝜌
p𝜃 =

#»p ⋅ 𝒆𝜃
⇒ {

p𝜌 = (𝑚 ̇𝜌𝒆𝜌 +𝑚𝜌 ̇𝜃𝒆𝜃) ⋅ 𝒆𝜌
p𝜃 = (𝑚 ̇𝜌𝒆𝜌 +𝑚𝜌 ̇𝜃𝒆𝜃) ⋅ 𝜌𝒆𝜃

⇒ {
p𝜌 = 𝑚 ̇𝜌
p𝜃 = 𝑚𝜌2 ̇𝜃

Nous retrouvons les composantes du vecteur impulsion généralisée #»𝑝 .
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Remarque 3.4.2
Notez que p𝜌 et p𝜃 ne sont pas de même dimension, et que p𝜃 est le moment cinétique par rapport à l’axe 𝑂𝑧.

Pour trouver l’expression des nouvelles impulsions généralisées par changement de variables,
utilisons (3.33b) page 103 :

P𝑗 =
𝜕L
𝜕𝑄̇𝑗

= ∑
𝑘

𝜕𝑞𝑘
𝜕𝑄𝑗

𝜕ℒ
𝜕 ̇𝑞𝑘

= ∑
𝑘

𝜕𝑞𝑘
𝜕𝑄𝑗

𝑝𝑘

Les P𝑗 sont donc les composantes covariantes du vecteur quantité de mouvement #»p (en l’absence
de champ magnétique).

3.4.1 Présence d’un champ électromagnétique

En présence d’un champ électromagnétique de potentiel scalaire 𝜙 ( #»r , 𝑡) et de potentiel vecteur
#»𝐴( #»r , 𝑡), d’après (3.15) page 79 le lagrangien s’écrit :

ℒ = 1
2𝑚 ( ̇𝑥2 + ̇𝑦2) − 𝑞(𝜙 − 𝐴𝑥 ̇𝑥 + 𝐴𝑦 ̇𝑦)

Les composantes du vecteur impulsion généralisée ont pour expression :

⎧

⎨
⎩

𝑝𝑥 =
𝜕ℒ
𝜕 ̇𝑥

𝑝𝑦 =
𝜕ℒ
𝜕 ̇𝑦

⇒ {
𝑝𝑥 = 𝑚 ̇𝑥 + 𝑞𝐴𝑥

𝑝𝑦 = 𝑚 ̇𝑦 + 𝑞𝐴𝑦

En présence d’un champ magnétique
#»𝑝 = #»p + 𝑞 #»𝐴

Nous verrons au ch. 4 page 125 que l’impulsion généralisée est à la base de la mécanique de
Hamilton.

3.4.2 Base et repère naturels

Définition 3.4.2 : Base naturelle
Soit (𝑥1, 𝑥2,… , 𝑥𝑛) un système de coordonnées quelconques, curvilignes ou rectilignes.
En un point𝑀, les vecteurs tangents aux lignes de coordonnées définissent une base locale :

∀𝑖 = 1,… , 𝑛 𝒆𝑖
def
= 𝜕 #    »OM

𝜕𝑥𝑖

(𝒆𝑖) est la base naturelle du système de coordonnées (𝑥𝑖) au point 𝑀, et (𝑀, 𝒆𝑖) est le
repère naturel au point 𝑀.
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En coordonnées curvilignes les 𝒆𝑖 forment un champ de vecteurs fonction de la position de la
base. En général les vecteurs de la base naturelle ne sont pas de norme unité et n’ont pas la
même dimension physique. La transformation des vecteurs de base est due à un changement
de coordonnées ou à un déplacement de l’origine de la base dans un système de coordonnées
curviligne.

∀𝑗 𝒆𝑗′ =
𝜕 #»𝑀
𝜕𝑥𝑗′

= 𝜕 #»𝑀
𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑥𝑗′

∀𝑗 𝒆𝑗′ =
𝜕𝑥𝑖

𝜕𝑥𝑗′
𝒆𝑖 (3.34)

Cette relation n’est valable que pour un changement de base naturelle à base naturelle. Les
transformations inverses s’écrivent :

∀𝑖 𝒆𝑖 =
𝜕 #»𝑀
𝜕𝑥𝑖

= 𝜕 #»𝑀
𝜕𝑥𝑗′

𝜕𝑥𝑗′

𝜕𝑥𝑖

∀𝑖 𝒆𝑖 =
𝜕𝑥𝑗′

𝜕𝑥𝑖
𝒆𝑗′ (3.35)

Exemple 3.4.1

Exprimons les vecteurs de la base naturelle polaire (𝒆𝜌, 𝒆𝜃) en fonction des vecteurs de la
base rectangulaire (𝒆𝑥, 𝒆𝑦). Commençons par donner la transformation des coordonnées
polaires en rectangulaires :

𝑇 ∶ {
𝑥 (𝜌, 𝜃) = 𝜌 cos(𝜃)
𝑦 (𝜌, 𝜃) = 𝜌 sin(𝜃)

𝜌 ⩾ 0 et 0 ⩽ 𝜃 < 2𝜋 (3.36)

⎧
⎪

⎨
⎪
⎩

𝒆𝜌 = (𝜕
#    »OM
𝜕𝜌 )

𝜃

𝒆𝜃 = (𝜕
#    »OM
𝜕𝜃 )

𝜌

⇒
⎧⎪
⎨⎪
⎩

𝒆𝜌 =
𝜕 #    »OM
𝜕𝑥

𝜕𝑥
𝜕𝜌 +

𝜕 #    »OM
𝜕𝑦

𝜕𝑦
𝜕𝜌

𝒆𝜃 =
𝜕 #    »OM
𝜕𝑥

𝜕𝑥
𝜕𝜃 +

𝜕 #    »OM
𝜕𝑦

𝜕𝑦
𝜕𝜃

⇒
⎧

⎨
⎩

𝒆𝜌 =
𝜕𝑥
𝜕𝜌 𝒆𝑥 +

𝜕𝑦
𝜕𝜌 𝒆𝑦

𝒆𝜃 =
𝜕𝑥
𝜕𝜃 𝒆𝑥 +

𝜕𝑦
𝜕𝜃 𝒆𝑦

⇒ {
𝒆𝜌 = cos(𝜃) 𝒆𝑥 + sin(𝜃) 𝒆𝑦
𝒆𝜃 = −𝜌 sin(𝜃) 𝒆𝑥 + 𝜌 cos(𝜃) 𝒆𝑦

(3.37)

Les vecteurs de la base naturelle polaire ont pour norme :

{
‖𝒆𝜌‖ = √cos2(𝜃) + sin2(𝜃)

‖𝒆𝜃‖ = √𝜌2 sin2(𝜃) + 𝜌2 cos2(𝜃)
⇒ {

‖𝒆𝜌‖ = 1
‖𝒆𝜃‖ = 𝜌
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La base naturelle polaire n’est pas normée. En revanche elle est orthogonale :

𝒆𝜌 ⋅ 𝒆𝜃 = (cos(𝜃) 𝒆𝑥 + sin(𝜃) 𝒆𝑦) ⋅ (−𝜌 sin(𝜃) 𝒆𝑥 + 𝜌 cos(𝜃) 𝒆𝑦)
= − cos(𝜃)𝜌 sin(𝜃) + sin(𝜃)𝜌 cos(𝜃)
= 0

𝜌 ayant la dimension d’une longueur, les vecteurs 𝒆𝜌 et 𝒆𝜃 n’ont pas la même dimension.
Il s’en suit que les composantes des vecteurs physiques exprimées dans la base naturelle
ne sont pas des composantes physiques. Par exemple, dans la base naturelle polaire les
composantes du vecteur vitesse ont pour dimensions m s−1 et s−1.

3.4.3 Composantes contravariantes d’un vecteur

Un vecteur peut être projeté de deux façons dans la base naturelle : parallèlement ou perpendicu-
lairement aux vecteurs de base.

— en projetant parallèlement on obtient les composantes contravariantes du vecteur
— en projetant perpendiculairement on obtient les composantes covariantes du vecteur

Remarque 3.4.3
Dans les bases orthonormées, les composantes contravariantes et covariantes sont confondues.

Se donner une base et se donner des composantes (contravariantes ou covariantes) est équivalent
à se donner un vecteur. Réciproquement, dans une base donnée tout vecteur peut se décomposer
en composantes contravariantes ou en composantes covariantes. Un vecteur est donc la donnée
d’une base et, de composantes contravariantes ou covariantes. Lorsque l’on décrit un vecteur en
composantes covariantes on parle de covecteur ou vecteur covariant. Ceci est un abus de langage,
il n’existe qu’une seule sorte de vecteur, que l’on peut exprimer de deux façons différentes dans
une base donnée.

Exemple 3.4.2

Soit (𝑥1, 𝑥2) un système de coordonnées rectilignes obliques dans lequel le point 𝑀 a pour
coordonnées (𝑥1𝑀, 𝑥2𝑀).

𝑀

𝑂

𝑥1𝑀 = 3

𝑥2𝑀 = 2

Fig. 3.7 – Système de coordonnées cartésiennes

À ce système de coordonnées nous associons le repère (𝑂, 𝒆1, 𝒆2) tel que la base (𝒆1, 𝒆2)
soit normée et les vecteurs de base pris le long des droites de coordonnées.
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𝑀

#»u

𝒆1

𝒆2

𝑂 𝑢1

𝑢2

𝑥2

𝑥1

Fig. 3.8 – Composantes contravariantes du vecteur ⃗𝑢

Dans cette base, le vecteur #»u = #    »OM a pour composantes contravariantes 𝑢1 et 𝑢2 :

#»u = 𝑢1𝒆1 + 𝑢2𝒆2

La base étant normée, 𝑢1 = 𝑥1𝑀 et 𝑢2 = 𝑥2𝑀.

Définition 3.4.3 : Composantes contravariantes
Soit (𝒆1, 𝒆2,… , 𝒆𝑛) une base d’un espace vectoriel 𝐸𝑛. On appelle composantes contrava-
riantes du vecteur #»u dans cette base, les nombres 𝑢1, 𝑢2,… , 𝑢𝑛 tels que :

#»u = 𝑢1𝒆1 + 𝑢2𝒆2 +⋯+ 𝑢𝑛𝒆𝑛

=
𝑛
∑
𝑖=1

𝑢𝑖𝒆𝑖

Elles sont représentées au moyen d’indices supérieurs.

Les vecteurs ont une signification absolue indépendante de la base dans laquelle on les exprime,
mais les nombres (les composantes) qui les décrivent dépendent de la base utilisée :

𝑢𝑗′𝒆𝑗′ = 𝑢𝑖𝒆𝑖

À partir du changement de base naturelle (3.35) page 112 :

𝑢𝑗′𝒆𝑗′ = 𝑢𝑖 𝜕𝑥
𝑗′

𝜕𝑥𝑖
𝒆𝑗′

Les composantes contravariantes se transforment par changement de base naturelle selon les
relations :

∀𝑗 𝑢𝑗′ = 𝜕𝑥𝑗′

𝜕𝑥𝑖
𝑢𝑖 (3.38)
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3.4.4 Composantes covariantes d’un vecteur

Le produit scalaire permet de définir les composantes covariantes. À partir d’un système de
coordonnées rectilignes obliques (𝑥1, 𝑥2), construisons une base normée (𝒆1, 𝒆2). En projetant le
vecteur #»u perpendiculairement aux vecteurs de base, nous obtenons ses composantes covariantes :

#»u

𝒆1

𝒆2

𝑜 𝑢1

𝑢2

𝑥1

𝑥2

Fig. 3.9 – Composantes covariantes du vecteur ⃗𝑢

Nous avons :

𝑢1 =
#»u ⋅ 𝒆1

𝑢2 =
#»u ⋅ 𝒆2

Remarque 3.4.4
À chaque axe de coordonnée on associe un vecteur de base tangent normé, sur lequel on définit deux composantes, l’une contravariante,
l’autre covariante. La variance, c.-à-d. le fait d’être covariant ou contravariant, ne s’applique qu’aux composantes.

Définition 3.4.4 : Composantes covariantes
Soit (𝒆𝑖) une base d’un espace vectoriel euclidien 𝐸𝑛. On appelle composantes covariantes
d’un vecteur #»u , les 𝑛 scalaires 𝑢𝑖 tels que :

∀𝑖 𝑢𝑖
def
= #»u ⋅ 𝒆𝑖

Elles sont représentées au moyen d’indices inférieurs.

Remarque 3.4.5
Lorsqu’un vecteur de base est multiplié par deux, la composante covariante correspondante l’est aussi, d’où son nom.

Bien que la base (𝒆1, 𝒆2) soit normée :

#»u ≠ 𝑢1𝒆1 + 𝑢2𝒆2
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À partir du changement de base naturelle (3.34) page 112 :

∀𝑗 𝑢𝑗′ =
#    »OM ⋅ 𝒆𝑗′

= #    »OM ⋅ 𝜕𝑥
𝑖

𝜕𝑥𝑗′
𝒆𝑖

= 𝜕𝑥𝑖

𝜕𝑥𝑗′
( #    »OM ⋅ 𝒆𝑖)

Par changement de base naturelle, les composantes covariantes se transforment selon :

∀𝑗 𝑢𝑗′ =
𝜕𝑥𝑖

𝜕𝑥𝑗′
𝑢𝑖

3.5 Applications de la mécanique de Lagrange

3.5.1 Masse sur une trappe

Reprenons l’ex. 2.4.5 page 66 résolu par la mécanique de Newton et par le principe des travaux
virtuels. Une masse 𝑚 est posée sur une trappe qui s’ouvre d’un angle 𝜃(𝑡) donné en fonction du
temps. Quelle est l’équation du mouvement de 𝑚?

𝑜
𝜃 = 𝑓(𝑡)

𝑚
𝜌

Fig. 3.10 – Masse sur une trappe

Le lagrangien a pour expression :

ℒ
def
= 𝒯 − 𝒱

= 1
2
𝑚[ ̇𝜌2 + 𝜌2 ̇𝜃2(𝑡)] + 𝑚𝑔𝜌 sin[𝜃(𝑡)]

Le lagrangien est ici une fonction implicite du temps par l’intermédiaire de 𝜃(𝑡) et de ̇𝜃(𝑡). Il
est en fait une fonction explicite du temps car 𝜃(𝑡) et ̇𝜃(𝑡) sont connues. Supposons p. ex. que
𝜃(𝑡) = 𝜋𝑡2/20, qui donne une vitesse d’ouverture ̇𝜃(𝑡) = 1

20
𝜋rad/s. Le lagrangien est maintenant

une fonction explicite du temps :

ℒ = 1
2
𝑚[ ̇𝜌2 + 𝜌2 (𝜋𝑡20)

2
] + 𝑚𝑔𝜌 sin (𝜋𝑡

2

20 )
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𝜃(𝑡) n’est pas une coordonnée généralisée car elle est donnée a priori, 𝜌 est la seule inconnue que
puisse résoudre l’équation de la dynamique de Lagrange :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜌 ) −

𝜕ℒ
𝜕𝜌 = 0

d
d𝑡 (𝑚 ̇𝜌) − 𝑚𝜌 ̇𝜃2(𝑡) + 𝑚𝑔 sin[𝜃(𝑡)] = 0

̈𝜌 − 𝜌 ̇𝜃2(𝑡) − 𝑔 sin[𝜃(𝑡)] = 0

3.5.2 Pendule double, plan

Trouver l’équation du mouvement du pendule double, plan (3.11).

𝑚1

𝜌1

𝜃1
𝑚2

𝜌2

𝜃2

Fig. 3.11 – Pendule double, plan

Cherchons l’expression du lagrangien, donc de l’énergie cinétique et potentielle, en fonction des
coordonnées généralisées. Il y a deux coordonnées généralisées, 𝜃1 et 𝜃2, associées aux deux
degrés de liberté du système. Cela suggère de passer en coordonnées polaires :

⎧⎪
⎨
⎪
⎩

𝑥1 = 𝜌1 sin(𝜃1)
𝑦1 = −𝜌1 cos(𝜃1)
𝑥2 = 𝜌1 sin(𝜃1) + 𝜌2 sin(𝜃2)
𝑦2 = −𝜌1 cos(𝜃1) − 𝜌2 cos(𝜃2)

⇒

⎧
⎪

⎨
⎪
⎩

̇𝑥1 = 𝜌1 ̇𝜃1 cos(𝜃1)
̇𝑦1 = −𝜌1 ̇𝜃1 sin(𝜃1)
̇𝑥2 = 𝜌1 ̇𝜃1 cos(𝜃1) + 𝜌2 ̇𝜃2 cos(𝜃2)
̇𝑦2 = 𝜌1 ̇𝜃1 sin(𝜃1) + 𝜌2 ̇𝜃2 sin(𝜃2)

Les vitesses au carré des masses 𝑚1 et 𝑚2 s’écrivent en coordonnées rectangulaires :

{
𝑣21 = ̇𝑥21 + ̇𝑦21
𝑣22 = ̇𝑥22 + ̇𝑦22

En coordonnées polaires nous avons :

𝑣21 = 𝜌21 ̇𝜃21 cos2(𝜃1) + 𝜌21 ̇𝜃21 sin2(𝜃1)
= 𝜌21 ̇𝜃21
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et,

𝑣22 = 𝜌21 ̇𝜃21 cos2(𝜃1) + 𝜌22 ̇𝜃22 cos2(𝜃2) + 2𝜌1 ̇𝜃1 cos(𝜃1)𝜌2 ̇𝜃2 cos(𝜃2)
+ 𝜌21 ̇𝜃21 sin2(𝜃1) + 𝜌22 ̇𝜃22 sin2(𝜃2) + 2𝜌1 ̇𝜃1 sin(𝜃1)𝜌2 ̇𝜃2 sin(𝜃2)

= 𝜌21 ̇𝜃21 + 𝜌22 ̇𝜃22 + 2𝜌1 ̇𝜃1𝜌2 ̇𝜃2 [cos(𝜃1) cos(𝜃2) + sin(𝜃1) sin(𝜃2)]
= 𝜌21 ̇𝜃21 + 𝜌22 ̇𝜃22 + 2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 cos(𝜃1 − 𝜃2)

Nous en déduisons l’expression de l’énergie cinétique :

𝒯 = 1
2
𝑚1𝑣21 +

1
2
𝑚2𝑣22

= 1
2
𝑚1𝜌21 ̇𝜃21 +

1
2
𝑚2 [𝜌21 ̇𝜃21 + 𝜌22 ̇𝜃22 + 2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 cos(𝜃1 − 𝜃2)]

= 1
2
(𝑚1 +𝑚2)𝜌21 ̇𝜃21 +

1
2
𝑚2 [𝜌22 ̇𝜃22 + 2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 cos(𝜃1 − 𝜃2)]

On prend le point de suspension du pendule double comme origine des énergies potentielles :

𝒱 = 𝑚1𝑔𝑦1 +𝑚2𝑔𝑦2
= −𝑚1𝑔𝜌1 cos(𝜃1) − 𝑚2𝑔 [𝜌1 cos(𝜃1) + 𝜌2 cos(𝜃2)]
= −(𝑚1 +𝑚2)𝑔𝜌1 cos(𝜃1) − 𝑚2𝑔𝜌2 cos(𝜃2)

Le lagrangien a pour expression :

ℒ = 1
2
(𝑚1 +𝑚2)𝜌21 ̇𝜃21 +

1
2
𝑚2 [𝜌22 ̇𝜃22 + 2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 cos(𝜃1 − 𝜃2)]

+ (𝑚1 +𝑚2)𝑔𝜌1 cos(𝜃1) + 𝑚2𝑔𝜌2 cos(𝜃2)

Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃1

) − 𝜕ℒ
𝜕𝜃1

= 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃2

) − 𝜕ℒ
𝜕𝜃2

= 0

Or :
⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝜕ℒ
𝜕 ̇𝜃1

= (𝑚1 +𝑚2)𝜌21 ̇𝜃1 +𝑚2𝜌1𝜌2 ̇𝜃2 cos(𝜃1 − 𝜃2)

𝜕ℒ
𝜕𝜃1

= −𝑚2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 sin(𝜃1 − 𝜃2) − (𝑚1 +𝑚2)𝑔𝜌1 sin(𝜃1)

𝜕ℒ
𝜕 ̇𝜃2

= 𝑚2𝜌22 ̇𝜃2 +𝑚2𝜌1𝜌2 ̇𝜃1 cos(𝜃1 − 𝜃2)

𝜕ℒ
𝜕𝜃2

= 𝑚2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 sin(𝜃1 − 𝜃2) − 𝑚2𝑔𝜌2 sin(𝜃2)

Les équations de Lagrange donnent :

⎧
⎪

⎨
⎪
⎩

(𝑚1 +𝑚2)𝜌21 ̈𝜃1 +𝑚2𝜌1𝜌2 ̈𝜃2 cos(𝜃1 − 𝜃2) − 𝑚2𝜌1𝜌2 ̇𝜃2 ( ̇𝜃1 − ̇𝜃2) sin(𝜃1 − 𝜃2)
= −𝑚2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 sin(𝜃1 − 𝜃2) − (𝑚1 +𝑚2)𝑔𝜌1 sin(𝜃1)

𝑚2𝜌22 ̈𝜃2 +𝑚2𝜌1𝜌2 ̈𝜃1 cos(𝜃1 − 𝜃2) − 𝑚2𝜌1𝜌2 ̇𝜃1 ( ̇𝜃1 − ̇𝜃2) sin(𝜃1 − 𝜃2)
= 𝑚2𝜌1𝜌2 ̇𝜃1 ̇𝜃2 sin(𝜃1 − 𝜃2) − 𝑚2𝑔𝜌2 sin(𝜃2)

{
(𝑚1 +𝑚2)𝜌21 ̈𝜃1 +𝑚2𝜌1𝜌2 ̈𝜃2 cos(𝜃1 − 𝜃2) − 𝑚2𝜌1𝜌2 ̇𝜃22 sin(𝜃1 − 𝜃2) = −(𝑚1 +𝑚2)𝑔𝜌1 sin(𝜃1)
𝑚2𝜌22 ̈𝜃2 +𝑚2𝜌1𝜌2 ̈𝜃1 cos(𝜃1 − 𝜃2) − 𝑚2𝜌1𝜌2 ̇𝜃21 sin(𝜃1 − 𝜃2) = −𝑚2𝑔𝜌2 sin(𝜃2)
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3.5.3 Pendule simple plan, dont le point de suspension est libre horizontalement

Une masse 𝑚1 attachée à une tige de longueur 𝜌 oscille dans le plan. La tige est fixée à une masse
𝑚2 libre horizontalement. Quelles sont les équations du mouvement des masses 𝑚1 et 𝑚2 ?

𝑥

𝑦

𝑚1

𝑚2

𝜌𝜃

#»𝑃

𝑙

Fig. 3.12 – Pendule simple, plan, dont le point de suspension est libre horizontalement

Le système a deux degrés de liberté et aucune liaison holonome. Il existe donc deux coordon-
nées généralisées, 𝑥 et 𝑦, ou la distance 𝑙 et l’angle 𝜃 du pendule. Écrivons le changement de
coordonnées cartésiennes à polaires :

{
𝑥 = 𝑙 + 𝜌 sin(𝜃)
𝑦 = −𝜌 cos(𝜃)

⇒ {
𝑣𝑥 = ̇𝑙 + 𝜌 ̇𝜃 cos(𝜃)
𝑣𝑦 = 𝜌 ̇𝜌 sin(𝜃)

L’énergie cinétique a pour expression

𝒯 = 1
2
𝑚1 (𝑣2𝑥 + 𝑣2𝑦) +

1
2
𝑚2 ̇𝑙2

= 1
2
𝑚1 [ ̇𝑙2 + 𝜌2 ̇𝜃2 cos2(𝜃) + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃) + 𝜌2 ̇𝜃2 sin2(𝜃)] + 1

2
𝑚2 ̇𝑙2

= 1
2
(𝑚1 +𝑚2) ̇𝑙2 +

1
2
𝑚1 [𝜌2 ̇𝜃2 + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃)]

et l’énergie potentielle s’écrit :

𝒱 = 𝑚1𝑔𝑦
= −𝑚1𝑔𝜌 cos(𝜃)

D’où le lagrangien :

ℒ = 1
2
(𝑚1 +𝑚2) ̇𝑙2 +

1
2
𝑚1 [𝜌2 ̇𝜃2 + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃)] + 𝑚1𝑔𝜌 cos(𝜃)
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Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑙
) − 𝜕ℒ

𝜕𝑙 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0
⇒

⎧

⎨
⎩

d
d𝑡 [(𝑚1 +𝑚2) ̇𝑙 + 𝑚1𝜌 ̇𝜃 cos(𝜃)] = 0

𝑚1
d
d𝑡 [𝜌

2 ̇𝜃 + 𝜌 ̇𝑙 cos(𝜃)] + 𝑚1𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝑚1𝑔𝜌 sin(𝜃) = 0

⇒ {
(𝑚1 +𝑚2) ̈𝑙 + 𝑚1𝜌 ̈𝜃 cos(𝜃) − 𝑚1𝜌 ̇𝜃2 sin(𝜃) = 0
𝜌2 ̈𝜃 + 𝜌 ̈𝑙 cos(𝜃) − 𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝜌𝑔 sin(𝜃) = 0

⇒ {
(𝑚1 +𝑚2) ̈𝑙 = 𝑚1𝜌 [ ̇𝜃2 sin(𝜃) − ̈𝜃 cos(𝜃)]
𝜌 ̈𝜃 + 𝑔 sin(𝜃) = − ̈𝑙 cos(𝜃)

Lorsque
• 𝜃 = 𝑐 𝑠𝑡𝑒, c.-à-d. lorsque ̇𝜃 = ̈𝜃 = 0, la 1re équation donne le principe d’inertie ̇𝑙 = 𝑐 𝑠𝑡𝑒

• 𝑙 = 𝑐 𝑠𝑡𝑒, c.-à-d. lorsque ̇𝑙 = ̈𝑙 = 0, la 2e équation devient l’équation du pendule simple,
plan.

3.5.4 Pendule simple plan, dont le point de suspension oscille horizontalement

Une masse 𝑚 attachée à une tige de longueur 𝜌 oscille dans le plan. La tige est fixée à un bloc de
masse négligeable, qui oscille horizontalement. Quelle est l’équation du mouvement de la masse
𝑚?

𝑥

𝑦

𝑚

𝜌𝜃

#»𝑃

𝑙0

𝑙

Fig. 3.13 – Pendule simple, plan, dont le point de suspension oscille horizontalement

Le système a deux degrés de liberté et aucune liaison holonome. Il existe donc deux coordonnées
généralisées, 𝑥 et 𝑦, ou l’allongement 𝑙 et l’angle 𝜃 du pendule. Écrivons le changement de
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coordonnées :

{
𝑥 = 𝑙 + 𝜌 sin(𝜃)
𝑦 = −𝜌 cos(𝜃)

⇒ {
𝑣𝑥 = ̇𝑙 + 𝜌 ̇𝜃 cos(𝜃)
𝑣𝑦 = 𝜌 sin(𝜃)

L’énergie cinétique a pour expression

𝒯 = 1
2
𝑚(𝑣2𝑥 + 𝑣2𝑦)

= 1
2
𝑚[ ̇𝑙2 + 𝜌2 ̇𝜃2 cos2(𝜃) + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃) + 𝜌2 ̇𝜃2 sin2(𝜃)]

= 1
2
𝑚[ ̇𝑙2 + 𝜌2 ̇𝜃2 + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃)]

et l’énergie potentielle s’écrit :

𝒱 = 1
2
𝑘𝑙2 +𝑚𝑔𝑦

= 1
2
𝑘𝑙2 −𝑚𝑔𝜌 cos(𝜃)

D’où le lagrangien :

ℒ = 1
2
𝑚[ ̇𝑙2 + 𝜌2 ̇𝜃2 + 2𝜌 ̇𝑙 ̇𝜃 cos(𝜃)] − 1

2
𝑘𝑙2 +𝑚𝑔𝜌 cos(𝜃)

Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑙
) − 𝜕ℒ

𝜕𝑙 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0
⇒

⎧

⎨
⎩

𝑚 d
d𝑡 [

̇𝑙 + 𝜌 ̇𝜃 cos(𝜃)] + 𝑘𝑙 = 0

𝑚 d
d𝑡 [𝜌

2 ̇𝜃 + 𝜌 ̇𝑙 cos(𝜃)] + 𝑚𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝑚𝑔𝜌 sin(𝜃) = 0

⇒ {
𝑚 [ ̈𝑙 + 𝜌 ̈𝜃 cos(𝜃) − 𝜌 ̇𝜃2 sin(𝜃)] + 𝑘𝑙 = 0
𝜌2 ̈𝜃 + 𝜌 ̈𝑙 cos(𝜃) − 𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝜌 ̇𝑙 ̇𝜃 sin(𝜃) + 𝜌𝑔 sin(𝜃) = 0

⇒ {
𝑚 ̈𝑙 + 𝑘𝑙 = 𝑚𝜌 [ ̇𝜃2 sin(𝜃) − ̈𝜃 cos(𝜃)]
𝜌 ̈𝜃 + 𝑔 sin(𝜃) = − ̈𝑙 cos(𝜃)

Lorsque 𝜃 = 𝑐 𝑠𝑡𝑒, c.-à-d. lorsque ̇𝜃 = ̈𝜃 = 0, la première équation devient l’équation de
l’oscillateur harmonique.
Lorsque 𝑙 = 𝑐 𝑠𝑡𝑒, c.-à-d. lorsque ̇𝑙 = ̈𝑙 = 0, la seconde équation devient l’équation du pendule
simple, plan.

3.5.5 Pendule simple, plan, dont le point de suspension se déplace verticalement

Soit une masse 𝑚 attachée à une tige de longueur 𝜌 constante, oscillant dans le plan (𝑥, 𝑦) et dont
le point de suspension se déplace verticalement selon la fonction ℎ(𝑡). Quelle est l’équation du
mouvement de la masse 𝑚?
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ℎ(𝑡)

𝑚

𝜌

𝜃

#»𝑃

Fig. 3.14 – Pendule simple, plan, dont le point de suspension se déplace verticalement

Le système possède deux dimensions 𝑥 et 𝑦,

{
𝑥 = 𝜌 sin(𝜃)
𝑦 = −ℎ(𝑡) − 𝜌 cos(𝜃)

et une liaison holonome rhéonome :

{
𝑥 cos(𝜃) = 𝜌 sin(𝜃) cos(𝜃)
𝑦 sin(𝜃) = −ℎ(𝑡) sin(𝜃) − 𝜌 cos(𝜃) sin(𝜃)

𝑦 sin(𝜃) = −ℎ(𝑡) sin(𝜃) − 𝑥 cos(𝜃)
𝑦 + 𝑥 cot 𝜃 = −ℎ(𝑡)

Il n’y a donc qu’une seule coordonnée généralisée, 𝜃. Le potentiel a pour expression :

𝒱 = −𝑚𝑔 [ℎ + 𝜌 cos(𝜃)]

La vitesse s’écrit :

{
̇𝑥 = 𝜌 ̇𝜃 cos(𝜃)
̇𝑦 = 𝜌 ̇𝜃 sin(𝜃) − ̇ℎ

L’énergie cinétique a pour expression :

𝒯 = 1
2
𝑚( ̇𝑥2 + ̇𝑦2)

= 1
2
𝑚[𝜌2 ̇𝜃2 cos2(𝜃) + 𝜌2 ̇𝜃2 sin2(𝜃) − 2 ̇ℎ𝜌 ̇𝜃 sin(𝜃) + ̇ℎ2]

= 1
2
𝑚𝜌2 ̇𝜃2 + 1

2
𝑚 ̇ℎ2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃)

Le lagrangien s’écrit

ℒ = 1
2
𝑚𝜌2 ̇𝜃2 + 1

2
𝑚 ̇ℎ2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃) + 𝑚𝑔ℎ +𝑚𝑔𝜌 cos(𝜃)
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il dépend explicitement du temps par la fonction ℎ(𝑡). L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) = 𝜕ℒ

𝜕𝜃
d
d𝑡 [𝑚𝜌

2 ̇𝜃 − 𝑚 ̇ℎ𝜌 sin(𝜃)] = −𝑚 ̇ℎ𝜌 ̇𝜃 cos(𝜃) − 𝑚𝑔𝜌 sin(𝜃)

𝜌 ̈𝜃 − ̈ℎ sin(𝜃) − ̇ℎ ̇𝜃 cos(𝜃) = − ̇ℎ ̇𝜃 cos(𝜃) − 𝑔 sin(𝜃)
𝜌 ̈𝜃 + (𝑔 − ̈ℎ) sin(𝜃) = 0

C’est le comportement d’un pendule simple plan dans un champ de gravitation 𝑔 − ̈ℎ. Si momen-
tanément ℎ(𝑡) = 𝑔𝑡2 alors ̈ℎ = 𝑔, le pendule est en chute libre :

𝜌 ̈𝜃 = 0
̇𝜃 = 𝑐 𝑠𝑡𝑒

Sa vitesse angulaire est constante ou nulle autour du point d’encrage. L’équation du mouvement
ℎ(𝑡) = 𝑔𝑡2 n’est pas tenable longtemps, le point d’encrage doit changer de sens. Si momentané-
ment ℎ(𝑡) = −𝑔𝑡2 alors ̈ℎ = −𝑔, le pendule est dans un champ de pesanteur 2𝑔.

3.5.6 Pendule simple, plan, dont le point de suspension décrit un cercle

Soit une masse 𝑚 attachée à une tige de longueur 𝜌 constante, oscillant dans le plan (𝑥, 𝑦) et
dont le point de suspension décrit un cercle de rayon 𝑟 dans le plan vertical, avec une pulsation 𝜔
constante. Quelle est l’équation du mouvement de la masse 𝑚?

𝑟
𝑥

𝑦

𝑚

𝜌

𝜃

#»𝑃

Fig. 3.15 – Pendule simple, plan, dont le point de suspension décrit un cercle

Le système n’a qu’un degrés de liberté, 𝜃, car l’angle 𝜔𝑡 est imposé au système. Nous avons :

{
𝑥 = 𝑟 cos(𝜔𝑡) + 𝜌 sin(𝜃)
𝑦 = 𝑟 sin(𝜔𝑡) − 𝜌 cos(𝜃)

⇒ {
𝑣𝑥 = −𝑟𝜔 sin(𝜔𝑡) + 𝜌 ̇𝜃 cos(𝜃)
𝑣𝑦 = 𝑟𝜔 cos(𝜔𝑡) + 𝜌 ̇𝜃 sin(𝜃)
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L’énergie cinétique a pour expression

𝒯 = 1
2
𝑚(𝑣2𝑥 + 𝑣2𝑦)

= 1
2
𝑚[𝑟2𝜔2 sin2(𝜔𝑡) + 𝜌2 ̇𝜃2 cos2(𝜃) − 2𝑟𝜔𝜌 ̇𝜃 sin(𝜔𝑡) cos(𝜃)

+𝑟2𝜔2 cos2(𝜔𝑡) + 𝜌2 ̇𝜃2 sin2(𝜃) + 2𝑟𝜔𝜌 ̇𝜃 cos(𝜔𝑡) sin(𝜃)]

= 1
2
𝑚{𝑟2𝜔2 + 𝜌2 ̇𝜃2 + 2𝑟𝜔𝜌 ̇𝜃 [cos(𝜔𝑡) sin(𝜃) − sin(𝜔𝑡) cos(𝜃)]}

= 1
2
𝑚[𝑟2𝜔2 + 𝜌2 ̇𝜃2 + 2𝑟𝜔𝜌 ̇𝜃 sin(𝜃 − 𝜔𝑡)]

et l’énergie potentielle s’écrit :

𝒱 = 𝑚𝑔𝑦
= 𝑚𝑔[𝑟 sin(𝜔𝑡) − 𝜌 cos(𝜃)]

D’où le lagrangien :

ℒ = 1
2
𝑚𝑟2𝜔2 + 1

2
𝑚𝜌2 ̇𝜃2 +𝑚𝑟𝜔𝜌 ̇𝜃 sin(𝜃 − 𝜔𝑡) − 𝑚𝑔𝑟 sin(𝜔𝑡) + 𝑚𝑔𝜌 cos(𝜃)

= 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑟𝜔𝜌 [d cos(𝜃 − 𝜔𝑡)

d𝑡 + 𝜔 sin(𝜃 − 𝜔𝑡)] +
𝑚𝑔𝑟
𝜔

d cos(𝜔𝑡)
d𝑡 + 𝑚𝑔𝜌 cos(𝜃)

= 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑟𝜔2𝜌 sin(𝜃 − 𝜔𝑡) + 𝑚𝑔𝜌 cos(𝜃)

= 1
2
𝜌 ̇𝜃2 + 𝑟𝜔2 sin(𝜃 − 𝜔𝑡) + 𝑔 cos(𝜃)

L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0

d
d𝑡(𝜌

̇𝜃) − 𝑟𝜔2 cos(𝜃 − 𝜔𝑡) + 𝑔 sin(𝜃) = 0

𝜌 ̈𝜃 + 𝑔 sin(𝜃) − 𝑟𝜔2 cos(𝜃 − 𝜔𝑡) = 0

Lorsque la vitesse angulaire 𝜔 est nulle, on retrouve l’équation du pendule simple.
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4.1 Transformation de Legendre

La transformation de Legendre permet d’exprimer une fonction grâce à l’enveloppe de ses
tangentes.

4.1.1 Équation de la tangente en un point d’une courbe

Soit 𝑀(𝑥𝑀, 𝑦𝑀) un point d’une courbe 𝒞 d’équation 𝑦 = 𝑓(𝑥). Cherchons l’équation 𝑦 = 𝑎𝑥+𝑏
de la droite𝒟 tangente à 𝒞 au point𝑀, autrement dit cherchons les paramètres 𝑎 et 𝑏 de l’équation
𝒟 ∶ 𝑦 = 𝑎𝑥 + 𝑏.
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𝒞𝑓 ∶ 𝑦 = 𝑓(𝑥)

𝛼

𝛼

Fig. 4.1 – Tangente à une courbe

Par définition, la dérivée de la fonction 𝑓 au point 𝑀 est égale à la tangente de l’angle 𝛼 que fait
la droite 𝒟 au point 𝑀 avec l’horizontale :

𝑓′(𝑥𝑀) = lim
ℎ→0

𝑓 (𝑥𝑀 + ℎ) − 𝑓(𝑥𝑀)
ℎ

= tan(𝛼)

Au point 𝑀(𝑥𝑀, 𝑦𝑀) l’équation de la tangente 𝑦𝑀 = 𝑎𝑥𝑀 + 𝑏 donne

𝑎 =
𝑦𝑀 − 𝑏
𝑥𝑀

et 𝑏 = 𝑦𝑀 − 𝑎𝑥𝑀

= tan(𝛼) = 𝑓(𝑥𝑀) − 𝑎 𝑥𝑀
= 𝑓′(𝑥𝑀) = 𝑓(𝑥𝑀) − 𝑓′(𝑥𝑀)𝑥𝑀

(4.1)

Ayant les deux paramètres 𝑎 et 𝑏, nous pouvons écrire l’équation de la tangente en 𝑀 :

𝑦 = 𝑓′(𝑥𝑀)𝑥 + 𝑓(𝑥𝑀) − 𝑓′(𝑥𝑀)𝑥𝑀

4.1.2 Équation de l’enveloppe

Cherchons l’équation de toutes les tangentes, c.-à-d. 𝑏 en fonction de 𝑎. Repartons de (4.1) :

𝑏(𝑎) = 𝑓(𝑥𝑀) − 𝑎 𝑥𝑀

Le point 𝑀 parcourt maintenant toute la courbe 𝒞, et 𝑥𝑀 devient une variable. La transformée de
Legendre de 𝑓(𝑥) est donc la fonction 𝑏(𝑎) telle que :

𝑏(𝑎) = 𝑓(𝑥) − 𝑎𝑥 (4.2)

Comme 𝑎 est la nouvelle variable, il nous reste à exprimer 𝑓(𝑥) et 𝑥 en fonction de 𝑎. Pour cela
il nous faut l’expression explicite de la fonction 𝑓.
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Remarque 4.1.1
La nouvelle variable « 𝑎 »ne doit pas repasser par une même valeur dans la fonction 𝑏(𝑎). La fonction de départ 𝑦 = 𝑓(𝑥) ne doit
donc pas avoir deux tangentes parallèles (même « 𝑎 ») dans l’intervalle considéré. Elle doit avoir une concavité de même signe sur
l’intervalle, être concave 𝑓″(𝑥) > 0 ou convexe 𝑓″(𝑥) < 0.

Exemple 4.1.1

Trouver la transformée de Legendre de 𝑓(𝑥) = 𝑥2. La nouvelle variable s’écrit,

𝑎 = 𝑓′(𝑥)
= 2𝑥

soit,
𝑥 = 𝑎

2
On exprime 𝑓(𝑥) en fonction de 𝑎 :

𝑓(𝑥) = 𝑥2

= 𝑎2
4

La transformée de Legendre de 𝑓(𝑥) est alors la fonction 𝑏(𝑎) donnée par (4.2) :

𝑏(𝑎) = 𝑓(𝑥) − 𝑎𝑥

= 𝑎2
4 − 𝑎 × 𝑎

2

= −𝑎
2

4

On retiendra que dans toute transformation de Legendre, la nouvelle variable 𝑎 est la dérivée de
la fonction de départ 𝑓(𝑥) par rapport à l’ancienne variable 𝑥.

4.1.3 Involution de la transformation de Legendre

Si l’on applique deux fois la transformation de Legendre, on retombe sur la fonction de départ.
En effet, la transformée de Legendre de la fonction 𝑓(𝑥) est donnée par :

𝑏(𝑎) = 𝑓(𝑥) − 𝑎𝑥

Si l’on applique de nouveau la transformation de Legendre, la nouvelle variable, notée 𝑛, est telle
que

𝑛 = d𝑏(𝑎)
d𝑎

=
d𝑓(𝑥)
d𝑎 − 𝑥 − 𝑎 d𝑥d𝑎
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et la transformée de Legendre de 𝑏(𝑎) est la fonction 𝑔 (𝑛) telle que :

𝑔 (𝑛) = 𝑏(𝑎) − 𝑛𝑎

= 𝑓(𝑥) − 𝑎𝑥 − [
d𝑓(𝑥)
𝑑𝑎 − 𝑥 − 𝑎 d𝑥𝑑𝑎] 𝑎

= 𝑓(𝑥) − [
d𝑓(𝑥)
𝑑𝑎 − 𝑎 d𝑥𝑑𝑎] 𝑎

Avec 𝑎 = d𝑓(𝑥)/d𝑥 :

𝑔 (𝑛) = 𝑓(𝑥) − [
d𝑓(𝑥)
𝑑𝑎 −

d𝑓(𝑥)
d𝑥

d𝑥
𝑑𝑎] 𝑎

= 𝑓(𝑥)

On en conclue que la transformation de Legendre ne perd ni n’ajoute d’information à la fonction
de départ.

Remarque 4.1.2
Nous pouvons choisir de prendre 𝑏(𝑎) = 𝑎𝑥 − 𝑓(𝑥) pour transformée de 𝑓(𝑥). Le signe est affaire de convention.

Exemple 4.1.2

Poursuivons le premier exemple et cherchons la transfomée de Legendre de 𝑏(𝑎) = −𝑎2/4.
La nouvelle variable 𝑛 s’écrit,

𝑛 = 𝑏′ (𝑎)

= −𝑎2

soit,
𝑎 = −2𝑛

On exprime 𝑏(𝑎) en fonction de 𝑛 :

𝑏(𝑎) = −𝑎
2

4
= −𝑛2

La transformée de Legendre de 𝑏(𝑎) est alors :

𝑔 (𝑛) = 𝑏(𝑎) − 𝑛𝑎
= −𝑛2 + 2𝑛2

= 𝑛2

On retrouve la propriété d’involution de la transformée de Legendre.
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4.2 Équations de Hamilton

4.2.1 Introduction de nouvelles variables indépendantes

Les 𝑛 équations de Lagrange sont des équations différentielles du 2nd ordre par rapport au temps.
N’importe quelle équation différentielle du 2nd ordre peut être remplacée par deux équations
différentielles du 1er ordre, en introduisant une nouvelle variable indépendante.

Exemple 4.2.1
Soit à résoudre l’équation différentielle suivante :

̈𝑥 = 0

En posant 𝑣
def
= ̇𝑥 nous avons le système de deux équations différentielles à résoudre :

{
̇𝑣 = 0
̇𝑥 = 𝑣

Ces équations différentielles sont résolues indépendamment l’une de l’autre, et les variables
𝑣 et ̇𝑣 sont donc traitées comme indépendantes :

{
𝑣 = 𝐶1
̇𝑥 = 𝑣

𝑥 = 𝐶1𝑡 + 𝐶2

Appliquons cette remarque aux équations de Lagrange :

∀𝑗 = 1,… , 𝑛 {
d
d𝑡 (

𝜕ℒ
𝜕𝑣𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

𝑣𝑗 = ̇𝑞𝑗

où le lagrangien devient une fonction des nouvelles variables 𝑣 et des anciennes variables 𝑞.

Peut-on simplifier l’écriture des équations de Lagrange?

Nous avons,

d [
𝜕ℒ (𝑞, 𝑣, 𝑡)

𝜕𝑣𝑗
] =

𝑛
∑
𝑘=1

( 𝜕2ℒ
𝜕𝑣𝑘𝜕𝑣𝑗

d𝑣𝑘 +
𝜕2ℒ
𝜕𝑞𝑘𝜕𝑣𝑗

d𝑞𝑘) +
𝜕2ℒ
𝜕𝑡𝜕𝑣𝑗

d𝑡

d
d𝑡 [

𝜕ℒ (𝑞, 𝑣, 𝑡)
𝜕𝑣𝑗

] =
𝑛
∑
𝑘=1

( 𝜕2ℒ
𝜕𝑣𝑘𝜕𝑣𝑗

̇𝑣𝑘 +
𝜕2ℒ
𝜕𝑞𝑘𝜕𝑣𝑗

𝑣𝑘) +
𝜕2ℒ
𝜕𝑡𝜕𝑣𝑗
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Nous obtenons le système d’équations différentielles du 1er ordre par rapport au temps :

∀𝑗 = 1,… , 𝑛 {

𝑛
∑
𝑘=1

( 𝜕2ℒ
𝜕𝑣𝑘𝜕𝑣𝑗

̇𝑣𝑘 +
𝜕2ℒ
𝜕𝑞𝑘𝜕𝑣𝑗

𝑣𝑘) +
𝜕2ℒ
𝜕𝑡𝜕𝑣𝑗

− 𝜕ℒ
𝜕𝑞𝑗

= 0

𝑣𝑗 = ̇𝑞𝑗

L’introduction des nouvelles variables 𝑣𝑗 n’apporte pas de simplification.

4.2.2 Transformée de Legendre des vitesses généralisées

Dans les 𝑛 équations de Lagrange,

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

apparaissent les dérivées partielles du lagrangien par rapport aux vitesses généralisées : 𝜕ℒ/𝜕 ̇𝑞𝑗
Cela suggère d’effectuer la transformation de Legendre du lagrangien pour les vitesses générali-
sées ̇𝑞, en posant,

𝑝𝑗 =
𝜕ℒ
𝜕 ̇𝑞𝑗

qui est la définition 3.4.1 page 109 des impulsions généralisées. Les équations de Lagrange
deviennent le système suivant :

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

d
d𝑡 𝑝𝑗 −

𝜕ℒ
𝜕𝑞𝑗

= 0

𝑝𝑗 =
𝜕ℒ
𝜕 ̇𝑞𝑗

soit,

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑝𝑗 =
𝜕ℒ
𝜕𝑞𝑗

𝑝𝑗 =
𝜕ℒ
𝜕 ̇𝑞𝑗

(4.3a)

(4.3b)

La première relation est l’équation de la dynamique. La seconde correspond à la création des
nouvelles variables 𝑝 pour la transformation de Legendre du lagrangien pour les vitesses généra-
lisées. Par rapport aux relations obtenues à la fin du § 4.2.1 précédent, on remarque leur grande
simplicité.

Les 𝑛 équations différentielles (4.3a) sont résolues indépendamment des 𝑛 équations différentielles
(4.3b), les variables 𝑝 et 𝑞 sont donc traitées comme étant indépendantes l’une de l’autre.

4.2.3 Expression du hamiltonien

Il nous reste à effectuer la transformation de Legendre du lagrangien car dans les équations (4.3)
de la présente page nous n’utilisons pas les mêmes variables de chaque côté des égalités. Com-
mençons par ne transformer que la première vitesse généralisée ̇𝑞1, et notons ℋ1 la transformée
de Legendre du lagrangien :

ℋ1 (𝑞, 𝑝1; ̇𝑞2,… , ̇𝑞𝑛; 𝑡) = 𝑝1 ̇𝑞1 − ℒ(𝑞, ̇𝑞, 𝑡)
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Remarque 4.2.1
Ou bien ℋ1 = ℒ− 𝑝1 ̇𝑞1, le signe de la transformation de Legendre est affaire de convention.

Transformons maintenant la deuxième vitesse généralisée ̇𝑞2 :
ℋ2(𝑞, 𝑝1, 𝑝2; ̇𝑞3,… , ̇𝑞𝑛; 𝑡) = 𝑝2 ̇𝑞2 −ℋ1 (𝑞, 𝑝1; ̇𝑞2,… , ̇𝑞𝑛; 𝑡)

= 𝑝1 ̇𝑞1 − 𝑝2 ̇𝑞2 − ℒ(𝑞, ̇𝑞, 𝑡)
En transformant toutes les vitesses généralisées, on pose la définition suivante :

Définition 4.2.1 : Hamiltonien
La fonction des 𝑛 coordonnées généralisées 𝑞, des 𝑛 impulsions généralisées 𝑝, et du
temps

ℋ(𝑞, 𝑝, 𝑡)
def
=

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 − ℒ(𝑞, ̇𝑞, 𝑡)

est appelée fonction de Hamilton ou hamiltonien du système.

Le hamiltonien est la transformation de Legendre du lagrangien pour l’ensemble des vitesses
généralisées. Réciproquement, le lagrangien est la transformation de Legendre du hamiltonien
pour l’ensemble des impulsions généralisées.

Remarque 4.2.2
Même remarque que pour le lagrangien : le modèle de force de la relation fondamentale de la dynamique, devenu modèle d’énergie
potentielle, puis intégré au lagrangien, est maintenant intégré au hamiltonien. Il faudra donc trouver un modèle de hamiltonien adapté
au problème à résoudre. La « physique »du problème est donc contenue dans le hamiltonien. De plus, on note que par l’intermédiaire de
l’énergie potentielle, le hamiltonien dépend du choix de l’origine des énergies potentielles.

Dans l’exemple qui suit nous allons voir que les ̇𝑞 sont exprimées en fonction des 𝑝 en inversant
la déf. 3.4.1 page 109 des impulsions généralisées.

Exemple 4.2.2 : Masse glissant sans frottements sur un plan incliné
Une masse glisse sans frottements sur un plan incliné, quelle est l’expression du hamilto-
nien?
Reprenons l’ex. 3.1.1 page 75. Nous avions trouvé le lagrangien suivant :

ℒ = 1
2
𝑚 ̇𝑞2 +𝑚𝑔𝑞 sin(𝛼)

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝑞. Le
moment conjugué de la variable 𝑞 a pour expression :

𝜕ℒ
𝜕 ̇𝑞

def
= 𝑝 ⇒ ̇𝑞 =

𝑝
𝑚 (4.4)

Le hamiltonien s’écrit :

ℋ
def
= 𝑝 ̇𝑞 − ℒ

=
𝑝2

𝑚 −
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)

=
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)
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Remarque 4.2.3
Le hamiltonien ℋ(𝑞, 𝑝, 𝑡) et l’énergie généralisée 𝐻(𝑞, ̇𝑞, 𝑡) déf. 3.3.1 page 107 ont même valeur, mais elles ne s’expriment pas dans
les mêmes variables.

4.2.4 Les équations de Hamilton

Écrivons la différentielle totale exacte du hamiltonien :

dℋ(𝑞, 𝑝, 𝑡) = d
𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 − dℒ(𝑞, ̇𝑞, 𝑡)

=
𝑛
∑
𝑗=1

𝑝𝑗d ̇𝑞𝑗 +
𝑛
∑
𝑗=1

̇𝑞𝑗d𝑝𝑗 −
𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

d𝑞𝑗 −
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

d ̇𝑞𝑗 −
𝜕ℒ
𝜕𝑡 d𝑡

En injectant l’équation de la dynamique (4.3a) et la transformation de Legendre du lagrangien
(4.3b) page 130,

dℋ(𝑞, 𝑝, 𝑡) =
𝑛
∑
𝑗=1

𝑝𝑗d ̇𝑞𝑗 +
𝑛
∑
𝑗=1

̇𝑞𝑗d𝑝𝑗 −
𝑛
∑
𝑗=1

̇𝑝𝑗d𝑞𝑗 −
𝑛
∑
𝑗=1

𝑝𝑗d ̇𝑞𝑗 −
𝜕ℒ
𝜕𝑡 d𝑡

𝑛
∑
𝑗=1

𝜕ℋ
𝜕𝑞𝑗

d𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℋ
𝜕𝑝𝑗

d𝑝𝑗 +
𝜕ℋ
𝜕𝑡 d𝑡 =

𝑛
∑
𝑗=1

̇𝑞𝑗d𝑝𝑗 −
𝑛
∑
𝑗=1

̇𝑝𝑗d𝑞𝑗 −
𝜕ℒ
𝜕𝑡 d𝑡 (4.5)

nous obtenons les 2𝑛 équations canoniques de Hamilton :

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑝𝑗 = −𝜕ℋ𝜕𝑞𝑗

̇𝑞𝑗 =
𝜕ℋ
𝜕𝑝𝑗

(4.6a)

(4.6b)

Ces 2𝑛 équations différentielles du 1er ordre par rapport au temps sont équivalentes à la relation
fondamentale de la dynamique lorsque tous les modèles de force dérivent d’un potentiel. Par
involution de la transformation de Legendre, le rôle des 𝑝 et des ̇𝑞 est symétrique (au signe
près) : remplacer 𝑝 par −𝑞 et 𝑞 par 𝑝 redonne les mêmes équations. La première équation reste
l’équation de la dynamique. La seconde est la réciproque de (4.3b) page 130, elle correspond à la
création des nouvelles variables ̇𝑞 pour la transformation de Legendre du hamiltonien pour les
impulsions généralisées.

Les 𝑛 équations différentielles (4.6a) sont résolues indépendamment des 𝑛 équations différentielles
(4.6b), les variables 𝑝 et 𝑞 sont donc traitées comme étant indépendantes les unes des autres.

Les 𝑛 équations différentielles du 2nd ordre de Lagrange sont devenues 2𝑛 équations différentielles
du 1er ordre. On peut noter que les 𝑛 changements de coordonnées de ̇𝑞𝑗 à 𝑝𝑗 ne sont pas posés
mais sont des équations différentielles qu’il faut résoudre.

Définition 4.2.2 : Variables canoniquement conjuguées
Les variables 𝑞𝑗 et 𝑝𝑗 sont dites canoniquement conjuguées, ou simplement, conjuguées.
L’impulsion généralisée 𝑝𝑗 est aussi appelée moment conjugué de la coordonnée 𝑞𝑗.
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Remarque 4.2.4
L’antisymétrie des équations de Hamilton, elles restent inchangées lorsque l’on remplace 𝑞𝑗 par 𝑝𝑗 et 𝑝𝑗 par −𝑞𝑗, est un exemple de
transformation qui sont étudiées au ch. 5 page 145.

Exemple 4.2.3
Poursuivons l’ex. 4.2.2 page 131 et cherchons les équations du mouvement de la masse.
Les équations de Hamilton s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝 = −𝜕ℋ𝜕𝑞

̇𝑞 = 𝜕ℋ
𝜕𝑝

⇒ {
̇𝑝 = 𝑚𝑔 sin(𝛼)

̇𝑞 =
𝑝
𝑚

La première équation est l’équation de la dynamique. La seconde est bien équivalente à
(4.4) page 131. Nous obtenons deux équations différentielles du 1er ordre.

Remarque 4.2.5
En dérivant ̇𝑞 par rapport au temps, nous retrouvons l’équation différentielle du 2nd ordre du mouvement :

̈𝑞 =
̇𝑝

𝑚
= 𝑔 sin(𝛼)

4.3 Cas où le hamiltonien se conserve

(4.3a) page 130 et (4.6a) page ci-contre, ainsi que la comparaison des derniers termes de (4.5)
page précédente, donnent les deux relations suivantes entre hamiltonien et lagrangien :

∀𝑗 = 1,… , 𝑛

⎧
⎪

⎨
⎪
⎩

(𝜕ℋ𝜕𝑞𝑗
)
𝑝𝑗,𝑡

= −(𝜕ℒ𝜕𝑞𝑗
)

̇𝑞𝑗,𝑡

(𝜕ℋ𝜕𝑡 )𝑞𝑗,𝑝𝑗
= −(𝜕ℒ𝜕𝑡 )𝑞𝑗, ̇𝑞𝑗

(4.7a)

(4.7b)

Dérivons le hamiltonien par rapport au temps et utilisons les équations de Hamilton :

dℋ
d𝑡 =

𝑛
∑
𝑗=1

𝜕ℋ
𝜕𝑞𝑗

̇𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℋ
𝜕𝑝𝑗

̇𝑝𝑗 +
𝜕ℋ
𝜕𝑡

=
𝑛
∑
𝑗=1

− ̇𝑝𝑗 ̇𝑞𝑗 +
𝑛
∑
𝑗=1

̇𝑞𝑗 ̇𝑝𝑗 +
𝜕ℋ
𝜕𝑡

dℋ
d𝑡 = 𝜕ℋ

𝜕𝑡 (4.8)
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Si le hamiltonien n’est pas une fonction explicite du temps, 𝜕ℋ/𝜕𝑡 = 0, alors il est constant,
dℋ/d𝑡 = 0. Il se conserve dans le temps.

Avec (4.7b) page précédente :

dℋ
d𝑡 = −𝜕ℒ𝜕𝑡 (4.9)

De même, si le lagrangien n’est pas une fonction explicite du temps, alors le hamiltonien est
constant, et réciproquement.

4.4 Hamiltonien et énergie mécanique

Cherchons les conditions pour avoir ℋ = ℰ :

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 − ℒ = 𝒯 + 𝒱

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗 − (𝒯 − 𝒱) = 𝒯 + 𝒱

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗 = 2𝒯

Si le potentiel 𝒱(𝑞, 𝑡) n’est pas une fonction explicite des vitesses généralisées :

𝑛
∑
𝑗=1

𝜕𝒯
𝜕 ̇𝑞𝑗

̇𝑞𝑗 = 2𝒯 (4.10)

Cette relation est appelée identité d’Euler. D’après le théorème d’Euler, elle est vérifiée ssi
l’énergie cinétique est une fonction homogène de degré deux des vitesses généralisées.

Définition 4.4.1 : Fonction homogène de degré 𝑛
Une fonction d’une ou plusieurs variables est homogène de degré 𝑛 où 𝑛 ∈ ℤ, si en
multipliant les variables par un même scalaire non nul 𝜆, la fonction est multipliée par ce
scalaire puissance 𝑛 :

∀𝜆 ≠ 0, 𝒯 (𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛) = 𝜆𝑛𝒯 ( ̇𝑞1,… , ̇𝑞𝑛) (4.11)
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• l’homogénéité de degré deux de la fonction 𝒯 implique l’identité d’Euler :

∀𝜆 ≠ 0, 𝒯 (𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛) = 𝜆2𝒯 ( ̇𝑞1,… , ̇𝑞𝑛)
𝜕𝒯

𝜕(𝜆 ̇𝑞1)
d(𝜆 ̇𝑞1) +⋯ + 𝜕𝒯

𝜕(𝜆 ̇𝑞𝑛)
d(𝜆 ̇𝑞𝑛) = d (𝜆2𝒯)

𝜕𝒯
𝜕(𝜆 ̇𝑞1)

̇𝑞1 +⋯+ 𝜕𝒯
𝜕(𝜆 ̇𝑞𝑛)

̇𝑞𝑛 =
d (𝜆2𝒯)
d𝜆

𝑛
∑
𝑗=1

𝜕𝒯
𝜕 (𝜆 ̇𝑞𝑗)

̇𝑞𝑗 = 2𝜆𝒯

𝜆 = 1,
𝑛
∑
𝑗=1

𝜕𝒯
𝜕 ̇𝑞𝑗

̇𝑞𝑗 = 2𝒯

• l’identité d’Euler implique l’homogénéité de degré deux de la fonction :

𝜕𝒯( ̇𝑞1,… , ̇𝑞𝑛)
𝜕 ̇𝑞1

̇𝑞1 +⋯+
𝜕𝒯( ̇𝑞1,… , ̇𝑞𝑛)

𝜕 ̇𝑞𝑛
̇𝑞𝑛 = 2𝒯( ̇𝑞1,… , ̇𝑞𝑛)

𝜕𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)
𝜕(𝜆 ̇𝑞1)

(𝜆 ̇𝑞1) +⋯ +
𝜕𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

𝜕(𝜆 ̇𝑞𝑛)
(𝜆 ̇𝑞𝑛) = 2𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

𝜕𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)
𝜕 ̇𝑞1

̇𝑞1 +⋯+
𝜕𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

𝜕 ̇𝑞𝑛
̇𝑞𝑛 = 2𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

Posons

∀𝜆 ≠ 0, 𝑔(𝜆) =
𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

𝜆2

d𝑔(𝜆)
d𝜆 =

[ 𝜕𝒯
𝜕(𝜆 ̇𝑞1)

d(𝜆 ̇𝑞1)
d𝜆

+⋯+ 𝜕𝒯
𝜕(𝜆 ̇𝑞𝑛)

d(𝜆 ̇𝑞𝑛)
d𝜆

] 𝜆2 − 𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)2𝜆

𝜆4

=
[𝜕𝒯(𝜆 ̇𝑞1,…,𝜆 ̇𝑞𝑛)

𝜕 ̇𝑞1
̇𝑞1 +⋯+ 𝜕𝒯(𝜆 ̇𝑞1,…,𝜆 ̇𝑞𝑛)

𝜕 ̇𝑞𝑛
̇𝑞𝑛] 𝜆 − 2𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)𝜆

𝜆4
= 0

𝑔(𝜆) = 𝑐 𝑠𝑡𝑒

= 𝑔(1)
= 𝒯( ̇𝑞1,… , ̇𝑞𝑛)

d’où
𝜆2𝒯( ̇𝑞1,… , ̇𝑞𝑛) = 𝒯(𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛)

Ainsi, nous cherchons les conditions sur l’énergie cinétique qui impliquent (4.11), qui à son tour
implique (4.10), et à son tour ℋ = ℰ. L’énergie cinétique a pour expression :

𝒯
def
= 1

2

𝑁
∑
𝑖=1

𝑚𝑖𝑣2𝑖

S’il existe une liaison rhéonome (voir les applications 3.5.1 page 116 et 3.5.5 page 121), ou pour
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un référentiel en mouvement, le vecteur position dépend explicitement du temps :

∀𝑖 = 1,… ,𝑁 #»r 𝑖 =
#»r 𝑖 (𝑞1,… , 𝑞𝑛, 𝑡)

d #»r 𝑖 =
𝑛
∑
𝑗=1

𝜕 #»r 𝑖
𝜕𝑞𝑗

d𝑞𝑗 +
𝜕 #»r 𝑖
𝜕𝑡 d𝑡

d #»r 𝑖
d𝑡 =

𝑛
∑
𝑗=1

𝜕 #»r 𝑖
𝜕𝑞𝑗

d𝑞𝑗
d𝑡 +

𝜕 #»r 𝑖
𝜕𝑡

L’énergie cinétique s’écrit alors

𝒯 = 1
2

𝑁
∑
𝑖=1

𝑚𝑖 (
𝑛
∑
𝑗=1

𝜕 #»r 𝑖
𝜕𝑞𝑗

̇𝑞𝑗 +
𝜕 #»r 𝑖
𝜕𝑡 )

2

= 1
2

𝑁
∑
𝑖=1

𝑚𝑖 (
𝜕 #»r 𝑖
𝜕𝑡 )

2
+

𝑛
∑
𝑗=1

𝑁
∑
𝑖=1

𝑚𝑖
𝜕 #»r 𝑖
𝜕𝑡 ⋅

𝜕 #»r 𝑖
𝜕𝑞𝑗

̇𝑞𝑗 +
1
2

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑁
∑
𝑖=1

𝑚𝑖
𝜕 #»r 𝑖
𝜕𝑞𝑗

⋅
𝜕 #»r 𝑖
𝜕𝑞𝑘

̇𝑞𝑗 ̇𝑞𝑘

= 𝒯0 + 𝒯1 + 𝒯2

où 𝒯0 est indépendante des vitesses généralisées, 𝒯1 est une fonction linéaire des vitesses générali-
sées et 𝒯2 est une fonction quadratique des vitesses généralisées. 𝒯 n’est donc pas une fonction
homogène quadratique des vitesses généralisées : 𝒯 (𝜆 ̇𝑞) ≠ 𝜆2𝒯 ( ̇𝑞). S’il n’y a pas de contraintes
rhéonomes, le vecteur position ne contient pas explicitement le temps,

∀𝑖 = 1,… ,𝑁 #»r 𝑖 =
#»r 𝑖 (𝑞1,… , 𝑞𝑛) ⇒

𝜕 #»r 𝑖
𝜕𝑡 = 0

et l’énergie cinétique a pour expression :

𝒯 = 1
2

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑁
∑
𝑖=1

𝑚𝑖
𝜕 #»r 𝑖
𝜕𝑞𝑗

⋅
𝜕 #»r 𝑖
𝜕𝑞𝑘

̇𝑞𝑗 ̇𝑞𝑘

= 1
2

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑎𝑗𝑘 ̇𝑞𝑗 ̇𝑞𝑘

où l’on a posé

𝑎𝑗𝑘(𝑞)
def
=

𝑁
∑
𝑖=1

𝑚𝑖
𝜕 #»r 𝑖
𝜕𝑞𝑗

⋅
𝜕 #»r 𝑖
𝜕𝑞𝑘

L’énergie cinétique est alors une fonction homogène quadratique des vitesses généralisées :

𝒯 (𝜆 ̇𝑞1,… , 𝜆 ̇𝑞𝑛) =
1
2

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑎𝑗𝑘 𝜆 ̇𝑞𝑗 𝜆 ̇𝑞𝑘

= 𝜆2 12

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑎𝑗𝑘 ̇𝑞𝑗 ̇𝑞𝑘

= 𝜆2𝒯 ( ̇𝑞1,… , ̇𝑞𝑛)

Si le système est holonome scléronome et si le potentiel 𝒱(𝑞, 𝑡) ne dépend pas explicitement des
vitesses généralisées, alors le hamiltonien se confond avec l’énergie mécanique :

ℋ = ℰ (4.12)
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(4.9) page 134 donne alors :

dℋ
d𝑡 = −𝜕ℒ𝜕𝑡

= − 𝜕
𝜕𝑡 [𝒯 − 𝒱(𝑞, 𝑡)]

=
𝜕𝒱(𝑞, 𝑡)
𝜕𝑡

Si de plus le potentiel ne dépend pas explicitement du temps 𝜕𝑡𝒱(𝑞) = 0, alors l’énergie mécanique
se conserve dans le temps et le système est dit conservatif :

dℋ
d𝑡 = 0 ⇒ ℋ = ℰ = 𝑐 𝑠𝑡𝑒 (4.13)

Si 𝒱(𝑞, 𝑡) dépend explicitement du temps alors le système est non conservatif :

ℋ = ℰ ≠ 𝑐 𝑠𝑡𝑒

Dans le cas où le système est rhéonome, nous pouvons avoir ℋ constant, différent de l’énergie
mécanique ℰ.

Exemple 4.4.1 : Masse glissant sans frottements sur un plan incliné
D’après l’ex. 4.2.2 page 131 le hamiltonien s’écrit :

ℋ =
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)

Le hamiltonien n’est pas une fonction explicite du temps, d’après (4.8) page 133 il se
conserve. Le potentiel n’est pas fonction des vitesses généralisées et les contraintes sont
holonomes scléronomes, par conséquent ℋ = ℰ.

Lorsque ℋ = ℰ l’équivalence avec les équations de Newton est presque immédiate. En coordon-
nées rectangulaires, le premier groupe d’équations de Hamilton donne

⎧
⎪⎪

⎨
⎪⎪
⎩

̇𝑝𝑥 = −𝜕ℋ𝜕𝑥

̇𝑝𝑦 = −𝜕ℋ𝜕𝑦

̇𝑝𝑧 = −𝜕ℋ𝜕𝑧

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

̇𝑝𝑥 = −𝜕𝒱𝜕𝑥

̇𝑝𝑦 = −𝜕𝒱𝜕𝑦

̇𝑝𝑧 = −𝜕𝒱𝜕𝑧

⇒
d #»p
d𝑡 = −

#     »grad (𝒱)

qui sont les équations de la dynamique de Newton pour des forces conservatives. Le second
groupe d’équations donne la définition de la quantité de mouvement :

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̇𝑥 = 𝜕ℋ
𝜕𝑝𝑥

̇𝑦 = 𝜕ℋ
𝜕𝑝𝑦

̇𝑧 = 𝜕ℋ
𝜕𝑝𝑧

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̇𝑥 = 𝜕𝒯
𝜕𝑝𝑥

̇𝑦 = 𝜕𝒯
𝜕𝑝𝑦

̇𝑧 = 𝜕𝒯
𝜕𝑝𝑧

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̇𝑥 = 1
2𝑚

𝜕𝑝2𝑥
𝜕𝑝𝑥

̇𝑦 = 1
2𝑚

𝜕𝑝2𝑦
𝜕𝑝𝑦

̇𝑧 = 1
2𝑚

𝜕𝑝2𝑧
𝜕𝑝𝑧

⇒ {
𝑚 ̇𝑥 = 𝑝𝑥
𝑚 ̇𝑦 = 𝑝𝑦
𝑚 ̇𝑧 = 𝑝𝑧
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4.5 Coordonnées cycliques

La relation de passage (4.7a) page 133,

(𝜕ℋ𝜕𝑞𝑗
)
𝑝𝑗,𝑡

= −(𝜕ℒ𝜕𝑞𝑗
)

̇𝑞𝑗,𝑡

montre que si une coordonnée est cyclique (d’après la déf. 3.3.2 page 108 elle n’apparait pas
dans le lagrangien) alors elle n’apparait pas non plus dans le hamiltonien.

Supposons que 𝑞𝑛 soit une coordonnée cyclique. Le lagrangien reste fonction de ̇𝑞𝑛 :

ℒ = ℒ (𝑞1,… , 𝑞𝑛−1, ̇𝑞1,… , ̇𝑞𝑛, 𝑡)

L’équation de Lagrange (4.3a) page 130 donne :

̇𝑝𝑛 =
𝜕ℒ
𝜕𝑞𝑛

= 0 ⇒ 𝑝𝑛 = 𝑐 𝑠𝑡𝑒 = 𝑝𝑛 (𝑡 = 0) = 𝛼 (4.14)

où la constante 𝛼 est la valeur initiale de 𝑝𝑛. Le moment conjugué de toute coordonnée cyclique
est une intégrale première du mouvement. La résolution complète du problème passe par la
mécanique de Hamilton car elle utilise les moments conjugués 𝑝. Le hamiltonien s’écrit :

ℋ = ℋ(𝑞1,… , 𝑞𝑛−1, 𝑝1,… , 𝑝𝑛−1, 𝛼, 𝑡)

Le problème ne fait plus intervenir maintenant que 2𝑛 − 2 coordonnées et le temps. En intégrant
l’équation de Hamilton (4.6b) page 132

̇𝑞𝑛 =
𝜕ℋ
𝜕𝑝𝑛

|||𝑝𝑛=𝛼

nous obtenons le comportement de la coordonnée cyclique.

4.6 Théorème de Liouville

Soient (𝑞1,… , 𝑞𝑛) un ensemble de paramètres définissant la configuration spatiale d’un système
dynamique 𝒮. Ces paramètres peuvent être vus comme les coordonnées généralisées d’un point
représentant la configuration spatiale de 𝒮. Les 𝑛 coordonnées généralisées sont reportées sur
un système d’axes rectilignes orthogonaux et forment ainsi un espace euclidien à 𝑛 dimensions,
appelé espace de configuration de 𝒮. Tous les points de l’espace de configuration de 𝒮 ne sont en
général pas accessible par 𝒮.

Le mouvement d’un point matériel unique est un problème à trois dimensions, dont l’espace de
configuration est par conséquent aussi à trois dimensions. Le mouvement de deux points matériels
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est équivalent au mouvement d’un point matériel unique dans un hyperespace de configuration à
six dimensions. Plus généralement, un problème à𝑁 points matériels est équivalent à un problème
à un point matériel unique dans un hyperespace de configuration à 3𝑁 dimensions.

L’espace des phases est un espace euclidien à 2𝑛 dimensions, dont les 𝑞 et les 𝑝 sont les coordon-
nées. Le sous-espace des 𝑞 est l’espace de configuration, le sous-espace des 𝑝 est appelé espace
des moments. À chaque instant, l’état d’un système dynamique est représenté par un unique point
ayant 2𝑛 coordonnées dans l’espace des phases.

À tout ensemble de conditions initiales [𝑞0, 𝑝0], les équations de Hamilton donnent une solution
unique (à un départ, une seule arrivée) sous la forme de 2𝑛 équations paramétriques :

∀𝑗 = 1,… , 𝑛 {
𝑞𝑗 = 𝑞𝑗 [𝑞0, 𝑝0, 𝑡]
𝑝𝑗 = 𝑝𝑗 [𝑞0, 𝑝0, 𝑡]

Ces équations étant réversibles dans le temps, à toute solution correspond un ensemble unique de
conditions initiales (à toute arrivée, un seul départ).

Le point représentatif du système décrit donc au cours du temps une courbe unique, appelée
trajectoire de phase, donnée par les fonctions 𝑞1(𝑡),… , 𝑞𝑛(𝑡) et 𝑝1(𝑡),… , 𝑝𝑛(𝑡). Par exemple,
pour le pendule simple plan, nous avons directement l’équation en coordonnées rectangulaires à
partir de la conservation de l’énergie donnée par (11.5) page 293 :

ℋ =
𝑝2𝜃

2𝑚𝜌2 −𝑚𝑔𝜌 cos(𝜃)

𝑝𝜃 = ±√2𝑚𝜌2 [ℋ +𝑚𝑔𝜌 cos(𝜃)]

L’unicité de solution des équations de Hamilton implique que deux trajectoires de l’espace des
phases ne peuvent se croiser. Si c’était le cas, à deux ensembles de conditions initiales différentes
correspondrait un même état au point où elles se croisent. Par conséquent, le nombre d’états
dynamiques initial se conserve. De même, une trajectoire ne peut se couper car on aurait un
mouvement perpétuel, le point de coupure servant de conditions initiales.

Les conditions initiales d’un système dynamique ne sont pas connues avec une précision infinie.
On considère donc un hypervolume 𝑉 de l’espace des phases, assez grand pour que la probabilité
d’y trouver le système à l’instant initial soit proche de un. Cet hypervolume se déplace et se
déforme au cours du temps. Prenons un élément d’hypervolume d𝑉 de cet hypervolume, et
étudions comment varie la densité d’états 𝜌 dans cet élément d’hypervolume. Considérons la
projection de d𝑉 dans le plan de la coordonnée 𝑞𝑘 et de l’impulsion conjuguée 𝑝𝑘 :

𝑞𝑘

𝑝𝑘

d𝑝𝑘

d𝑞𝑘
𝐴 𝐵

𝐶𝐷

Fig. 4.2 – Projection de l’hypervolume élémentaire dans le plan 𝑞𝑘, 𝑝𝑘
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Nombre d’états entrants par 𝐴𝐷 en un temps d𝑡 :

𝜌 ̇𝑞𝑘d𝑡 d𝑝𝑘

Pour des raisons de lisibilité, nous n’indiquerons plus les indices 𝑘 dans ce qui suit, mais à la fin
de la démonstration nous sommerons sur tous les 𝑘. Nombre d’états sortants par 𝐵𝐶 en un temps
d𝑡 :

(𝜌 + 𝛿𝑞𝜌) ( ̇𝑞 + 𝛿𝑞 ̇𝑞) d𝑡 d𝑝 = (𝜌 ̇𝑞 + 𝛿𝑞𝜌 ̇𝑞 + 𝜌𝛿𝑞 ̇𝑞 + 𝛿𝑞𝜌𝛿𝑞 ̇𝑞) d𝑡 d𝑝

où 𝛿𝑞𝜌 est la variation de densité 𝜌 selon la coordonnée 𝑞, c.-à-d.,

𝛿𝑞𝜌 =
𝜕𝜌
𝜕𝑞 d𝑞

En négligeant les éléments différentiels d’ordre deux devant ceux d’ordre un,

(𝜌 + 𝛿𝑞𝜌) ( ̇𝑞 + 𝛿𝑞 ̇𝑞) d𝑡 d𝑝 = (𝜌 ̇𝑞 +
𝜕𝜌
𝜕𝑞 d𝑞 ̇𝑞 + 𝜌

𝜕 ̇𝑞
𝜕𝑞 d𝑞) d𝑡 d𝑝

La différence entre ce qui entre et ce qui sort de l’élément de volume par les faces 𝐴𝐷 et 𝐵𝐶 en
un temps d𝑡 vaut donc :

−(
𝜕𝜌
𝜕𝑞 ̇𝑞 + 𝜌

𝜕 ̇𝑞
𝜕𝑞) d𝑡 d𝑝 d𝑞

De même, la différence entre ce qui entre et ce qui sort de l’élément de volume par les faces 𝐴𝐵
et 𝐷𝐶 en un temps d𝑡 vaut :

−(
𝜕𝜌
𝜕𝑝 ̇𝑝 + 𝜌

𝜕 ̇𝑝
𝜕𝑝) d𝑡 d𝑞 d𝑝

Puisqu’il n’y a ni création, ni annihilation d’états, la différence entre ce qui entre et ce qui sort
crée une variation locale du nombre d’états en un temps d𝑡 dans le volume considéré :

𝛿𝑡𝜌 d𝑞 d𝑝 = −(
𝜕𝜌
𝜕𝑞 ̇𝑞 + 𝜌

𝜕 ̇𝑞
𝜕𝑞 +

𝜕𝜌
𝜕𝑝 ̇𝑝 + 𝜌

𝜕 ̇𝑝
𝜕𝑝) d𝑡 d𝑞 d𝑝

𝜕𝜌
𝜕𝑡 d𝑡 = −(

𝜕𝜌
𝜕𝑞 ̇𝑞 + 𝜌

𝜕 ̇𝑞
𝜕𝑞 +

𝜕𝜌
𝜕𝑝 ̇𝑝 + 𝜌

𝜕 ̇𝑝
𝜕𝑝) d𝑡

ce qui donne, en remettant les indices,

𝜕𝜌
𝜕𝑡 d𝑡 +

𝜕𝜌
𝜕𝑞𝑘

d𝑞𝑘 +
𝜕𝜌
𝜕𝑝𝑘

d𝑝𝑘 = −𝜌 (
𝜕 ̇𝑞𝑘
𝜕𝑞𝑘

+
𝜕 ̇𝑝𝑘
𝜕𝑝𝑘

) d𝑡

et en considérant l’élément d’hypervolume :

𝜕𝜌
𝜕𝑡 d𝑡 +

𝑛
∑
𝑗=1

(
𝜕𝜌
𝜕𝑞𝑗

d𝑞𝑗 +
𝜕𝜌
𝜕𝑝𝑗

d𝑝𝑗) = −𝜌
𝑛
∑
𝑗=1

(
𝜕 ̇𝑞𝑗
𝜕𝑞𝑗

+
𝜕 ̇𝑝𝑗
𝜕𝑝𝑗

) d𝑡

d𝜌 = −𝜌
𝑛
∑
𝑗=1

(
𝜕 ̇𝑞𝑗
𝜕𝑞𝑗

+
𝜕 ̇𝑝𝑗
𝜕𝑝𝑗

) d𝑡

d𝜌
d𝑡 = −𝜌

𝑛
∑
𝑗=1

(
𝜕 ̇𝑞𝑗
𝜕𝑞𝑗

+
𝜕 ̇𝑝𝑗
𝜕𝑝𝑗

)
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Quel que soit le hamiltonien, les équations de Hamilton s’écrivent :

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑝𝑗 = −𝜕ℋ𝜕𝑞𝑗

̇𝑞𝑗 =
𝜕ℋ
𝜕𝑝𝑗

⇒
⎧⎪
⎨⎪
⎩

𝜕 ̇𝑝𝑗
𝜕𝑝𝑗

= − 𝜕2ℋ
𝜕𝑝𝑗𝜕𝑞𝑗

𝜕 ̇𝑞𝑗
𝜕𝑞𝑗

= 𝜕2ℋ
𝜕𝑞𝑗𝜕𝑝𝑗

Les dérivées partielles étant continues :

∀𝑗 = 1,… , 𝑛 𝜕2ℋ
𝜕𝑝𝑗𝜕𝑞𝑗

= 𝜕2ℋ
𝜕𝑞𝑗𝜕𝑝𝑗

⇒
𝜕 ̇𝑝𝑗
𝜕𝑝𝑗

= −
𝜕 ̇𝑞𝑗
𝜕𝑞𝑗

Nous en déduisons le théorème suivant :

Théorème 4.6.1 : Théorème de Liouville
Pour tout système dynamique qui suit les équations canoniques, quel que soit le hamiltonien,
la densité d’états se conserve au cours du mouvement :

d𝜌
d𝑡 = 0 ⇒ 𝜌 = 𝑐 𝑠𝑡𝑒

4.7 Applications de la mécanique de Hamilton

4.7.1 Masse sur une trappe

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝜌. Le moment
conjugué 𝑝 de la coordonnée généralisée 𝜌 a pour expression :

𝑝
def
= 𝜕ℒ

𝜕 ̇𝜌 = 𝑚 ̇𝜌 ⇒ ̇𝜌 =
𝑝
𝑚

Le hamiltonien s’écrit :

ℋ
def
= 𝑝 ̇𝜌 − ℒ

=
𝑝2

𝑚 − [1
2
𝑚 ̇𝜌2 + 1

2
𝑚𝜌2 ̇𝜃2(𝑡) + 𝑚𝑔𝜌 sin[𝜃(𝑡)]]

=
𝑝2

2𝑚 − 1
2
𝑚𝜌2 ̇𝜃2(𝑡) − 𝑚𝑔𝜌 sin[𝜃(𝑡)]

Le hamiltonien est une fonction explicite du temps (remplacer 𝜃(𝑡) et ̇𝜃(𝑡) par leurs expressions).
Il ne se conserve pas car ces deux fonctions peuvent prendre n’importe quelle valeur au cours du
temps. En particulier le moteur qui actionne la trappe peut fournir de l’énergie au système en
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la refermant. Les équations de Hamilton donnent les équations du mouvement du 1er ordre par
rapport au temps :

⎧⎪
⎨⎪
⎩

̇𝑝 = −𝜕ℋ𝜕𝜌

̇𝜌 = 𝜕ℋ
𝜕𝑝

⇒ {
̇𝑝 = 𝑚𝜌 ̇𝜃2(𝑡) + 𝑚𝑔 sin[𝜃(𝑡)]

̇𝜌 =
𝑝
𝑚

L’énergie mécanique a pour expression :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚[ ̇𝜌2 + 𝜌2 ̇𝜃2(𝑡)] − 𝑚𝑔𝜌 sin[𝜃(𝑡)]

L’énergie mécanique ne se conserve pas car la liaison rhéonome 𝜃(𝑡) et sa dérivée ̇𝜃(𝑡) prennent
n’importe quelle valeur en fonction du temps.

Le vecteur position de la masse 𝑚 a pour expression :

#»r = 𝜌𝒆𝜌
= 𝜌 cos[𝜃(𝑡)] ⃗𝚤 − 𝜌 sin[𝜃(𝑡)] ⃗𝚥

C’est une fonction explicite du temps (remplacer 𝜃(𝑡)), c’est pourquoi le hamiltonien et l’énergie
mécanique ne sont pas confondus :

ℰ =
𝑝2

2𝑚 + 1
2
𝑚𝜌2 ̇𝜃2(𝑡) − 𝑚𝑔𝜌 sin[𝜃(𝑡)]

= ℋ +𝑚𝜌2 ̇𝜃2(𝑡)

4.7.2 Pendule simple, plan, dont le point de suspension se déplace verticalement

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝜃. Le moment
conjugué de la coordonnée généralisée 𝜃 a pour expression :

𝑝
def
= 𝜕ℒ

𝜕 ̇𝜃
= 𝑚𝜌2 ̇𝜃 − 𝑚 ̇ℎ𝜌 sin(𝜃) ⇒ ̇𝜃 =

𝑝
𝑚𝜌2 +

̇ℎ sin(𝜃)
𝜌

Le hamiltonien s’écrit :

ℋ
def
= 𝑝 ̇𝜃 − ℒ

= 𝑚𝜌2 ̇𝜃2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃) − [1
2
𝑚𝜌2 ̇𝜃2 + 1

2
𝑚 ̇ℎ2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃) + 𝑚𝑔ℎ +𝑚𝑔𝜌 cos(𝜃)]

= 1
2
𝑚𝜌2 ̇𝜃2 − 1

2
𝑚 ̇ℎ2 −𝑚𝑔ℎ −𝑚𝑔𝜌 cos(𝜃)

=
𝑝2

2𝑚𝜌2 +
1
2
𝑚 ̇ℎ2 sin2(𝜃) +

𝑝 ̇ℎ sin(𝜃)
𝜌 − 1

2
𝑚 ̇ℎ2 −𝑚𝑔ℎ −𝑚𝑔𝜌 cos(𝜃)

Le hamiltonien est une fonction explicite du temps par l’intermédiaire de ℎ(𝑡) et de ̇ℎ(𝑡), il ne se
conserve pas.
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Les équations de Hamilton s’écrivent :

⎧

⎨
⎩

̇𝑝 = −𝜕ℋ𝜕𝜃
̇𝜃 = 𝜕ℋ

𝜕𝑝

⇒
⎧⎪
⎨⎪
⎩

̇𝑝 = −𝑚 ̇ℎ2 sin(𝜃) cos(𝜃) − 𝑝 ̇ℎ cos(𝜃)
𝜌 − 𝑚𝑔𝜌 sin(𝜃)

̇𝜃 =
𝑝
𝑚𝜌2 +

̇ℎ sin(𝜃)
𝜌

⇒
⎧⎪
⎨⎪
⎩

̇𝑝 = −𝑚 ̇ℎ2 sin(𝜃) cos(𝜃) −
̇ℎ cos(𝜃)
𝜌 [𝑚𝜌2 ̇𝜃 − 𝑚 ̇ℎ𝜌 sin(𝜃)] − 𝑚𝑔𝜌 sin(𝜃)

̈𝜃 =
̇𝑝

𝑚𝜌2 +
̈ℎ sin(𝜃)
𝜌 +

̇ℎ ̇𝜃 cos(𝜃)
𝜌

⇒ {
̇𝑝 = −𝑚𝜌 ̇ℎ ̇𝜃 cos(𝜃) − 𝑚𝑔𝜌 sin(𝜃)

̈𝜃 = −
̇ℎ ̇𝜃 cos(𝜃)
𝜌 −

𝑔 sin(𝜃)
𝜌 +

̈ℎ sin(𝜃)
𝜌 +

̇ℎ ̇𝜃 cos(𝜃)
𝜌

𝜌 ̈𝜃 + (𝑔 − ̈ℎ) sin(𝜃) = 0

L’énergie mécanique s’écrit :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚𝜌2 ̇𝜃2 + 1

2
𝑚 ̇ℎ2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃) − 𝑚𝑔ℎ −𝑚𝑔𝜌 cos(𝜃)

= ℋ +𝑚 ̇ℎ2 −𝑚 ̇ℎ𝜌 ̇𝜃 sin(𝜃)

L’énergie mécanique est une fonction explicite du temps par l’intermédiaire de ̇ℎ(𝑡), elle ne se
conserve pas. Du fait de la liaison rhéonome, le hamiltonien et l’énergie mécanique ne sont pas
confondus.
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Chapitre 5

LES TRANSFORMATIONS CANONIQUES
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Dans ce chapitre sur les transformations canoniques nous ne considérerons que les systèmes
holonomes (cf. § 1.7.3 page 19).

5.1 Transformations de coordonnées

Partons d’un exemple.

Exemple 5.1.1
Un mobile se déplaçant dans le plan a 𝑛 = 2 degrés de liberté. La description de son
mouvement nécessite donc 2 coordonnées généralisées, p. ex. :

• les coordonnées rectangulaires 𝑥, 𝑦 notées 𝑞1, 𝑞2
• les coordonnées polaires 𝜌, 𝜃 notées 𝑄1, 𝑄2

Il correspond la transformation de coordonnées, ou changement de variables, des anciennes
variables 𝑞1, 𝑞2 vers les nouvelles 𝑄1(𝑞1, 𝑞2), 𝑄2(𝑞1, 𝑞2) :

⎧

⎨
⎩

𝑄1 = √𝑞21 + 𝑞22

𝑄2 = arctan (
𝑞1
𝑞2
)
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Réciproquement, des anciennes variables 𝑄1, 𝑄2 vers les nouvelles 𝑞1(𝑄1, 𝑄2), 𝑞2(𝑄1, 𝑄2) :

{
𝑞1 = 𝑄1 cos(𝑄2)
𝑞2 = 𝑄1 sin(𝑄2)

Soient T, V, L respectivement l’énergie cinétique, l’énergie potentielle et le nouveau la-
grangien exprimés dans les nouvelles coordonnées. À chaque instant 𝑡 nous avons :

𝒯 − 𝒱 = T − V
ℒ(𝑥, 𝑦, ̇𝑥, ̇𝑦, 𝑡) = L(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)

Dans le cas d’un mouvement à force centrale, à chaque instant

𝑚
2 ( ̇𝑥2 + ̇𝑦2) + 𝑘

√𝑥2 + 𝑦2
= 𝑚

2 ( ̇𝜌2 + 𝜌2 ̇𝜃2) + 𝑘
𝜌

où 𝑘 > 0 pour une force dirigée vers le centre. Nous voyons que 𝜃 est une coordonnée
cyclique alors que ni 𝑥 ni 𝑦 n’est cyclique. Le nombre de coordonnées cycliques dépend
donc du choix des coordonnées généralisées.
De façon générale, les lagrangiens nouveau et ancien sont égaux à chaque instant lorsque
la transformation de jauge ne dépend pas explicitement du temps (cf. § 3.2.6 page 98) :

ℒ(𝑞, ̇𝑞, 𝑡) = L(𝑄, 𝑄̇, 𝑡)

5.1.1 Cas de la mécanique de Lagrange

L’exemple précédent montre que les nouvelles variables 𝑄 sont des fonctions des anciennes
variables 𝑞, et éventuellement du temps. En mécanique de Lagrange, tous les changements de
variables réversibles sont possibles.

Définition 5.1.1 : Transformations ponctuelles de l’espace des configurations
Les changements de coordonnées généralisées

∀𝑗 = 1,… , 𝑛 𝑄𝑗 = 𝑄𝑗(𝑞1,… , 𝑞𝑛, 𝑡)

sont appelés des transformations ponctuelles de l’espace des configurations (𝑞).

Ce changement de coordonnées généralisées implique celui sur les vitesses généralisées :

∀𝑗 = 1,… , 𝑛 𝑄̇𝑗 = 𝑄̇𝑗(𝑞1,… , 𝑞𝑛, ̇𝑞1,… , ̇𝑞𝑛, 𝑡)

Nous avons vu au § 3.2.8 page 102 que les équations de Lagrange sont covariantes par trans-
formation des 𝑛 coordonnées généralisées (elles s’écrivent sous la même forme fonctionnelle).
Après un changement de variables, le lagrangien dit transformé s’écrit :

L(𝑄, 𝑄̇, 𝑡)
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5.1.2 Cas de la mécanique de Hamilton

En mécanique de Hamilton nous pouvons envisager une classe plus large de transformations. En
effet celles-ci peuvent s’appliquer sur l’ensemble des 2𝑛 coordonnées de l’espace des phases :

Définition 5.1.2 : Transformations ponctuelles de l’espace des phases
Les changements de coordonnées généralisées et d’impulsions généralisées

∀𝑗 = 1,… , 𝑛 𝑄𝑗 = 𝑄𝑗(𝑞1,… , 𝑞𝑛, 𝑝1,… , 𝑝𝑛, 𝑡) et 𝑃𝑗 = 𝑃𝑗(𝑞1,… , 𝑞𝑛, 𝑝1,… , 𝑝𝑛, 𝑡)

sont appelés des transformations ponctuelles de l’espace des phases (𝑞, 𝑝).

Toutes les transformations ponctuelles de l’espace des phases ne sont pas valables, en effet les
anciennes variables 𝑞 et 𝑝 sont canoniquement conjuguées (déf. 4.2.2 page 132). Les nouvelles
variables doivent également être conjuguées, elles doivent satisfaire les équations de Hamilton
pour le hamiltonien transformé, qui s’écrit :

H(𝑄, 𝑃, 𝑡)
def
=

𝑛
∑
𝑖=1

𝑃𝑖𝑄̇𝑖 − L(𝑄, 𝑄̇, 𝑡)

Définition 5.1.3 : Transformations canoniques
On appelle transformation canonique une transformation ponctuelle de l’espace des phases
qui préserve la forme fonctionnelle des équations de Hamilton (4.6) page 132.

5.2 Fonctions génératrices d’une transformation

5.2.1 Fonctions génératrices de type 1

Considérons un système à deux degrés de liberté, de coordonnées généralisées 𝑞1, 𝑞2, et de
lagrangien ℒ(𝑞1, 𝑞2, ̇𝑞1, ̇𝑞2, 𝑡). Soient les quatre équations (inversibles) de transformation de
variables suivantes :

{
𝑄1 = 𝑄1(𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝑡)
𝑄2 = 𝑄2(𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝑡)

et {
𝑃1 = 𝑃1(𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝑡)
𝑃2 = 𝑃2(𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝑡)

(5.1)

Le lagrangien transformé s’écrit L(𝑄1, 𝑄2, 𝑄̇1, 𝑄̇2, 𝑡). D’après (3.28) page 98 les lagrangiens sont
invariants de jauge.

Remarque 5.2.1
D’après le § 3.2.3 page 96 ils sont également invariants d’échelle, mais on ne considèrera pas les changements d’échelle.
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Les lagrangiens

ℒ′(𝑞1, 𝑞2, ̇𝑞1, ̇𝑞2, 𝑡) = ℒ(𝑞1, 𝑞2, ̇𝑞1, ̇𝑞2, 𝑡) +
d𝑓(𝑞1, 𝑞2, 𝑡)

d𝑡

et
L′(𝑄1, 𝑄2, 𝑄̇1, 𝑄̇2, 𝑡) = L(𝑄1, 𝑄2, 𝑄̇1, 𝑄̇2, 𝑡) +

d𝑔(𝑄1, 𝑄2, 𝑡)
d𝑡

sont équivalents pour décrire l’évolution d’un système. D’après l’ex. (5.1.1) page 145, les lagran-
giens ℒ et L sont égaux à chaque instant. Nous avons alors :

ℒ′(𝑞1, 𝑞2, ̇𝑞1, ̇𝑞2, 𝑡) − L′(𝑄1, 𝑄2, 𝑄̇1, 𝑄̇2, 𝑡) =
d𝐹1(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡)

d𝑡 (5.2)

Remarque 5.2.2
Pour un système à 𝑛 degrés de liberté, nous avons 2𝑛 anciennes variables 𝑞 et 𝑝, 2𝑛 nouvelles variables 𝑄 et 𝑃, et le temps, soit 4𝑛+1
variables. Comme nous avons également 2𝑛 équations de transformations, seules 2𝑛 + 1 variables sont indépendantes. Les fonctions 𝐹
auront donc toujours au plus 2𝑛 + 1 variables indépendantes. Elles doivent contenir à la fois des anciennes et des nouvelles variables
pour que l’on puisse effectuer le changement de variables.

Remarque 5.2.3
𝐹1 est fonction des anciennes variables 𝑞 et des nouvelles variables 𝑄, elle permet de passer de l’ancien lagrangien ℒ au nouveau
lagrangien L. Nous allons voir que le rôle de cette fonction est équivalent à un changement de coordonnées.

On omet les primes sur les lagrangiens. (4.3b) page 130 montre que la transformation du lagran-
gien implique celle des impulsions généralisées, et d’après la déf. 4.2.1 page 131 du hamiltonien,
on a :

[(𝑝1 ̇𝑞1 + 𝑝2 ̇𝑞2) −ℋ] − [(𝑃1𝑄̇1 + 𝑃2𝑄̇2) − H] =
d𝐹1(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡)

d𝑡
𝑝1d𝑞1 + 𝑝2d𝑞2 − 𝑃1d𝑄1 − 𝑃2d𝑄2 + (H −ℋ)d𝑡 = 𝑑𝐹1(𝑞1, 𝑞2, 𝑄1, 𝑄2, 𝑡)

Pour un système à 𝑛 degrés de liberté :

𝑛
∑
𝑖=1

𝑝𝑖d𝑞𝑖 −
𝑛
∑
𝑖=1

𝑃𝑖d𝑄𝑖 + (H −ℋ)d𝑡 =
𝑛
∑
𝑖=1

𝜕𝐹1
𝜕𝑞𝑖

d𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹1
𝜕𝑄𝑖

d𝑄𝑖 +
𝜕𝐹1
𝜕𝑡 d𝑡 (5.3)

Remarque 5.2.4
Les coefficients devant les éléments différentiels sont égaux ssi on peut faire varier les 𝑞𝑖, les 𝑄𝑗 et le temps indépendamment, c.-à-d.
ssi les variables 𝑞𝑖, 𝑄𝑗 et 𝑡 sont indépendantes. Le temps étant indépendant (il n’est pas transformé dans une transformation ponctuelle
de l’espace des phases), le déterminant suivant doit donc être non nul :

|||
𝜕2𝐹1
𝜕𝑞𝑖𝜕𝑄𝑗

||| ≠ 0

∀𝑖 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹1
𝜕𝑞𝑖

= 𝑝𝑖

𝜕𝐹1
𝜕𝑄𝑖

= −𝑃𝑖

𝜕𝐹1
𝜕𝑡 = H −ℋ

(5.4a)

(5.4b)

(5.4c)
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La relation (5.4c) montre que le hamiltonien n’est pas modifié par la transformation si la fonction
génératrice ne dépend pas explicitement du temps. La condition (5.3) (chaque membre de l’égalité
est une différentielle totale exacte) est suffisante pour que la transformation soit canonique. Nous
pouvons simplifier cette condition car une transformation est canonique indépendamment du
système considéré, en particulier indépendamment du hamiltonien de départ. Une transformation
canonique s’applique à tout système ayant le bon nombre de degrés de liberté. De plus le temps
n’est pas transformé par une transformation canonique. La condition (5.3) devient la condition
suffisante : 𝑛

∑
𝑖=1

𝑝𝑖d𝑞𝑖 −
𝑛
∑
𝑖=1

𝑃𝑖d𝑄𝑖 =
𝑛
∑
𝑖=1

𝜕𝐹1
𝜕𝑞𝑖

d𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹1
𝜕𝑄𝑖

d𝑄𝑖 (5.5)

Les conditions de Schwarz pour que 𝑑𝐹1 soit une différentielle totale exacte s’écrivent :

𝜕2𝐹1
𝜕𝑄𝑗𝜕𝑞𝑖

= 𝜕2𝐹1
𝜕𝑞𝑖𝜕𝑄𝑗

⇔
𝜕𝑝𝑖
𝜕𝑄𝑗

= −
𝜕𝑃𝑗
𝜕𝑞𝑖

Exemple 5.2.1
Soit la fonction suivante appelée transformation d’échange :

𝐹1(𝑞1, 𝑞2, 𝑄1, 𝑄2) = 𝑞1𝑄1 + 𝑞2𝑄2

𝑑𝐹1 est bien une différentielle totale exacte, la transformation est canonique :

𝑑𝐹1(𝑞1, 𝑞2, 𝑄1, 𝑄2) = 𝑞1𝑑𝑄1 + 𝑄1𝑑𝑞1 + 𝑞2𝑑𝑄2 + 𝑄2𝑑𝑞2

Avec (5.4a), (5.4b) et (5.4c) :

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝐹1
𝜕𝑞1

= 𝑄1

𝜕𝐹1
𝜕𝑞2

= 𝑄2

𝜕𝐹1
𝜕𝑄1

= 𝑞1

𝜕𝐹1
𝜕𝑄2

= 𝑞2

𝜕𝐹1
𝜕𝑡 = 0

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑝1 = 𝑄1
𝑝2 = 𝑄2
−𝑃1 = 𝑞1
−𝑃2 = 𝑞2
H = ℋ

À partir d’une fonction du type 𝐹1(𝑞, 𝑄), nous obtenons la transformation des coordonnées
grâce aux équations aux dérivées partielles (5.4a) et (5.4b) : 𝐹1 est génératrice de la
transformation canonique des coordonnées.
La transformation considérée est appelée transformation d’échange. Cet exemple montre
que l’on peut échanger la coordonnée généralisée 𝑞1 avec son moment conjugué 𝑝1, les
équations de Hamilton étant invariantes sous la transformation 𝑝𝑗 → 𝑄𝑗 et 𝑞𝑗 → −𝑃𝑗. La
distinction entre les variables 𝑞𝑗 et 𝑝𝑗 n’est plus qu’une question de nomenclature, c’est
pourquoi en mécanique de Hamilton on les appelle simplement variables conjuguées, sans
préciser lesquelles sont des coordonnées ou des impulsions.
Pour appliquer cette transformation aux 𝑛 coordonnées, on prend la fonction génératrice

𝐹1(𝑞, 𝑄) =
𝑛
∑
𝑖=1

𝑞𝑖𝑄𝑖
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et on obtient :

∀𝑗 = 1,… , 𝑛
⎧
⎨
⎩

𝑄𝑗 = 𝑝𝑗
𝑃𝑗 = −𝑞𝑗
H = ℋ

Réciproquement, étant donnée une transformation de coordonnées du type (5.1) page 147, l’inté-
gration des équations aux dérivées partielles (5.4a) et (5.4b) donne la fonction génératrice.

Exemple 5.2.2
Soit la transformation de coordonnées :

𝑄𝑖 = 𝑝𝑖 et 𝑃𝑖 = −𝑞𝑖

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝐹1
𝜕𝑞1

= 𝑄1

𝜕𝐹1
𝜕𝑞2

= 𝑄2

𝜕𝐹1
𝜕𝑄1

= 𝑞1

𝜕𝐹1
𝜕𝑄2

= 𝑞2

𝜕𝐹1
𝜕𝑡 = 0

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝐹1 = 𝑄1𝑞1 +…
𝐹1 = 𝑄2𝑞2 +…
𝐹1 = 𝑞1𝑄1 +…
𝐹1 = 𝑞2𝑄2 +…
H = ℋ

⇒ 𝐹1 = 𝑞1𝑄1 + 𝑞2𝑄2

Les fonctions génératrices qui sont fonction uniquement des coordonnées (anciennes et nou-
velles) sont dites de type 𝐹1(𝑞, 𝑄, 𝑡), l’indice 1 servant à les distinguer des fonctions génératrices
𝐹2(𝑞, 𝑃, 𝑡), 𝐹3(𝑝, 𝑄, 𝑡), et 𝐹4(𝑝, 𝑃, 𝑡) que nous allons voir après quelques exemples.

Exemple 5.2.3 : L’oscillateur harmonique
(cf. ex. 6.7.3 page 183)
La fonction génératrice

𝐹1(𝑞1, 𝑄1) =
1
2
𝑚𝜔𝑞21 cot(𝑄1)

génère la transformation canonique suivante :

⎧⎪
⎨
⎪
⎩

𝑚𝜔𝑞1 cot(𝑄1) = 𝑝1
𝑚𝜔𝑞21

2 sin2(𝑄1)
= 𝑃1

0 = H −ℋ

⇒
⎧⎪
⎨
⎪
⎩

𝑞1 =√
2𝑃1
𝑚𝜔 sin(𝑄1)

𝑝1 = √2𝑚𝜔𝑃1 cos(𝑄1)
H = ℋ

𝐹1 est appelée fonction génératrice de l’oscillateur harmonique simple à une dimension.

Exemple 5.2.4 : Accélération constante d’un mobile
L’équation du mouvement et la vitesse d’un mobile de masse 𝑚 ayant une accélération
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linéaire constante 𝑎 selon l’axe des 𝑥 s’écrit :

𝑥(𝑡) = 1
2
𝑎𝑡2 + 𝑣0𝑡 + 𝑥0, 𝑣(𝑡) = 𝑎𝑡 + 𝑣0

En posant 𝑝
def
= 𝑚𝑣 la quantité de mouvement :

𝑥(𝑡) = 1
2
𝑎𝑡2 + 𝑝0

𝑚
𝑡 + 𝑥0, 𝑝(𝑡) = 𝑚𝑎𝑡 + 𝑝0

1. Montrons que la transformation des coordonnées initiales 𝑥0, 𝑝0 aux coordonnées fi-
nales (et nouvelles) 𝑥, 𝑝 est canonique en trouvant la fonction 𝐹1(𝑥0, 𝑥, 𝑡) génératrice
de cette transformation.
Pour une transformation de type 1 les variables indépendantes 𝑞 et 𝑄 sont ici 𝑥0 et
𝑥, et les variables dépendantes 𝑝0 et 𝑝 sont données en fontion de 𝑥0 et 𝑥 par :

𝑝0 =
𝑚
𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡 et 𝑝 = 𝑚

𝑡
(𝑥 − 𝑥0) + 𝑚𝑎𝑡

Écrivons la condition suffisante (5.5) page 149 pour avoir transformation canonique :

𝑝0𝑑𝑥0 − 𝑝𝑑𝑥 = [𝑚
𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡] 𝑑𝑥0 − [𝑚

𝑡
(𝑥 − 𝑥0) +

1
2
𝑚𝑎𝑡] 𝑑𝑥

⎧

⎨
⎩

𝜕𝐹1
𝜕𝑥0

= 𝑚
𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡

𝜕𝐹1
𝜕𝑥 = −𝑚

𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡

⇒ {
𝐹1 = −𝑚

2𝑡
(𝑥 − 𝑥0)2 −

1
2
𝑚𝑎𝑡𝑥0 + 𝑓(𝑥) + 𝑔(𝑡)

𝐹1 = −𝑚
2𝑡
(𝑥 − 𝑥0)2 −

1
2
𝑚𝑎𝑡𝑥 + 𝑓′(𝑥0) + 𝑔(𝑡)

𝐹1(𝑥0, 𝑥, 𝑡) = −𝑚
2𝑡
(𝑥 − 𝑥0)2 −

1
2
𝑚𝑎𝑡(𝑥0 + 𝑥) + 𝑔(𝑡)

où 𝑔(𝑡) est une fonction arbitraire du temps. Cet exemple montre qu’une fonction
génératrice permet de faire évoluer le système des coordonnées initiales 𝑥0, 𝑝0 aux
coordonnées finales 𝑥, 𝑝. Au § 5.3 page 164 nous chercherons la transformation
infinitésimale qui fait évoluer le système entre l’instant 𝑡 et l’instant d𝑡. La succession
de ces transformations infinitésimales fera évoluer le système entre deux instants
quelconques.

2. Cherchons la fonction génératrice 𝐹1(𝑥, 𝑥0, 𝑡) des coordonnées finales 𝑥, 𝑝 aux coor-
données initiales (et nouvelles) 𝑥0, 𝑝0.
L’équation du mouvement s’écrit :

𝑥0 = 𝑥(𝑡) − 1
2
𝑎𝑡2 − 𝑣0𝑡, 𝑣0 = 𝑣(𝑡) − 𝑎𝑡

En posant 𝑝
def
= 𝑚𝑣 :

𝑥0 = 𝑥(𝑡) − 1
2
𝑎𝑡2 − 𝑝0

𝑚
𝑡, 𝑝0

𝑚
= 𝑝(𝑡)

𝑚
− 𝑎𝑡

= 𝑥(𝑡) + 1
2
𝑎𝑡2 − 𝑝

𝑚
𝑡
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Pour une transformation de type 1, les variables dépendantes 𝑝 et 𝑝0 sont données
en fontion des variables indépendantes 𝑥 et 𝑥0 :

𝑝 = 𝑚
𝑡
(𝑥 − 𝑥0) +

1
2
𝑚𝑎𝑡 et 𝑝0 =

𝑚
𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡

Écrivons la condition suffisante (5.5) page 149 pour une transformation canonique :

𝑝𝑑𝑥 − 𝑝0𝑑𝑥0 = [𝑚
𝑡
(𝑥 − 𝑥0) +

1
2
𝑚𝑎𝑡] 𝑑𝑥 − [𝑚

𝑡
(𝑥 − 𝑥0) −

1
2
𝑚𝑎𝑡] 𝑑𝑥0

𝐹1(𝑥, 𝑥0, 𝑡) =
𝑚
2𝑡
(𝑥 − 𝑥0)2 +

1
2
𝑚𝑎𝑡(𝑥0 + 𝑥) + 𝑔(𝑡)

= −𝐹1(𝑥0, 𝑥, 𝑡)

5.2.2 Fonctions génératrices de type 2

En effectuant la transformation de Legendre ((4.2) page 126) de la fonction génératrice 𝐹1 pour
les coordonnées 𝑄, nous définissons la deuxième fonction génératrice 𝐹2 :

𝐹2(𝑞, 𝑃, 𝑡) = 𝐹1(𝑞, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑄𝑖
𝜕𝐹1
𝜕𝑄𝑖

Avec (5.4b) page 148 :

𝐹2(𝑞, 𝑃, 𝑡) = 𝐹1(𝑞, 𝑄, 𝑡) +
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖 (5.6)

En reprenant (5.2) page 148,

ℒ − L =
d𝐹1(𝑞, 𝑄, 𝑡)

d𝑡
𝑛
∑
𝑖=1

𝑝𝑖 ̇𝑞𝑖 −ℋ −
𝑛
∑
𝑖=1

𝑃𝑖𝑄̇𝑖 +H =
d𝐹2(𝑞, 𝑃, 𝑡)

d𝑡 − d
d𝑡

𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

=
𝑛
∑
𝑖=1

𝜕𝐹2
𝜕𝑞𝑖

̇𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹2
𝜕𝑃𝑖

̇𝑃𝑖 +
𝜕𝐹2
𝜕𝑡 −

𝑛
∑
𝑖=1

𝑄𝑖 ̇𝑃𝑖 −
𝑛
∑
𝑖=1

𝑃𝑖𝑄̇𝑖
𝑛
∑
𝑖=1

𝑝𝑖d𝑞𝑖 +
𝑛
∑
𝑖=1

𝑄𝑖d𝑃𝑖 + (H −ℋ)d𝑡 =
𝑛
∑
𝑖=1

𝜕𝐹2
𝜕𝑞𝑖

d𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹2
𝜕𝑃𝑖

d𝑃𝑖 +
𝜕𝐹2
𝜕𝑡 d𝑡

∀𝑖 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹2
𝜕𝑞𝑖

= 𝑝𝑖

𝜕𝐹2
𝜕𝑃𝑖

= 𝑄𝑖

𝜕𝐹2
𝜕𝑡 = H −ℋ

(5.7a)

(5.7b)

(5.7c)
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Exemple 5.2.5 : Transformation identité
La fonction

𝐹2 = 𝑞1𝑃1 + 𝑞2𝑃2
est un cas particulier, elle génère la transformation canonique identité :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑃1 = 𝑝1
𝑃2 = 𝑝2
𝑞1 = 𝑄1
𝑞2 = 𝑄2
H = ℋ

Dans le cas général, la fonction

𝐹2 =
𝑛
∑
𝑖=1

𝑞𝑖𝑃𝑖

génère la transformation canonique identité :

∀𝑗 = 1,… , 𝑛
⎧
⎨
⎩

𝑃𝑗 = 𝑝𝑗
𝑞𝑗 = 𝑄𝑗
H = ℋ

Exemple 5.2.6 : Mobile dans un champ de gravitation
Le hamiltonien d’un mobile dans un champ de gravitation uniforme 𝑔 s’écrit :

ℋ =
𝑝2

2𝑚 +𝑚𝑔𝑞

On souhaite que la nouvelle variable 𝑄 soit cyclique et que par conséquent le nouvel
hamiltonien s’écrive sous la forme :

H = 𝛼𝑃

où 𝛼 est une constante. La fonction génératrice est supposée ne pas dépendre explicitement
du temps, les hamiltoniens ancien et nouveau sont égaux :

𝛼𝑃 =
𝑝2

2𝑚 +𝑚𝑔𝑞

𝑞 = 𝛼
𝑚𝑔 𝑃 −

𝑝2

2𝑚2𝑔

On pose 𝛼 = 𝑚𝑔 et 𝐴 = (2𝑚2𝑔)−1 :

𝑞 = 𝑃 − 𝐴𝑝2

La transformation cherchée est de la forme :

𝑄 = ±𝑝 et 𝑃 = 𝑞 + 𝐴𝑝2

où il reste à déterminer le signe devant 𝑝. Montrons qu’elle est canonique en trouvant la
fonction génératrice.
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1. Choisissons une transformation de type 1, 𝐹1(𝑞, 𝑄). Les nouvelles variables 𝑝 et 𝑃
s’écrivent en fonction des anciennes 𝑞 et 𝑄 :

𝑝 = ±𝑄 et 𝑃 = 𝑞 + 𝐴𝑄2

La forme différentielle s’écrit :

𝑝𝑑𝑞 − 𝑃𝑑𝑄 = ±𝑄𝑑𝑞 − (𝑞 + 𝐴𝑄2) 𝑑𝑄

⎧⎪
⎨⎪
⎩

𝜕𝐹1(𝑞, 𝑄)
𝜕𝑞 = ±𝑄

𝜕𝐹1(𝑞, 𝑄)
𝜕𝑄 = − (𝑞 + 𝐴𝑄2)

⇒ {
𝐹1(𝑞, 𝑄) = ±𝑄𝑞 + 𝑓(𝑄)

𝐹1(𝑞, 𝑄) = − (𝑞𝑄 + 1
3
𝐴𝑄3) + 𝑓′(𝑞)

On conserve le signe négatif, 𝑄 = −𝑝, car sinon la fonction 𝐹1(𝑞, 𝑄) =
1
3
𝐴𝑄3 ne

contient pas 𝑞 :
𝐹1(𝑞, 𝑄) = −𝑞𝑄 − 1

3
𝐴𝑄3

La transformation cherchée est donc :

𝑄 = −𝑝 et 𝑃 = 𝑞 + 𝐴𝑝2

2. Choisissons à présent une transformation de type 2, 𝐹2(𝑞, 𝑃).
(a) les nouvelles variables 𝑄 et 𝑝 s’écrivent en fonction des anciennes 𝑞 et 𝑃 :

𝑄 = ±𝑝 𝑃 = 𝑞 + 𝐴𝑝2

𝑄 = ±𝑝 𝑝2 =
𝑃 − 𝑞
𝐴

𝑄 = 𝜖1
1
√𝐴

√𝑃 − 𝑞 𝑝 = 𝜖2
1
√𝐴

√𝑃 − 𝑞

où 𝜖1 = ±1 et 𝜖2 = ±1 sont a priori indépendants.

⎧⎪
⎨
⎪
⎩

𝜕𝐹2(𝑞, 𝑃)
𝜕𝑞 = 𝜖2

1
√𝐴

√𝑃 − 𝑞

𝜕𝐹2(𝑞, 𝑃)
𝜕𝑃 = 𝜖1

1
√𝐴

√𝑃 − 𝑞
⇒

⎧⎪
⎨⎪
⎩

𝐹2(𝑞, 𝑃) = 𝜖2
−2

3√𝐴
(𝑃 − 𝑞)3/2 + 𝑓(𝑃)

𝐹2(𝑞, 𝑃) = 𝜖1
2

3√𝐴
(𝑃 − 𝑞)3/2 + 𝑓′(𝑞)

Par conséquent 𝜖1 = −𝜖2 sinon 𝐹2 est nulle, et :

𝐹2(𝑞, 𝑃) =
±2

3√𝐴
(𝑃 − 𝑞)3/2

(b) formons la fonction génératrice 𝐹2 en partant de 𝐹1, grâce à (5.6) page 152 :

𝐹2(𝑞, 𝑃) = 𝐹1(𝑞, 𝑄) + 𝑄𝑃

= −𝑞𝑄 − 1
3
𝐴𝑄3 + 𝑄 (𝑞 + 𝐴𝑄2)

= 2
3
𝐴𝑄3

= ∓2

3√𝐴
(𝑃 − 𝑞)3/2
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On vérifie que l’on retrouve bien (5.7a) et (5.7b) page 152 :

⎧⎪
⎨⎪
⎩

𝜕𝐹2
𝜕𝑞 = ±1

√𝐴
√𝑃 − 𝑞

𝜕𝐹2
𝜕𝑃 = ∓1

√𝐴
√𝑃 − 𝑞

⇒
⎧

⎨
⎩

𝜕𝐹2
𝜕𝑞 = 𝑝

𝜕𝐹2
𝜕𝑃 = 𝑄

3. Cherchons le changement de variables correspondant à la fonction génératrice de
type 2 suivante :

𝐹2(𝑞, 𝑃) =
−2

3√𝐴
(𝑃 − 𝑞)3/2

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹2
𝜕𝑞 = 1

√𝐴
√𝑃 − 𝑞

𝜕𝐹2
𝜕𝑃 = −1

√𝐴
√𝑃 − 𝑞

𝜕𝐹2
𝜕𝑡 = H −ℋ

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑝 = 1
√𝐴

√𝑃 − 𝑞

𝑄 = −1
√𝐴

√𝑃 − 𝑞

H = ℋ

soit
𝑄 = −𝑝 et 𝑃 = 𝑞 + 𝐴𝑝2

4. Les équations de Hamilton pour les nouvelles variables canoniques s’écrivent :

⎧

⎨
⎩

̇𝑃 = −𝜕ℋ𝜕𝑄

𝑄̇ = 𝜕ℋ
𝜕𝑃

⇒ {
̇𝑃 = 0

𝑄̇ = 𝑚𝑔
⇒ {

𝑃 = 𝑃0
𝑄 = 𝑚𝑔𝑡 + 𝑄0

{
𝑝(𝑡) = −𝑄
𝑞(𝑡) = 𝑃 − 𝐴𝑝2

⇒ {
𝑝(𝑡) = −𝑚𝑔𝑡 − 𝑄0
𝑞(𝑡) = 𝑃0 − 𝐴(−𝑚𝑔𝑡 − 𝑄0)2

⇒ {
𝑝0 = −𝑄0
𝑞0 = 𝑃0 − 𝐴𝑄2

0

{
𝑝(𝑡) = −𝑚𝑔𝑡 + 𝑝0
𝑞(𝑡) = 𝑃0 − 𝐴(𝑚𝑔𝑡)2 − 2𝐴𝑚𝑔𝑡𝑄0 − 𝐴𝑄2

0

𝑞(𝑡) = − 1
2𝑚2𝑔

(𝑚𝑔𝑡)2 − 2
2𝑚2𝑔

𝑚𝑔𝑡𝑄0 + 𝑞0

= −1
2
𝑔𝑡2 + 𝑣0𝑡 + 𝑞0

(−𝑄0) est la quantité de mouvement initiale. Que représente 𝑃0 ? Lorsque le mobile
atteint sa hauteur maximale la dérivée de la trajectoire par rapport au temps s’annule :

d𝑞(𝑡)
d𝑡 = 0

−𝑔𝑡 + 𝑣0 = 0

𝑡 =
𝑣0
𝑔
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𝑞𝑚𝑎𝑥 = −𝑣20
2𝑔
+ 𝑣20

𝑔
𝑣0 + 𝑞0

= 𝑣20
2𝑔
+ 𝑞0

Or

𝑃0 = 𝐴𝑄2
0 + 𝑞0

= 1
2𝑚2𝑔

(−𝑚𝑣0)2 + 𝑞0

= 𝑞𝑚𝑎𝑥

Exemple 5.2.7 : Transformations ponctuelles
Soit la fonction

𝐹2 = 𝑓1(𝑞1, 𝑞2, 𝑡)𝑃1 + 𝑓2(𝑞1, 𝑞2, 𝑡)𝑃2
où 𝑓1 et 𝑓2 sont des fonctions différentiables quelconques. Elle génére la transformation
canonique :

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝜕𝑓1
𝜕𝑞1

𝑃1 +
𝜕𝑓2
𝜕𝑞1

𝑃2 = 𝑝1

𝜕𝑓1
𝜕𝑞2

𝑃1 +
𝜕𝑓2
𝜕𝑞2

𝑃2 = 𝑝2

𝑓1(𝑞1, 𝑞2, 𝑡) = 𝑄1
𝑓2(𝑞1, 𝑞2, 𝑡) = 𝑄2

H(𝑄1, 𝑄2, 𝑃1, 𝑃2, 𝑡) = ℋ(𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝑡) +
𝜕𝑓1
𝜕𝑡 𝑃1 +

𝜕𝑓2
𝜕𝑡 𝑃2

Les deux premières relations sont une transformation linéaire des impulsions générali-
sées. Les deux relations suivantes sont une transformation ponctuelle de l’espace des
configurations, du type de celles que l’on rencontre en mécanique de Lagrange.
Dans le cas général, la fonction

𝐹2 = ∑𝑓𝑖(𝑞, 𝑡)𝑃𝑖

génére la transformation canonique :

∀𝑗 = 1,… , 𝑛

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑛
∑
𝑖=1

𝜕𝑓𝑖
𝜕𝑞𝑗

𝑃𝑖 = 𝑝𝑗

𝑓𝑗 (𝑞𝑖, 𝑡) = 𝑄𝑗

H(𝑄, 𝑃, 𝑡) = ℋ(𝑞, 𝑝, 𝑡) +
𝑛
∑
𝑖=1

𝜕𝑓𝑖
𝜕𝑡 𝑃𝑖

a) Translation spatiale
Cherchons la fonction génératrice de la transformation des coordonnées correspon-
dant à la translation spatiale selon l’axe des 𝑥. Soit 𝑎 une constante :

{
𝑥′ = 𝑥 + 𝑎
𝑝′𝑥 = 𝑝𝑥
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Avec (5.7) :

⎧

⎨
⎩

𝜕𝐹2
𝜕𝑥 = 𝑝𝑥
𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥′
⇒

⎧

⎨
⎩

𝜕𝐹2
𝜕𝑥 = 𝑝′𝑥
𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥 + 𝑎

𝐹2 (𝑥, 𝑝′𝑥) = (𝑥 + 𝑎) 𝑝′𝑥
Dans le cas général d’une translation de vecteur #»a (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) nous avons :

{
#»r ′ = #»r + #»a
#»p ′ = #»p

𝐹2(𝑥, 𝑦, 𝑧, 𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧) = (𝑥 + 𝑎𝑥)𝑝′𝑥 + (𝑦 + 𝑎𝑦) 𝑝′𝑦 + (𝑧 + 𝑎𝑧)𝑝′𝑧
𝐹2(

#»r , #»p ′) = ( #»r + #»a ) ⋅ #»p ′ (5.8)

b) Rotation spatiale
Cherchons la fonction génératrice de la transformation des coordonnées correspon-
dant à la rotation spatiale d’un angle 𝜃 autour de l’axe des 𝑧. Pour les nouvelles
coordonnées, nous avons,

{
𝑥′ = 𝑥 cos(𝜃) + 𝑦 sin(𝜃)
𝑦′ = −𝑥 sin(𝜃) + 𝑦 cos(𝜃)
𝑧′ = 𝑧

(5.7b) donne

𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥′ ; 𝜕𝐹2
𝜕𝑝′𝑦

= 𝑦′ ; 𝜕𝐹2
𝜕𝑝′𝑧

= 𝑧′

d’où,

𝐹2(𝑥, 𝑦, 𝑧, 𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧) = [𝑥 cos(𝜃) + 𝑦 sin(𝜃)]𝑝′𝑥 + [−𝑥 sin(𝜃) + 𝑦 cos(𝜃)]𝑝′𝑦 + 𝑧𝑝′𝑧

Pour les nouvelles impulsions, nous avons,

⎧
⎨
⎩

𝑝′𝑥 = 𝑝𝑥 cos(𝜃) + 𝑝𝑦 sin(𝜃)
𝑝′𝑦 = −𝑝𝑥 sin(𝜃) + 𝑝𝑦 cos(𝜃)
𝑝′𝑧 = 𝑝𝑧

Inversons ces relations :

{
𝑝′𝑥 cos(𝛼) = 𝑝𝑥 cos2(𝛼) + 𝑝𝑦 sin(𝛼) cos(𝛼)
𝑝′𝑦 sin(𝛼) = −𝑝𝑥 sin2(𝛼) + 𝑝𝑦 cos(𝛼) sin(𝛼)

et {
𝑝′𝑥 sin(𝛼) = 𝑝𝑥 cos(𝛼) sin(𝛼) + 𝑝𝑦 sin2(𝛼)
𝑝′𝑦 cos(𝛼) = −𝑝𝑥 sin(𝛼) cos(𝛼) + 𝑝𝑦 cos2(𝛼)

⎧
⎨
⎩

𝑝𝑥 = 𝑝′𝑥 cos(𝜃) − 𝑝′𝑦 sin(𝜃)
𝑝𝑦 = 𝑝′𝑥 sin(𝜃) + 𝑝′𝑦 cos(𝜃)
𝑝𝑧 = 𝑝′𝑧
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(5.7a) donne

𝜕𝐹2
𝜕𝑥 = 𝑝𝑥 ; 𝜕𝐹2

𝜕𝑦 = 𝑝𝑦 ; 𝜕𝐹2
𝜕𝑧 = 𝑝𝑧

et l’on retrouve la même fonction 𝐹2 :

𝐹2(𝑥, 𝑦, 𝑧, 𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧) = [𝑝′𝑥 cos(𝜃) − 𝑝′𝑦 sin(𝜃)]𝑥 + [𝑝′𝑥 sin(𝜃) + 𝑝′𝑦 cos(𝜃)]𝑦 + 𝑧𝑝′𝑧

c) Transformation de Galilée
Soient deux référentielsℛ etℛ′ en translation selon l’axe des 𝑥 à la vitesse uniforme
v𝑥, ℛ′ se déplaçant dans le sens des 𝑥 croissants. Quelle est la fonction génératrice
de la transformation de Galilée? La transformation de Galilée s’écrit :

{
𝑥′ = 𝑥 − v𝑥𝑡
𝑝′𝑥 = 𝑝𝑥 −𝑚v𝑥

(5.7) page 152 donnent :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝐹2
𝜕𝑥 = 𝑝𝑥
𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥′

𝜕𝐹2
𝜕𝑡 = H −ℋ

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝐹2
𝜕𝑥 = 𝑝′𝑥 +𝑚v𝑥
𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥 − v𝑥𝑡

H = ℋ + 𝜕𝐹2
𝜕𝑡

{
𝐹2(𝑥, 𝑝′𝑥, 𝑡) = (𝑝′𝑥 +𝑚v𝑥) 𝑥 + 𝑓 (𝑝′𝑥) + 𝑔1(𝑡)
𝐹2(𝑥, 𝑝′𝑥, 𝑡) = (𝑥 − v𝑥𝑡) 𝑝′𝑥 + ℎ(𝑥) + 𝑔2(𝑡)

soit,
𝐹2(𝑥, 𝑝′𝑥, 𝑡) = (𝑥 − v𝑥𝑡) 𝑝′𝑥 +𝑚v𝑥𝑥 + 𝑔(𝑡)

où 𝑔(𝑡) est une fonction quelconque du temps. Nous avons alors :

𝜕𝐹2
𝜕𝑡 = −𝑝′𝑥v𝑥 +

𝜕𝑔(𝑡)
𝜕𝑡

Dans le cas général, la transformation de Galilée s’écrit,

{
#»r ′ = #»r − #»v 𝑡
#»p ′ = #»p − 𝑚 #»v

(5.9)

et la fonction génératrice devient,

𝐹2(
#»r , #»p ′, 𝑡) = (𝑥 − v𝑥𝑡)𝑝′𝑥 +𝑚v𝑥𝑥 + (𝑦 − v𝑦𝑡)𝑝′𝑦 +𝑚v𝑦𝑦 + (𝑧 − v𝑧𝑡)𝑝′𝑧 +𝑚v𝑧𝑧 + 𝑔(𝑡)

= ( #»r − #»v 𝑡) ⋅ #»p ′ +𝑚 #»v ⋅ #»r + 𝑔(𝑡) (5.10)

qui donne :
𝜕𝐹2
𝜕𝑡 = − #»p ′ ⋅ #»v +

𝜕𝑔(𝑡)
𝜕𝑡
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Le hamiltonien transformé a pour expression :

H( #»r ′, #»p ′, 𝑡) = ℋ( #»r , #»p , 𝑡) − #»p ′ ⋅ #»v +
𝜕𝑔(𝑡)
𝜕𝑡

= ℋ( #»r ′ + #»v 𝑡, #»p ′ +𝑚 #»v , 𝑡) − #»p ′ ⋅ #»v +
𝜕𝑔(𝑡)
𝜕𝑡

Par exemple la transformation de Galilée appliquée à un mobile libre [ℋ = 𝑝2/(2𝑚)]
s’écrit en choisissant 𝑔(𝑡) nulle :

H( #»r ′, #»p ′, 𝑡) =
𝑝2

2𝑚 − #»p ′ ⋅ #»v

=
( #»p ′ +𝑚 #»v )2

2𝑚 − #»p ′ ⋅ #»v

=
𝑝′2 + 2𝑚 #»p ′ ⋅ #»v + 𝑚2𝑣2

2𝑚 − #»p ′ ⋅ #»v

=
𝑝′2

2𝑚 + 𝑚𝑣2
2

5.2.3 Fonctions génératrices de type 3

Définissons une troisième fonction génératrice, 𝐹3(𝑝, 𝑄, 𝑡), en effectuant :

• soit une transformation de Legendre de 𝐹1(𝑞, 𝑄, 𝑡) pour les 𝑞 :

𝐹3(𝑝, 𝑄, 𝑡) = 𝐹1(𝑞, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖
𝜕𝐹1
𝜕𝑞𝑖

= 𝐹1(𝑞, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖

• soit une transformation de Legendre de 𝐹2(𝑞, 𝑃, 𝑡) pour les 𝑃 :

𝐹3(𝑝, 𝑄, 𝑡) = 𝐹2(𝑞, 𝑃, 𝑡) −
𝑛
∑
𝑖=1

𝑃𝑖
𝜕𝐹2
𝜕𝑃𝑖

= 𝐹2(𝑞, 𝑃, 𝑡) −
𝑛
∑
𝑖=1

𝑃𝑖𝑄𝑖

En reprenant (5.2) page 148,

ℒ − L = d
d𝑡𝐹1(𝑞, 𝑄, 𝑡)

𝑛
∑
𝑖=1

𝑝𝑖 ̇𝑞𝑖 −ℋ −
𝑛
∑
𝑖=1

𝑃𝑖𝑄̇𝑖 +H = d
d𝑡𝐹3(𝑝, 𝑄, 𝑡) +

d
d𝑡

𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖

=
𝑛
∑
𝑖=1

𝜕𝐹3
𝜕𝑝𝑖

̇𝑝𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹3
𝜕𝑄𝑖

𝑄̇𝑖 +
𝜕𝐹3
𝜕𝑡 +

𝑛
∑
𝑖=1

𝑞𝑖 ̇𝑝𝑖 +
𝑛
∑
𝑖=1

𝑝𝑖 ̇𝑞𝑖
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∀𝑖 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹3
𝜕𝑝𝑖

= −𝑞𝑖

𝜕𝐹3
𝜕𝑄𝑖

= −𝑃𝑖

𝜕𝐹3
𝜕𝑡 = H −ℋ

(5.11a)

(5.11b)

(5.11c)

Exemple 5.2.8 : Transformation identité
La fonction

𝐹3(𝑝1, 𝑄1) = 𝑝1𝑄1
est un cas particulier, elle génère la transformation canonique identité avec changement de
signe :

{
𝑄1 = −𝑞1
𝑝1 = −𝑃1

La transformation 𝐹3(𝑝1, 𝑄1) = −𝑝1𝑄1 engendre la transformation identité.

Exemple 5.2.9
Nous pouvons additionner les différentes fonctions génératrices. En reprenant la fonction
génératrice 𝐹1 de l’ex. 5.2.1 page 149 et la fonction génératrice 𝐹3 de l’exemple précédent,
la fonction

𝐹 = 𝐹1(𝑞1, 𝑄1) + 𝐹3(𝑝2, 𝑄2)
= 𝑞1𝑄1 + 𝑝2𝑄2

génère la transformation canonique :

⎧⎪
⎨
⎪
⎩

𝑄1 = 𝑝1
𝑞1 = −𝑃1
𝑄2 = −𝑞2
𝑝2 = −𝑃2

5.2.4 Fonctions génératrices de type 4

Une quatrième et dernière fonction génératrice, 𝐹4(𝑝, 𝑃, 𝑡), est obtenue en effectuant :

• soit une transformation de Legendre de la fonction 𝐹2(𝑞, 𝑃, 𝑡) pour les 𝑞 :

𝐹4(𝑝, 𝑃, 𝑡) = 𝐹2(𝑞, 𝑃, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖
𝜕𝐹2
𝜕𝑞𝑖

= 𝐹2(𝑞, 𝑃, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖

= 𝐹1(𝑞, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖 +
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖
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• soit une transformation de Legendre de la fonction 𝐹3(𝑝, 𝑄, 𝑡) pour les 𝑄 :

𝐹4(𝑝, 𝑃, 𝑡) = 𝐹3(𝑝, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑄𝑖
𝜕𝐹3
𝜕𝑄𝑖

= 𝐹3(𝑝, 𝑄, 𝑡) +
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

= 𝐹1(𝑞, 𝑄, 𝑡) −
𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖 +
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

En reprenant (5.2) page 148,

ℒ − L = d
d𝑡𝐹1(𝑞, 𝑄, 𝑡)

𝑛
∑
𝑖=1

𝑝𝑖 ̇𝑞𝑖 −ℋ −
𝑛
∑
𝑖=1

𝑃𝑖𝑄̇𝑖 +H = d
d𝑡𝐹4(𝑝, 𝑃, 𝑡) +

d
d𝑡

𝑛
∑
𝑖=1

𝑞𝑖𝑝𝑖 −
d
d𝑡

𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

=
𝑛
∑
𝑖=1

𝜕𝐹4
𝜕𝑝𝑖

̇𝑝𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹4
𝜕𝑃𝑖

̇𝑃𝑖 +
𝜕𝐹4
𝜕𝑡 +

𝑛
∑
𝑖=1

𝑞𝑖 ̇𝑝𝑖 +
𝑛
∑
𝑖=1

̇𝑞𝑖𝑝𝑖

−
𝑛
∑
𝑖=1

𝑄𝑖 ̇𝑃𝑖 −
𝑛
∑
𝑖=1

𝑄̇𝑖𝑃𝑖

−ℋ +H =
𝑛
∑
𝑖=1

𝜕𝐹4
𝜕𝑝𝑖

̇𝑝𝑖 +
𝑛
∑
𝑖=1

𝜕𝐹4
𝜕𝑃𝑖

̇𝑃𝑖 +
𝜕𝐹4
𝜕𝑡 +

𝑛
∑
𝑖=1

𝑞𝑖 ̇𝑝𝑖 −
𝑛
∑
𝑖=1

𝑄𝑖 ̇𝑃𝑖

∀𝑖 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹4
𝜕𝑝𝑖

= −𝑞𝑖

𝜕𝐹4
𝜕𝑃𝑖

= 𝑄𝑖

𝜕𝐹4
𝜕𝑡 = H −ℋ

Exemple 5.2.10

La fonction 𝐹4(𝑝1, 𝑃1) = 𝑝1𝑃1 est un cas particulier, elle génère la transformation canonique
d’échange avec un seul changement de signe :

{
𝑃1 = −𝑞1
𝑝1 = 𝑄1

Le fait que la composition successive de deux transformations canoniques soit une transformation
canonique suggère qu’elles forment un groupe. La composition de transformations canoniques
est associative. Il existe un élément neutre qui est la transformation canonique identité. À chaque
transformation canonique il existe une transformation inverse qui est elle-même canonique.
Les transformations canoniques forment donc un groupe, appelé groupe des transformations
canoniques.
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5.2.5 Crochets de Lagrange

Les crochets de Lagrange permettent de savoir si une transformation est canonique. Dans (5.5)
page 149, injectons (5.4a) et (5.4b) page 148 :

𝑑𝐹1(𝑞, 𝑄) =
𝑛
∑
𝑖=1

[(
𝜕𝐹1
𝜕𝑞𝑖

) d𝑞𝑖 + (
𝜕𝐹1
𝜕𝑄𝑖

) d𝑄𝑖]

=
𝑛
∑
𝑖=1
(𝑝𝑖d𝑞𝑖 − 𝑃𝑖d𝑄𝑖)

Les conditions de Schwarz pour que 𝑑𝐹1 soit une différentielle totale exacte s’écrivent :

∀𝑖, ∀𝑗, (
𝜕2𝐹1
𝜕𝑞𝑖𝜕𝑞𝑗

) = (
𝜕2𝐹1
𝜕𝑞𝑗𝜕𝑞𝑖

) ⇒ (
𝜕𝑝𝑖
𝜕𝑞𝑗

) = (
𝜕𝑝𝑗
𝜕𝑞𝑖

)

∀𝑖, ∀𝑗, (
𝜕2𝐹1
𝜕𝑄𝑖𝜕𝑄𝑗

) = (
𝜕2𝐹1
𝜕𝑄𝑗𝜕𝑄𝑖

) ⇒ (
𝜕𝑃𝑖
𝜕𝑄𝑗

) = (
𝜕𝑃𝑗
𝜕𝑄𝑖

)

∀𝑖, ∀𝑗, (
𝜕2𝐹1
𝜕𝑞𝑖𝜕𝑄𝑗

) = (
𝜕2𝐹1
𝜕𝑄𝑗𝜕𝑞𝑖

) ⇒ (
𝜕𝑝𝑖
𝜕𝑄𝑗

) = −(
𝜕𝑃𝑗
𝜕𝑞𝑖

)

Il existe une unique condition d’intégrabilité valable pour les quatre formes différentielles 𝑑𝐹1,
𝑑𝐹2, 𝑑𝐹3 et 𝑑𝐹4. En effet, pour 𝑑𝐹1 :

𝑑𝐹1(𝑞, 𝑄) =
𝑛
∑
𝑘=1

𝑝𝑘d𝑞𝑘 −
𝑛
∑
𝑖=1

𝑃𝑖d𝑄𝑖

=
𝑛
∑
𝑘=1

𝑝𝑘 (
𝑛
∑
𝑖=1

𝜕𝑞𝑘
𝜕𝑄𝑖

d𝑄𝑖 +
𝑛
∑
𝑖=1

𝜕𝑞𝑘
𝜕𝑃𝑖

d𝑃𝑖) −
𝑛
∑
𝑖=1

𝑃𝑖d𝑄𝑖

=
𝑛
∑
𝑖=1

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

− 𝑃𝑖) d𝑄𝑖 +
𝑛
∑
𝑖=1

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

d𝑃𝑖

=
𝑛
∑
𝑖=1

[(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

− 𝑃𝑖) d𝑄𝑖 +
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

d𝑃𝑖]

Nous avons fait apparaitre les différentielles d𝑄𝑖 et d𝑃𝑖. Les conditions de Schwarz pour que 𝑑𝐹1
soit une différentielle totale exacte s’écrivent maintenant, pour deux coordonnées 𝑄𝑖 et 𝑄𝑗 :

∀𝑖, ∀𝑗, (
𝜕2𝐹1
𝜕𝑄𝑖𝜕𝑄𝑗

) = (
𝜕2𝐹1
𝜕𝑄𝑗𝜕𝑄𝑖

)

𝜕
𝜕𝑄𝑖

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑗

− 𝑃𝑗) =
𝜕
𝜕𝑄𝑗

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

− 𝑃𝑖)

𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑄𝑖

𝜕𝑞𝑘
𝜕𝑄𝑗

−
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑄𝑖𝜕𝑄𝑗

=
𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑄𝑗

𝜕𝑞𝑘
𝜕𝑄𝑖

−
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑄𝑗𝜕𝑄𝑖

𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑄𝑖

𝜕𝑝𝑘
𝜕𝑄𝑗

−
𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑄𝑗

𝜕𝑝𝑘
𝜕𝑄𝑖

= 0
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De même, pour deux coordonnées 𝑃𝑖 et 𝑃𝑗 :

𝜕
𝜕𝑃𝑖

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑗

= 𝜕
𝜕𝑃𝑗

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑃𝑖

𝜕𝑞𝑘
𝜕𝑃𝑗

−
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑃𝑖𝜕𝑃𝑗

=
𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑃𝑗

𝜕𝑞𝑘
𝜕𝑃𝑖

−
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑃𝑗𝜕𝑃𝑖

𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑃𝑖

𝜕𝑝𝑘
𝜕𝑃𝑗

−
𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑃𝑗

𝜕𝑝𝑘
𝜕𝑃𝑖

= 0

Pour deux coordonnées 𝑄𝑖 et 𝑃𝑗 :

𝜕
𝜕𝑃𝑖

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑗

− 𝑃𝑗) =
𝜕
𝜕𝑄𝑗

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑃𝑖

𝜕𝑞𝑘
𝜕𝑄𝑗

+
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑃𝑖𝜕𝑄𝑗

− 𝛿𝑖𝑗 =
𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑄𝑗

𝜕𝑞𝑘
𝜕𝑃𝑖

+
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑄𝑗𝜕𝑃𝑖

Nous avons alors :
𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑄𝑖

𝜕𝑝𝑘
𝜕𝑃𝑗

−
𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑃𝑗

𝜕𝑝𝑘
𝜕𝑄𝑖

= 𝛿𝑖𝑗

Ce terme est appelé crochet de Lagrange de 𝑄𝑖 et 𝑃𝑗 pour les variables (𝑞𝑘, 𝑝𝑘).

Définition 5.2.1 : Crochets de Lagrange
Soient deux fonctions 𝑓(𝑞, 𝑝, 𝑡) et 𝑔(𝑞, 𝑝, 𝑡) de l’espace des phases, leur crochet de La-
grange pour les variables canoniques (𝑞, 𝑝) est la quantité :

{𝑓, 𝑔}𝑞,𝑝
def
=

𝑛
∑
𝑗=1

(
𝜕𝑞𝑗
𝜕𝑓

𝜕𝑝𝑗
𝜕𝑔 −

𝜕𝑝𝑗
𝜕𝑓

𝜕𝑞𝑗
𝜕𝑔 )

Les conditions nécessaires et suffisantes en termes de crochets de Lagrange pour qu’une transfor-
mation (𝑞, 𝑝) → (𝑄, 𝑃) soit canonique sont donc :

{𝑄𝑖, 𝑄𝑗}𝑞,𝑝 = 0 {𝑃𝑖, 𝑃𝑗}𝑞,𝑝 = 0 {𝑄𝑖, 𝑃𝑗}𝑞,𝑝 = 𝛿𝑖𝑗 (5.13)

De même, pour la différentielle 𝑑𝐹2 :

𝑑𝐹2(𝑞, 𝑃) =
𝑛
∑
𝑘=1

𝑝𝑘d𝑞𝑘 +
𝑛
∑
𝑖=1

𝑄𝑖d𝑃𝑖

=
𝑛
∑
𝑘=1

𝑝𝑘 (
𝑛
∑
𝑖=1

𝜕𝑞𝑘
𝜕𝑄𝑖

d𝑄𝑖 +
𝑛
∑
𝑖=1

𝜕𝑞𝑘
𝜕𝑃𝑖

d𝑃𝑖) +
𝑛
∑
𝑖=1

𝑄𝑖d𝑃𝑖

=
𝑛
∑
𝑖=1

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

d𝑄𝑖 +
𝑛
∑
𝑖=1

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

+ 𝑄𝑖) d𝑃𝑖

=
𝑛
∑
𝑖=1

[
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

d𝑄𝑖 + (
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑖

+ 𝑄𝑖) d𝑃𝑖]
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avec la condition d’intégrabilité pour deux coordonnées 𝑄𝑖 et 𝑃𝑗 :

𝜕
𝜕𝑃𝑗

𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑄𝑖

= 𝜕
𝜕𝑄𝑖

(
𝑛
∑
𝑘=1

𝑝𝑘
𝜕𝑞𝑘
𝜕𝑃𝑗

+ 𝑄𝑗)

𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑃𝑗

𝜕𝑞𝑘
𝜕𝑄𝑖

+
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑃𝑗𝜕𝑄𝑖

=
𝑛
∑
𝑘=1

𝜕𝑝𝑘
𝜕𝑄𝑖

𝜕𝑞𝑘
𝜕𝑃𝑗

+
𝑛
∑
𝑘=1

𝑝𝑘
𝜕2𝑞𝑘
𝜕𝑄𝑖𝜕𝑃𝑗

+
𝜕𝑄𝑗
𝜕𝑄𝑖

𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑄𝑖

𝜕𝑝𝑘
𝜕𝑃𝑗

−
𝑛
∑
𝑘=1

𝜕𝑞𝑘
𝜕𝑃𝑗

𝜕𝑝𝑘
𝜕𝑄𝑖

= 𝛿𝑖𝑗

{𝑄𝑖, 𝑃𝑗}𝑞,𝑝 = 𝛿𝑖𝑗

De même pour 𝐹3 et 𝐹4.

Exemple 5.2.11

Montrons qu’une rotation d’angle 𝛼 dans l’espace des phases (𝑞, 𝑝), définie par la transfor-
mation des coordonnées,

{
𝑄 = 𝑞 cos(𝛼) + 𝑝 sin(𝛼)
𝑃 = −𝑞 sin(𝛼) + 𝑝 cos(𝛼)

est une transformation canonique.
Montrons que la fonction génératrice est une différentielle totale exacte. Inversons les
relations précédentes :

{
𝑄 cos(𝛼) = 𝑞 cos2(𝛼) + 𝑝 sin(𝛼) cos(𝛼)
𝑃 sin(𝛼) = −𝑞 sin2(𝛼) + 𝑝 cos(𝛼) sin(𝛼)

et {
𝑄 sin(𝛼) = 𝑞 cos(𝛼) sin(𝛼) + 𝑝 sin2(𝛼)
𝑃 cos(𝛼) = −𝑞 sin(𝛼) cos(𝛼) + 𝑝 cos2(𝛼)

𝑞 = 𝑄 cos(𝛼) − 𝑃 sin(𝛼) et 𝑝 = 𝑃 cos(𝛼) + 𝑄 sin(𝛼)
𝜕𝑞
𝜕𝑄 = cos(𝛼),

𝜕𝑞
𝜕𝑃 = − sin(𝛼),

𝜕𝑝
𝜕𝑄 = sin(𝛼),

𝜕𝑝
𝜕𝑃 = cos(𝛼)

𝜕𝑞
𝜕𝑄

𝜕𝑝
𝜕𝑃 −

𝜕𝑞
𝜕𝑃

𝜕𝑝
𝜕𝑄 = cos2(𝛼) + sin2(𝛼) = 1

5.3 Transformations canoniques infinitésimales

Nous cherchons une transformation pour laquelle les nouvelles variables 𝑞 et 𝑝 seront très peu
différentes des anciennes. L’ex. 5.2.5 page 153 montre que la fonction génératrice 𝐹2 = ∑𝑞𝑖𝑃𝑖
génère la transformation identité. Soit 𝜖 un infinitésimal du 1er ordre et soit 𝐺(𝑞, 𝑃, 𝑡) une fonction
quelconque. Considèrons la fonction génératrice :

𝐹2(𝑞, 𝑃, 𝑡) =
𝑛
∑
𝑖=1

𝑞𝑖𝑃𝑖 + 𝜖𝐺(𝑞, 𝑃, 𝑡)

Elle génère une transformation proche de l’identité appelée transformation canonique infinitési-
male ou transformation de contact (parce que le déplacement est très faible), donnée par (5.7)
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page 152 :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝐹2
𝜕𝑞𝑖

= 𝑝𝑖

𝜕𝐹2
𝜕𝑃𝑖

= 𝑄𝑖

𝜕𝐹2
𝜕𝑡 = H −ℋ

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑃𝑖 + 𝜖
𝜕𝐺(𝑞, 𝑃, 𝑡)

𝜕𝑞𝑖
= 𝑝𝑖

𝑞𝑖 + 𝜖
𝜕𝐺(𝑞, 𝑃, 𝑡)

𝜕𝑃𝑖
= 𝑄𝑖

𝜖
𝜕𝐺(𝑞, 𝑃, 𝑡)

𝜕𝑡 = H −ℋ

Dans ce qui suit nous négligeons les termes infinitésimaux du 2nd ordre en 𝜖2, devant ceux du 1er

ordre en 𝜖. La différence entre les nouvelles et les anciennes impulsions généralisées est du 1er

ordre en 𝜖 :
𝑃𝑖 − 𝑝𝑖 = −𝜖

𝜕𝐺(𝑞, 𝑃, 𝑡)
𝜕𝑞𝑖

Or, le terme impliquant𝐺 dans 𝐹2 étant déjà du 1er ordre (terme 𝜖𝐺), nous pouvons donc remplacer
𝑃 par 𝑝 dans 𝐺 (cela revient à ajouter ou soustraire un terme du 2nd ordre dans 𝐹2 puisque 𝑃𝑖 − 𝑝𝑖
est du 1er ordre) :

𝐹2(𝑞, 𝑃, 𝑡) =
𝑛
∑
𝑖=1

𝑞𝑖𝑃𝑖 + 𝜖𝐺(𝑞, 𝑝, 𝑡) (5.14)

𝜖𝐺(𝑞, 𝑝, 𝑡), appelé générateur de la transformation infinitésimale. Adoptons les notations sui-
vantes, 𝛿𝑞𝑖 = 𝑄𝑖 − 𝑞𝑖 et 𝛿𝑝𝑖 = 𝑃𝑖 − 𝑝𝑖 :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑃𝑖 + 𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑞𝑖
= 𝑝𝑖

𝑞𝑖 + 𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑝𝑖
= 𝑄𝑖

𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑡 = H −ℋ

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝛿𝑝𝑖 = −𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑞𝑖

𝛿𝑞𝑖 = 𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑝𝑖

𝜖
𝜕𝐺(𝑞, 𝑝, 𝑡)

𝜕𝑡 = H −ℋ

(5.15)

Exemple 5.3.1
Trois exemples de générateur de transformations infinitésimales.

a) translation spatiale infinitésimale de vecteur 𝛿 #»a
D’après (5.8) page 157 :

𝐹2(
#»r , #»p ′) = ( #»r + 𝛿 #»a ) ⋅ #»p ′

= #»r ⋅ #»p ′ + 𝛿 #»a ⋅ #»p ′

Dans la fonction 𝐺 nous remplaçons #»p ′ par #»p :

𝐹2(
#»r , #»p ′) = #»r ⋅ #»p ′ + 𝛿 #»a ⋅ #»p

#»r ⋅ #»p ′ est la transformation identité, et 𝛿 #»a ⋅ #»p est le générateur de la transformation
canonique infinitésimale.

b) rotation spatiale infinitésimale d’angle 𝛿𝜃

{
𝑥′ = 𝑥 cos(𝛿𝜃) + 𝑦 sin(𝛿𝜃)
𝑦′ = 𝑥 − sin(𝛿𝜃) + 𝑦 cos(𝛿𝜃)
𝑧′ = 𝑧

⇒

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑥′ = 𝑥 [1 − (𝛿𝜃)2
2 ] + 𝑦𝛿𝜃

𝑦′ = −𝑥𝛿𝜃 + 𝑦 [1 − (𝛿𝜃)2
2 ]

𝑧′ = 𝑧

⇒ {
𝑥′ = 𝑥 + 𝑦𝛿𝜃
𝑦′ = −𝑥𝛿𝜃 + 𝑦
𝑧′ = 𝑧

sciences-physiques.neocities.org 165

http://sciences-physiques.neocities.org


Chapitre 5 : Les transformations canoniques

(5.7b) page 152 donne

𝜕𝐹2
𝜕𝑝′𝑥

= 𝑥′ ; 𝜕𝐹2
𝜕𝑝′𝑦

= 𝑦′ ; 𝜕𝐹2
𝜕𝑝′𝑧

= 𝑧′

d’où,

𝐹2(𝑥, 𝑦, 𝑧, 𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧) = (𝑥 + 𝑦𝛿𝜃) 𝑝′𝑥 + (−𝑥𝛿𝜃 + 𝑦) 𝑝′𝑦 + 𝑧𝑝′𝑧
= 𝑥𝑝′𝑥 + 𝑦𝑝′𝑦 + 𝑧𝑝′𝑧 + (𝑦𝑝′𝑥 − 𝑥𝑝′𝑦)𝛿𝜃

Dans la fonction 𝐺, remplaçons 𝑝′𝑦 par 𝑝𝑦 et 𝑝′𝑥 par 𝑝𝑥 :

𝐹2(𝑥, 𝑦, 𝑧, 𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧) = 𝑥𝑝′𝑥 + 𝑦𝑝′𝑦 + 𝑧𝑝′𝑧 + (𝑦𝑝𝑥 − 𝑥𝑝𝑦)𝛿𝜃

En notant 𝐿𝑧 la composante en 𝑧 du vecteur moment cinétique,

𝐹2(
#»r , #»p ′) = #»r ⋅ #»p ′ − 𝐿𝑧 𝛿𝜃

où #»r ⋅ #»p ′ est la transformation identité, et 𝐿𝑧 𝛿𝜃 est le générateur de la transformation
canonique infinitésimale.

c) transformation de Galilée infinitésimale
Reprenons (5.9) page 158 :

{
#»r ′ = #»r − 𝛿 #»v 𝑡
#»p ′ = #»p − 𝑚𝛿 #»v

À partir de (5.10) page 158, avec 𝑔(𝑡) nulle et en négligeant les termes infinitésimaux
du 2nd ordre :

𝐹2 (
#»r , #»p ′, 𝑡) = ( #»r − 𝛿 #»v 𝑡) ⋅ #»p ′ +𝑚𝛿 #»v ⋅ #»r

= #»r ⋅ #»p ′ − 𝛿 #»v 𝑡 ⋅ #»p ′ +𝑚𝛿 #»v ⋅ #»r
= #»r ⋅ #»p ′ − 𝛿 #»v ⋅ (𝑡 #»p ′ −𝑚 #»r )

Dans la fonction 𝐺 remplaçons #»p ′ par #»p :

𝐹2 (
#»r , #»p ′, 𝑡) = #»r ⋅ #»p ′ − 𝛿 #»v ⋅ (𝑡 #»p − 𝑚 #»r ) (5.16)

#»r ⋅ #»p ′ est la transformation identité et 𝛿 #»v ⋅ (𝑡 #»p − 𝑚 #»r ) est le générateur de la
transformation canonique infinitésimale.

5.3.1 Évolution d’un système

Prenons pour fonction 𝐺(𝑞, 𝑝, 𝑡) le hamiltonien ℋ(𝑞, 𝑝, 𝑡), et pour 𝜖 une durée infinitésimale d𝑡.
(5.14) page précédente donne

𝐹2(𝑞, 𝑃, 𝑡) =
𝑛
∑
𝑖=1

𝑞𝑖𝑃𝑖 +ℋ(𝑞, 𝑝, 𝑡)d𝑡
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et à partir de (5.15) page 165 (« 𝛿 »devient « d »car la variation est dans le temps) :

⎧
⎪⎪

⎨
⎪⎪
⎩

d𝑝𝑖 = −
𝜕ℋ(𝑞, 𝑝, 𝑡)

𝜕𝑞𝑖
d𝑡

d𝑞𝑖 =
𝜕ℋ(𝑞, 𝑝, 𝑡)

𝜕𝑝𝑖
d𝑡

H = ℋ +
𝜕ℋ(𝑞, 𝑝, 𝑡)

𝜕𝑡 d𝑡

⇒

⎧
⎪

⎨
⎪
⎩

̇𝑝𝑖 = −
𝜕ℋ(𝑞, 𝑝, 𝑡)

𝜕𝑞𝑖

̇𝑞𝑖 =
𝜕ℋ(𝑞, 𝑝, 𝑡)

𝜕𝑝𝑖
H = ℋ + 𝑑ℋ

On retrouve les équations de Hamilton. Le hamiltonien est par conséquent le générateur à
chaque instant d’une transformation canonique infinitésimale. C’est une fonction génératrice
qui transforme les coordonnées généralisées et leurs moments conjugués pris à l’instant 𝑡, en
ceux à l’instant 𝑡 + d𝑡. De cette transformation résulte l’évolution dynamique du système dans
le temps, qui correspond au déplacement infinitésimal du point représentatif du système dans
l’espace des phases entre les instants 𝑡 et 𝑡 + d𝑡. Une succession de transformations canoniques
étant équivalente à une transformation canonique, deux points quelconques de la trajectoire d’un
système dans l’espace des phases sont reliés par une transformation canonique.

Effectuons la transformation de Legendre de la fonction génératrice 𝐹2 pour exprimer ce résultat
avec la fonction génératrice 𝐹1. D’après (5.6) page 152 :

𝐹1(𝑞, 𝑄, 𝑡) = 𝐹2(𝑞, 𝑃, 𝑡) −
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

= ∑𝑞𝑖𝑃𝑖 +ℋ(𝑞, 𝑝, 𝑡)d𝑡 −
𝑛
∑
𝑖=1

𝑄𝑖𝑃𝑖

= −
𝑛
∑
𝑖=1

𝑃𝑖d𝑞𝑖 +ℋ(𝑞, 𝑝, 𝑡)d𝑡

= −
𝑛
∑
𝑖=1

(𝑝𝑖 + d𝑝𝑖) d𝑞𝑖 +ℋ(𝑞, 𝑝, 𝑡)d𝑡

= −[
𝑛
∑
𝑖=1

𝑝𝑖 ̇𝑞𝑖 −ℋ(𝑞, 𝑝, 𝑡)] d𝑡

= −ℒd𝑡

L’évolution temporelle d’un système est une succession infinie d’évolutions temporelles infini-
tésimales, chacune pouvant être décrite par une transformation canonique infinitésimale. Une
succession de transformations canoniques étant elle-même une transformation canonique, on en
déduit que l’évolution temporelle finie d’un système peut être décrite par une transformation
canonique finie de fonction génératrice −

´
ℒd𝑡.
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5.4 Transformations invariantes

Après une transformation canonique (𝑞𝑗, 𝑝𝑗) → (𝑄𝑗, 𝑃𝑗) les équations canoniques s’écrivent sous
la même forme, elles sont covariantes par changement de coordonnées :

⎧⎪
⎨⎪
⎩

̇𝑝𝑗 = −𝜕ℋ𝜕𝑞𝑗

̇𝑞𝑗 =
𝜕ℋ
𝜕𝑝𝑗

→
⎧⎪
⎨⎪
⎩

̇𝑃𝑗 = −𝜕H𝜕𝑄𝑗

𝑄̇𝑗 =
𝜕H
𝜕𝑃𝑗

où le nouvel hamiltonien est :

H(𝑄, 𝑃, 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹
𝜕𝑡

C’est la définition même d’une transformation canonique (déf. 5.1.3 page 147). Il existe des cas
où ℋ et H ont même forme fonctionnelle, ce qui permet d’écrire :

ℋ(𝑄, 𝑃, 𝑡) = ℋ(𝑞, 𝑝, 𝑡) + 𝜕𝐹
𝜕𝑡

Exemple 5.4.1

ℋ = 𝑝2/(2𝑚) et H = 𝑃2/(2𝑚) ont même forme fonctionnelle. On a bien H(𝑄, 𝑃, 𝑡) =
ℋ(𝑞, 𝑝, 𝑡), mais on a aussi ℋ(𝑄, 𝑃, 𝑡) = ℋ(𝑞, 𝑝, 𝑡).

Une fois le hamiltonien remplacé par sa nouvelle expression, les équations canoniques ont
alors elles aussi même forme fonctionnelle. Le système est dit invariant sous la transformation,
elle-même dite invariante.

Supposons que la fonction génératrice infinitésimale 𝐹2(𝑞, 𝑃, 𝑡) ((5.14) page 165) soit une trans-
formation invariante. H et ℋ ayant même forme fonctionnelle, (5.15) page 165 donne :

𝜖 𝜕𝐺𝜕𝑡 = ℋ(𝑄, 𝑃, 𝑡) −ℋ(𝑞, 𝑝, 𝑡)

= ℋ (𝑞𝑖 + 𝛿𝑞𝑖, 𝑝𝑖 + 𝛿𝑝𝑖, 𝑡) − ℋ(𝑞𝑖, 𝑝𝑖, 𝑡)
= 𝛿ℋ(𝑞𝑖, 𝑝𝑖, 𝑡)

=
𝑛
∑
𝑖=1

𝜕ℋ
𝜕𝑞𝑖

𝛿𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕ℋ
𝜕𝑝𝑖

𝛿𝑝𝑖

= 𝜖
𝑛
∑
𝑖=1

𝜕ℋ
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑝𝑖

− 𝜖
𝑛
∑
𝑖=1

𝜕ℋ
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

𝜕𝐺
𝜕𝑡 =

𝑛
∑
𝑖=1

(𝜕ℋ𝜕𝑞𝑖
𝜕𝐺
𝜕𝑝𝑖

− 𝜕ℋ
𝜕𝑝𝑖

𝜕𝐺
𝜕𝑞𝑖

) (5.17)

Cette relation nous amène à définir les crochets de Poisson et leurs propriétés.
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6.1 Introduction

Soit 𝑈(𝑞, 𝑝, 𝑡) une fonction quelconque des 2𝑛 variables canoniques et du temps. En utilisant les
équations de Hamilton (4.6) page 132 :

d𝑈(𝑞, 𝑝, 𝑡) =
𝑛
∑
𝑗=1

(𝜕𝑈𝜕𝑞𝑗
d𝑞𝑗 +

𝜕𝑈
𝜕𝑝𝑗

d𝑝𝑗) +
𝜕𝑈
𝜕𝑡 d𝑡

d𝑈(𝑞, 𝑝, 𝑡)
d𝑡 =

𝑛
∑
𝑗=1

(𝜕𝑈𝜕𝑞𝑗

d𝑞𝑗
d𝑡 +

𝜕𝑈
𝜕𝑝𝑗

d𝑝𝑗
d𝑡 ) +

𝜕𝑈
𝜕𝑡

=
𝑛
∑
𝑗=1

(𝜕𝑈𝜕𝑞𝑗
𝜕ℋ
𝜕𝑝𝑗

− 𝜕𝑈
𝜕𝑝𝑗

𝜕ℋ
𝜕𝑞𝑗

) + 𝜕𝑈
𝜕𝑡
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Définition 6.1.1 : Crochets de Poisson
Soient deux fonctions 𝑓(𝑞, 𝑝, 𝑡) et 𝑔(𝑞, 𝑝, 𝑡) de l’espace des phases, leur crochet de Poisson
pour les variables canoniques (𝑞, 𝑝) est la quantité :

[𝑓, 𝑔]𝑞,𝑝
def
=

𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

On écrira donc :
d𝑈(𝑞, 𝑝, 𝑡)

d𝑡 = [𝑈,ℋ]𝑞,𝑝 +
𝜕𝑈
𝜕𝑡 (6.1)

6.2 Crochets de Poisson et équations de Hamilton

Reprenons les équations de Hamilton (4.6) page 132 :

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑝𝑗 = −𝜕ℋ𝜕𝑞𝑗

̇𝑞𝑗 =
𝜕ℋ
𝜕𝑝𝑗

⇒
⎧⎪

⎨
⎪
⎩

̇𝑝𝑗 =
𝑛
∑
𝑘=1

𝜕𝑝𝑗
𝜕𝑞𝑘

𝜕ℋ
𝜕𝑝𝑘

−
𝑛
∑
𝑘=1

𝜕𝑝𝑗
𝜕𝑝𝑘

𝜕ℋ
𝜕𝑞𝑗

̇𝑞𝑗 =
𝑛
∑
𝑘=1

𝜕𝑞𝑗
𝜕𝑞𝑘

𝜕ℋ
𝜕𝑝𝑘

−
𝑛
∑
𝑘=1

𝜕𝑞𝑗
𝜕𝑝𝑘

𝜕ℋ
𝜕𝑝𝑗

Grâce aux crochets de Poisson elles deviennent symétriques :

∀𝑗 = 1,… , 𝑛 {
̇𝑝𝑗 = [𝑝𝑗,ℋ]𝑞,𝑝
̇𝑞𝑗 = [𝑞𝑗,ℋ]𝑞,𝑝

(6.2a)
(6.2b)

6.3 Lien avec les crochets de Lagrange

Soient 𝑈𝑘(𝑞, 𝑝, 𝑡) 2𝑛 fonctions indépendantes des 2𝑛 variables canoniques (𝑞, 𝑝). Écrivons les
crochets de Lagrange et de Poisson de ces fonctions pour les variables canoniques (𝑞, 𝑝) sous
forme de matrice, et effectuons la multiplication matricielle de la transposée de la matrice des
crochets de Lagrange avec la matrice des crochets de Poisson :

⎛
⎜
⎜
⎝

{𝑈1, 𝑈1} {𝑈2, 𝑈1} … {𝑈2𝑛, 𝑈1}
{𝑈1, 𝑈2} {𝑈2, 𝑈2} … {𝑈2𝑛, 𝑈2}

⋮ ⋮ … ⋮
{𝑈1, 𝑈2𝑛} {𝑈2, 𝑈2𝑛} … {𝑈2𝑛, 𝑈2𝑛}

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

[𝑈1, 𝑈1] [𝑈1, 𝑈2] … [𝑈1, 𝑈2𝑛]
[𝑈2, 𝑈1] [𝑈2, 𝑈2] … [𝑈2, 𝑈2𝑛]

⋮ ⋮ … ⋮
[𝑈2𝑛, 𝑈1] [𝑈2𝑛, 𝑈2] … [𝑈2𝑛, 𝑈2𝑛]

⎞
⎟
⎟
⎠
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Dans la matrice résultat, calculons le terme d’indices 𝑖𝑗 :

2𝑛
∑
𝑘=1

{𝑈𝑘, 𝑈𝑖}[𝑈𝑘, 𝑈𝑗] =
2𝑛
∑
𝑘=1

𝑛
∑
𝑎=1

𝑛
∑
𝑏=1

(
𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑝𝑎
𝜕𝑈𝑖

−
𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑞𝑎
𝜕𝑈𝑖

) (
𝜕𝑈𝑘
𝜕𝑞𝑏

𝜕𝑈𝑗
𝜕𝑝𝑏

−
𝜕𝑈𝑘
𝜕𝑝𝑏

𝜕𝑈𝑗
𝜕𝑞𝑏

)

=
2𝑛
∑
𝑘=1

𝑛
∑
𝑎=1

𝑛
∑
𝑏=1

(
𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑝𝑎
𝜕𝑈𝑖

𝜕𝑈𝑘
𝜕𝑞𝑏

𝜕𝑈𝑗
𝜕𝑝𝑏

−
𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑝𝑎
𝜕𝑈𝑖

𝜕𝑈𝑘
𝜕𝑝𝑏

𝜕𝑈𝑗
𝜕𝑞𝑏

−
𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑞𝑎
𝜕𝑈𝑖

𝜕𝑈𝑘
𝜕𝑞𝑏

𝜕𝑈𝑗
𝜕𝑝𝑏

+
𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑞𝑎
𝜕𝑈𝑖

𝜕𝑈𝑘
𝜕𝑝𝑏

𝜕𝑈𝑗
𝜕𝑞𝑏

)

Avec

d𝑞𝑎 =
2𝑛
∑
𝑘=1

𝜕𝑞𝑎
𝜕𝑈𝑘

d𝑈𝑘 et d𝑝𝑎 =
2𝑛
∑
𝑘=1

𝜕𝑝𝑎
𝜕𝑈𝑘

d𝑈𝑘

nous avons :

d𝑞𝑎
d𝑞𝑏

=
2𝑛
∑
𝑘=1

𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑞𝑏

,
d𝑞𝑎
d𝑝𝑏

=
2𝑛
∑
𝑘=1

𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑝𝑏

,
d𝑝𝑎
d𝑞𝑏

=
2𝑛
∑
𝑘=1

𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑞𝑏

,
d𝑝𝑎
d𝑝𝑏

=
2𝑛
∑
𝑘=1

𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑝𝑏

Or nous avons aussi ∀𝑎, ∀𝑏,

d𝑞𝑎
d𝑞𝑏

= 𝛿𝑎𝑏,
d𝑞𝑎
d𝑝𝑏

= 0,
d𝑝𝑎
d𝑞𝑏

= 0,
d𝑝𝑎
d𝑝𝑏

= 𝛿𝑎𝑏

qui donne :

2𝑛
∑
𝑘=1

𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑞𝑏

= 𝛿𝑎𝑏,
2𝑛
∑
𝑘=1

𝜕𝑞𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑝𝑏

= 0,
2𝑛
∑
𝑘=1

𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑞𝑏

= 0,
2𝑛
∑
𝑘=1

𝜕𝑝𝑎
𝜕𝑈𝑘

𝜕𝑈𝑘
𝜕𝑝𝑏

= 𝛿𝑎𝑏

Nous avons alors :
2𝑛
∑
𝑘=1

{𝑈𝑘, 𝑈𝑖}[𝑈𝑘, 𝑈𝑗] =
𝑛
∑
𝑎=1

𝑛
∑
𝑏=1

(
𝜕𝑝𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑝𝑏

𝛿𝑎𝑏 +
𝜕𝑞𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑞𝑏

𝛿𝑎𝑏)

=
𝑛
∑
𝑎=1

(
𝜕𝑝𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑝𝑎

+
𝜕𝑞𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑞𝑎

)

Or :

d𝑈𝑗 =
𝑛
∑
𝑎=1

(
𝜕𝑈𝑗
𝜕𝑝𝑎

d𝑝𝑎 +
𝜕𝑈𝑗
𝜕𝑞𝑎

d𝑞𝑎)

d𝑈𝑗
d𝑈𝑖

=
𝑛
∑
𝑎=1

(
𝜕𝑝𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑝𝑎

+
𝜕𝑞𝑎
𝜕𝑈𝑖

𝜕𝑈𝑗
𝜕𝑞𝑎

)

= 𝛿𝑖𝑗

Par conséquent :
2𝑛
∑
𝑘=1

{𝑈𝑘, 𝑈𝑖}[𝑈𝑘, 𝑈𝑗] = 𝛿𝑖𝑗

La matrice résultat est donc la matrice unité. La transposée de la matrice des crochets de Lagrange
et la matrice des crochets de Poisson sont inverses l’une de l’autre.
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6.4 Conditions d’intégrabilité et crochets de Poisson

Prenons le cas de quatre variables canoniques (𝑞1, 𝑞2, 𝑝1, 𝑝2). Utilisons le résultat du § précédent.
Les conditions nécessaires et suffisantes (5.13) page 163 sur les crochets de Lagrange pour avoir
une transformation canonique nous donne la matrice de gauche :

⎛
⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

[𝑄1, 𝑄1] [𝑄1, 𝑄2] [𝑄1, 𝑃1] [𝑄1, 𝑃2]
[𝑄2, 𝑄1] [𝑄2, 𝑄2] [𝑄2, 𝑃1] [𝑄2, 𝑃2]
[𝑃1, 𝑄1] [𝑃1, 𝑄2] [𝑃1, 𝑃1] [𝑃1, 𝑃2]
[𝑃2, 𝑄1] [𝑃2, 𝑄2] [𝑃2, 𝑃1] [𝑃2, 𝑃2]

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎠

Si bien que :

[𝑃1, 𝑄1] = 1, [𝑃1, 𝑄2] = 0, [𝑃1, 𝑃1] = 0, [𝑃1, 𝑃2] = 0
[𝑃2, 𝑄1] = 0, [𝑃2, 𝑄2] = 1, [𝑃2, 𝑃1] = 0, [𝑃2, 𝑃2] = 0
[𝑄1, 𝑄1] = 0, [𝑄1, 𝑄2] = 0, [𝑄1, 𝑃1] = 1, [𝑄1, 𝑃2] = 0
[𝑄2, 𝑄1] = 0, [𝑄2, 𝑄2] = 0, [𝑄2, 𝑃1] = 0, [𝑄2, 𝑃2] = 1

En généralisant, on en déduit les conditions nécessaires et suffisantes en termes de crochets de
Poisson pour qu’une transformation (𝑞, 𝑝) → (𝑄, 𝑃) soit canonique :

[𝑄𝑖, 𝑄𝑗]𝑞,𝑝 = 0 [𝑃𝑖, 𝑃𝑗]𝑝,𝑞 = 0 [𝑄𝑖, 𝑃𝑗]𝑝,𝑞 = 𝛿𝑖𝑗 (6.3)

Ces conditions d’intégrabilité peuvent être obtenu d’une autre façon. En appliquant (6.1) page 170
aux fonctions pour l’instant arbitraires 𝑃(𝑞, 𝑝) et 𝑄(𝑞, 𝑝) :

{
̇𝑃 = [𝑃,H]𝑞,𝑝

𝑄̇ = [𝑄,H]𝑞,𝑝
⇒

⎧⎪
⎨⎪
⎩

̇𝑃 = 𝜕𝑃
𝜕𝑞

𝜕ℋ
𝜕𝑝 − 𝜕𝑃

𝜕𝑝
𝜕ℋ
𝜕𝑞

𝑄̇ = 𝜕𝑄
𝜕𝑞

𝜕ℋ
𝜕𝑝 − 𝜕𝑄

𝜕𝑝
𝜕ℋ
𝜕𝑞

Rappelons un résultat classique de la dérivation des fonctions composées :

dℋ(𝑞, 𝑝, 𝑡) = dH(𝑄, 𝑃, 𝑡)
𝜕ℋ
𝜕𝑞 d𝑞 + 𝜕ℋ

𝜕𝑝 d𝑝 + 𝜕ℋ
𝜕𝑡 d𝑡 = 𝜕H

𝜕𝑄 d𝑄 + 𝜕H
𝜕𝑃 d𝑃 + 𝜕H

𝜕𝑡 d𝑡

= 𝜕H
𝜕𝑄 (𝜕𝑄𝜕𝑞 d𝑞 +

𝜕𝑄
𝜕𝑝 d𝑝) + 𝜕H

𝜕𝑃 (𝜕𝑃𝜕𝑞 d𝑞 +
𝜕𝑃
𝜕𝑝 d𝑝) +

𝜕H
𝜕𝑡 d𝑡

= (𝜕H𝜕𝑄
𝜕𝑄
𝜕𝑞 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑞) d𝑞 + (𝜕H𝜕𝑄

𝜕𝑄
𝜕𝑝 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑝) d𝑝 +

𝜕H
𝜕𝑡 d𝑡

D’où les relations :
⎧⎪
⎨⎪
⎩

𝜕ℋ
𝜕𝑞 = 𝜕H

𝜕𝑄
𝜕𝑄
𝜕𝑞 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑞

𝜕ℋ
𝜕𝑝 = 𝜕H

𝜕𝑄
𝜕𝑄
𝜕𝑝 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑝

(6.4)
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Donc :
⎧⎪
⎨⎪
⎩

̇𝑃 = 𝜕𝑃
𝜕𝑞 (

𝜕H
𝜕𝑄

𝜕𝑄
𝜕𝑝 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑝) −

𝜕𝑃
𝜕𝑝 (

𝜕H
𝜕𝑄

𝜕𝑄
𝜕𝑞 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑞)

𝑄̇ = 𝜕𝑄
𝜕𝑞 (

𝜕H
𝜕𝑄

𝜕𝑄
𝜕𝑝 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑝) −

𝜕𝑄
𝜕𝑝 (𝜕H𝜕𝑄

𝜕𝑄
𝜕𝑞 + 𝜕H

𝜕𝑃
𝜕𝑃
𝜕𝑞)

⎧⎪
⎨⎪
⎩

̇𝑃 = 𝜕𝑃
𝜕𝑞

𝜕H
𝜕𝑄

𝜕𝑄
𝜕𝑝 − 𝜕𝑃

𝜕𝑝
𝜕H
𝜕𝑄

𝜕𝑄
𝜕𝑞

𝑄̇ = 𝜕𝑄
𝜕𝑞

𝜕H
𝜕𝑃

𝜕𝑃
𝜕𝑝 − 𝜕𝑄

𝜕𝑝
𝜕H
𝜕𝑃

𝜕𝑃
𝜕𝑞

⇒
⎧

⎨
⎩

̇𝑃 = −𝜕H𝜕𝑄 [𝑄, 𝑃]𝑞,𝑝

𝑄̇ = 𝜕H
𝜕𝑃 [𝑄, 𝑃]𝑞,𝑝

Ce résultat est valable quelles que soient les fonctions 𝑄(𝑞, 𝑝) et 𝑃(𝑞, 𝑝). Si nous voulons que 𝑃
et 𝑄 soient des variables canoniques, nous devons de plus retrouver les équations de Hamilton.
Une condition suffisante est que [𝑄, 𝑃]𝑞,𝑝 = 𝑘, où 𝑘 est une constante non nulle car on obtient :

⎧

⎨
⎩

̇𝑃 = −𝑘 𝜕H𝜕𝑄 = − 𝜕(𝑘H)
𝜕𝑄

𝑄̇ = 𝑘 𝜕H𝜕𝑃 = 𝜕(𝑘H)
𝜕𝑃

Prendre 𝑘 ≠ 1 revient à effectuer un changement d’unités (cf. § 3.2.3 page 96), et nous prendrons
donc 𝑘 = 1 :

[𝑄, 𝑃]𝑞,𝑝 = 1

[𝑄, 𝑃]𝑞,𝑝 = 𝑘 est-elle une condition nécessaire pour retrouver les équations de Hamilton? Si
nous supposons qu’un hamiltonien 𝐾(𝑄, 𝑃) existe, alors

⎧

⎨
⎩

̇𝑃 = −𝜕K𝜕𝑄

𝑄̇ = 𝜕K
𝜕𝑃

⇒
⎧

⎨
⎩

𝜕K
𝜕𝑄 = 𝜕H

𝜕𝑄 [𝑄, 𝑃]𝑞,𝑝

𝜕K
𝜕𝑃 = 𝜕H

𝜕𝑃 [𝑄, 𝑃]𝑞,𝑝

Il faut aussi que :

𝜕2𝐾(𝑄, 𝑃)
𝜕𝑄𝜕𝑃 = 𝜕2𝐾(𝑄, 𝑃)

𝜕𝑃𝜕𝑄
𝜕
𝜕𝑄 (𝜕H𝜕𝑃 [𝑄, 𝑃]𝑞,𝑝) =

𝜕
𝜕𝑃 (

𝜕H
𝜕𝑄 [𝑄, 𝑃]𝑞,𝑝)

𝜕H
𝜕𝑃

𝜕[𝑄, 𝑃]𝑞,𝑝
𝜕𝑄 = 𝜕H

𝜕𝑄
𝜕[𝑄, 𝑃]𝑞,𝑝

𝜕𝑃

Pour que cela soit toujours vrai nous devons avoir

𝜕[𝑄, 𝑃]𝑞,𝑝
𝜕𝑄 = 0 et

𝜕[𝑄, 𝑃]𝑞,𝑝
𝜕𝑃 = 0

c.-à-d.
[𝑄, 𝑃]𝑞,𝑝 = 𝑘

Exemple 6.4.1
Reprenons l’ex. 5.2.11 page 164. Montrons qu’une rotation d’angle 𝛼 dans l’espace des
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phases (𝑞, 𝑝), définie par la transformation des coordonnées,

{
𝑄 = 𝑞 cos(𝛼) + 𝑝 sin(𝛼)
𝑃 = −𝑞 sin(𝛼) + 𝑝 cos(𝛼)

est une transformation canonique en calculant le crochet de Poisson des fonctions 𝑄(𝑞, 𝑝)
et 𝑃(𝑞, 𝑝) pour les variables canoniques (𝑞, 𝑝) :

𝜕𝑄
𝜕𝑞 = cos(𝛼), 𝜕𝑄

𝜕𝑝 = sin(𝛼), 𝜕𝑃
𝜕𝑞 = − sin(𝛼), 𝜕𝑃

𝜕𝑝 = cos(𝛼)

𝜕𝑄
𝜕𝑞

𝜕𝑃
𝜕𝑝 − 𝜕𝑄

𝜕𝑝
𝜕𝑃
𝜕𝑞 = cos2(𝛼) + sin2(𝛼) = 1

Exemple 6.4.2
Reprenons l’ex. 5.2.4 page 150. Montrons que la transformation suivante est canonique :

𝑥(𝑡) = 1
2
𝑎𝑡2 + 𝑝0

𝑚
𝑡 + 𝑥0, 𝑝(𝑡) = 𝑚𝑎𝑡 + 𝑝0

Calculons son crochet de Poisson :

[𝑥, 𝑝]𝑥0,𝑝0 =
𝜕𝑥
𝜕𝑥0

𝜕𝑝
𝜕𝑝0

− 𝜕𝑥
𝜕𝑝0

𝜕𝑝
𝜕𝑥0

= 1 × 1 − 𝑡
𝑚
× 0

= 1

Exemple 6.4.3
Montrons que la transformation suivante est canonique :

{
𝑄 = − ln sin𝑝
𝑃 = 𝑞 tan𝑝

Première méthode en calculant le crochet de Poisson :

𝜕𝑄
𝜕𝑞 = 0, 𝜕𝑄

𝜕𝑝 = −
cos𝑝
sin𝑝 ,

𝜕𝑃
𝜕𝑞 = tan𝑝, 𝜕𝑃

𝜕𝑝 =
𝑞

cos2 𝑝

𝜕𝑃
𝜕𝑝

𝜕𝑄
𝜕𝑞 − 𝜕𝑃

𝜕𝑞
𝜕𝑄
𝜕𝑝 = 1

tan𝑝 × tan𝑝 = 1

Deuxième méthode en montrant que la fonction génératrice est une différentielle totale
exacte :

d𝑄
d𝑝 = −

cos𝑝
sin𝑝

d𝑄 = −
d𝑝

tan𝑝
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Et l’on a :

𝑑𝐹1 = 𝑝d𝑞 − 𝑃d𝑄

= 𝑝d𝑞 + 𝑞 tan𝑝 d𝑝
tan𝑝

= 𝑝d𝑞 + 𝑞d𝑝
= 𝑑(𝑝𝑞)

Remarque 6.4.1
𝐹4 n’est pas génératrice de la transformation car elle est constante :

𝑑𝐹4 = −𝑞d𝑝 − 𝑃d𝑄
= −𝑞d𝑝 + 𝑞d𝑝
= 0

6.5 Propriétés

6.5.1 Crochet de Poisson avec une fonction constante

Soient 𝑓 et 𝑔 deux fonctions de l’espace des phases. À partir de la définition, nous avons la
propriété suivante :

[𝑓, 𝑐 𝑠𝑡𝑒]𝑞,𝑝 =
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑐 𝑠𝑡𝑒
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑐 𝑠𝑡𝑒
𝜕𝑞𝑘

)

= 0

6.5.2 Bilinéarité

Linéarité à gauche :

[𝑓1 + 𝑓2, 𝑔] =
𝑛
∑
𝑘=1

(
𝜕 (𝑓1 + 𝑓2)

𝜕𝑞𝑘
𝜕𝑔
𝜕𝑝𝑘

−
𝜕 (𝑓1 + 𝑓2)

𝜕𝑝𝑘
𝜕𝑔
𝜕𝑞𝑘

)

=
𝑛
∑
𝑘=1

(
𝜕𝑓1
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓1
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

) +
𝑛
∑
𝑘=1

(
𝜕𝑓2
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓2
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

= [𝑓1, 𝑔] + [𝑓2, 𝑔]
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∀𝜆 ∈ ℝ, [𝜆𝑓, 𝑔] =
𝑛
∑
𝑘=1

(
𝜕 (𝜆𝑓)
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕 (𝜆𝑓)
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

= 𝜆
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

= 𝜆[𝑓, 𝑔]

Linéarité à droite :

[𝑓, 𝑔1 + 𝑔2] = [𝑓, 𝑔1] + [𝑓, 𝑔2]
∀𝜇 ∈ ℝ, [𝑓, 𝜇𝑔] = 𝜇[𝑓, 𝑔]

6.5.3 Antisymétrie

[𝑓, 𝑔] =
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

= −
𝑛
∑
𝑘=1

(
𝜕𝑔
𝜕𝑞𝑘

𝜕𝑓
𝜕𝑝𝑘

−
𝜕𝑔
𝜕𝑝𝑘

𝜕𝑓
𝜕𝑞𝑘

)

= −[𝑔, 𝑓]
[𝑓, 𝑓] = 0

6.5.4 Crochet de Poisson fondamentaux

Les variables canoniques 𝑞 étant indépendantes les unes des autres, et les variables canoniques 𝑝
étant elles aussi indépendantes les unes des autres, nous avons :

[𝑞𝑖, 𝑞𝑗]𝑞,𝑝 =
𝑛
∑
𝑘=1

(
𝜕𝑞𝑖
𝜕𝑞𝑘

𝜕𝑞𝑗
𝜕𝑝𝑘

−
𝜕𝑞𝑖
𝜕𝑝𝑘

𝜕𝑞𝑗
𝜕𝑞𝑘

)

[𝑞𝑖, 𝑞𝑗]𝑞,𝑝 = 0

[𝑝𝑖, 𝑝𝑗]𝑞,𝑝 =
𝑛
∑
𝑘=1

(
𝜕𝑝𝑖
𝜕𝑞𝑘

𝜕𝑝𝑗
𝜕𝑝𝑘

−
𝜕𝑝𝑖
𝜕𝑝𝑘

𝜕𝑝𝑗
𝜕𝑞𝑘

)

[𝑝𝑖, 𝑝𝑗]𝑞,𝑝 = 0

[𝑞𝑖, 𝑝𝑗]𝑞,𝑝 =
𝑛
∑
𝑘=1

(
𝜕𝑞𝑖
𝜕𝑞𝑘

𝜕𝑝𝑗
𝜕𝑝𝑘

−
𝜕𝑞𝑖
𝜕𝑝𝑘

𝜕𝑝𝑗
𝜕𝑞𝑘

)

=
𝑛
∑
𝑘=1

𝛿𝑖𝑘 𝛿𝑗𝑘

[𝑞𝑖, 𝑝𝑗]𝑞,𝑝 = 𝛿𝑖𝑗
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6.6 Identités

6.6.1 Identité de Leibniz

[𝑓𝑔, ℎ] = 𝑓[𝑔, ℎ] + 𝑔[𝑓, ℎ]

Démonstration.

[𝑓𝑔, ℎ] =
𝑛
∑
𝑘=1

[
𝜕(𝑓𝑔)
𝜕𝑞𝑘

𝜕ℎ
𝜕𝑝𝑘

−
𝜕(𝑓𝑔)
𝜕𝑝𝑘

𝜕ℎ
𝜕𝑞𝑘

]

=
𝑛
∑
𝑘=1

(𝑓
𝜕𝑔
𝜕𝑞𝑘

𝜕ℎ
𝜕𝑝𝑘

+ 𝑔
𝜕𝑓
𝜕𝑞𝑘

𝜕ℎ
𝜕𝑝𝑘

− 𝑓
𝜕𝑔
𝜕𝑝𝑘

𝜕ℎ
𝜕𝑞𝑘

− 𝑔
𝜕𝑓
𝜕𝑝𝑘

𝜕ℎ
𝜕𝑞𝑘

)

= 𝑓
𝑛
∑
𝑘=1

(
𝜕𝑔
𝜕𝑞𝑘

𝜕ℎ
𝜕𝑝𝑘

−
𝜕𝑔
𝜕𝑝𝑘

𝜕ℎ
𝜕𝑞𝑘

) + 𝑔
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕ℎ
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕ℎ
𝜕𝑞𝑘

)

= 𝑓[𝑔, ℎ] + 𝑔[𝑓, ℎ]

6.6.2 Identité de Jacobi

[𝑓, [𝑔, ℎ]] + [ℎ, [𝑓, 𝑔]] + [𝑔, [ℎ, 𝑓]] = 0

Démonstration. Le premier terme s’écrit :

[𝑓, [𝑔, ℎ]] =
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕[𝑔, ℎ]
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕[𝑔, ℎ]
𝜕𝑞𝑘

)

=
𝑛
∑
𝑘=1

[
𝜕𝑓
𝜕𝑞𝑘

𝜕
𝜕𝑝𝑘

𝑛
∑
𝑗=1

(
𝜕𝑔
𝜕𝑞𝑗

𝜕ℎ
𝜕𝑝𝑗

−
𝜕𝑔
𝜕𝑝𝑗

𝜕ℎ
𝜕𝑞𝑗

) −
𝜕𝑓
𝜕𝑝𝑘

𝜕
𝜕𝑞𝑘

𝑛
∑
𝑗=1

(
𝜕𝑔
𝜕𝑞𝑗

𝜕ℎ
𝜕𝑝𝑗

−
𝜕𝑔
𝜕𝑝𝑗

𝜕ℎ
𝜕𝑞𝑗

)]

[𝑓, [𝑔, ℎ]] =
𝑛
∑
𝑘=1

𝑛
∑
𝑗=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕2𝑔
𝜕𝑝𝑘𝜕𝑞𝑗

𝜕ℎ
𝜕𝑝𝑗

+
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑞𝑗

𝜕2ℎ
𝜕𝑝𝑘𝜕𝑝𝑗

−
𝜕𝑓
𝜕𝑞𝑘

𝜕2𝑔
𝜕𝑝𝑘𝜕𝑝𝑗

𝜕ℎ
𝜕𝑞𝑗

−
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑗

𝜕2ℎ
𝜕𝑝𝑘𝜕𝑞𝑗

−
𝜕𝑓
𝜕𝑝𝑘

𝜕2𝑔
𝜕𝑞𝑘𝜕𝑞𝑗

𝜕ℎ
𝜕𝑝𝑗

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑗

𝜕2ℎ
𝜕𝑞𝑘𝜕𝑝𝑗

+
𝜕𝑓
𝜕𝑝𝑘

𝜕2𝑔
𝜕𝑞𝑘𝜕𝑝𝑗

𝜕ℎ
𝜕𝑞𝑗

+
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑝𝑗

𝜕2ℎ
𝜕𝑞𝑘𝜕𝑞𝑗

)

En effectuant la permutation circulaire des trois fonctions 𝑓, 𝑔, ℎ, l’ensemble s’annule. Par
conséquent la somme des crochets de Poisson obtenus par permutation circulaire de trois fonctions
est nulle, et le crochet de Poisson n’est pas associatif.
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6.7 Théorèmes

Théorème 6.7.1 : Crochet de Poisson et intégrale première
Si le crochet de Poisson d’une fonction ne dépendant pas explicitement du temps avec le
hamiltonien est nul, alors cette fonction est une intégrale première du mouvement.

Démonstration. La dérivée par rapport au temps d’une fonction 𝑓(𝑞, 𝑝, 𝑡) de l’espace des phases
s’écrit :

d𝑓(𝑞, 𝑝, 𝑡)
d𝑡 =

𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

̇𝑞𝑘 +
𝜕𝑓
𝜕𝑝𝑘

̇𝑝𝑘) +
𝜕𝑓
𝜕𝑡

Si les coordonnées et les moments varient selon une trajectoire réelle, ils satisfont les équations
de Hamilton (4.6) page 132 et nous avons :

d𝑓(𝑞, 𝑝, 𝑡)
d𝑡 =

𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕ℋ
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕ℋ
𝜕𝑞𝑘

) +
𝜕𝑓
𝜕𝑡

d𝑓(𝑞, 𝑝, 𝑡)
d𝑡 = [𝑓,ℋ] +

𝜕𝑓
𝜕𝑡 (6.5)

Si le crochet de Poisson avec le hamiltonien est nul et si 𝑓 ne dépend pas explicitement du temps,
alors,

d𝑓(𝑞, 𝑝)
d𝑡 = 0

et 𝑓(𝑞, 𝑝) est une intégrale première.

Revenons sur (5.17) page 168. Le second membre est le crochet de Poisson de ℋ et 𝐺, et l’on a :

𝜕𝐺
𝜕𝑡 = [ℋ,𝐺]

Avec la propriété (6.5.3) page 176 d’antisymétrie des crochets de Poisson :

𝜕𝐺
𝜕𝑡 + [𝐺,ℋ] = 0

Avec (6.5) cette relation équivaut à :
d𝐺
d𝑡 = 0

Le générateur d’une transformation infinitésimale invariante est une intégrale première du mou-
vement.

Exemple 6.7.1
Reprenons les ex. 5.3.1 page 165 pour le cas d’un mobile libre.

a) lors d’une translation spatiale infinitésimale d’un vecteur 𝛿 #»a , le hamiltonien est
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invariant de forme fonctionnelle :

ℋ =
𝑝2

2𝑚 → H = 𝑃2
2𝑚

Le générateur de la transformation étant 𝛿 #»a ⋅ #»p nous en déduisons que le vecteur
quantité de mouvement est une constante du mouvement.

b) lors d’une rotation spatiale infinitésimale d’un angle 𝛿𝜃 dans le plan (𝑥, 𝑦), le hamil-
tonien est invariant de forme fonctionnelle. Le générateur de la transformation est
𝐿𝑧 𝛿𝜃, et par conséquent la composante en 𝑧 du vecteur moment cinétique est une
constante du mouvement.

c) pour une transformation de Galilée infinitésimale ((5.9) page 158),

{
#»r ′ = #»r − 𝛿 #»v 𝑡
#»p ′ = #»p − 𝑚𝛿 #»v

la fonction génératrice (5.16) page 166 s’écrit :

𝐹2 (
#»r , #»p ′, 𝑡) = #»r ⋅ #»p ′ − 𝛿 #»v ⋅ (𝑡 #»p − 𝑚 #»r ) + 𝑔(𝑡)

où 𝑔(𝑡) est une fonction quelconque du temps. De plus,

H = ℋ + 𝜕𝐹2
𝜕𝑡

=
𝑝2

2𝑚 − #»p ⋅ 𝛿 #»v +
𝜕𝑔(𝑡)
𝜕𝑡

= ( #»p ′ +𝑚𝛿 #»v )2

2𝑚 − ( #»p ′ +𝑚𝛿 #»v ) ⋅ 𝛿 #»v +
𝜕𝑔(𝑡)
𝜕𝑡

=
𝑝′2

2𝑚 + #»p ′ ⋅ 𝛿 #»v + 1
2
𝑚𝛿v2 − #»p ′ ⋅ 𝛿 #»v − 𝑚𝛿v2 +

𝜕𝑔(𝑡)
𝜕𝑡

=
𝑝′2

2𝑚 − 1
2
𝑚𝛿v2 +

𝜕𝑔(𝑡)
𝜕𝑡

Si l’on choisit,
𝑔(𝑡) = −1

2
𝑚v2𝑡

alors,

H =
𝑝′2

2𝑚
et le hamiltonien est bien invariant de forme fonctionnelle. La fonction génératrice a
pour expression :

𝐹2 (
#»r , #»p ′, 𝑡) = #»r ⋅ #»p ′ − 𝛿 #»v ⋅ (𝑡 #»p − 𝑚 #»r ) − 1

2
𝑚v2𝑡

et le générateur de la transformation de Galilée infinitésimale s’écrit 𝛿 #»v ⋅(𝑡 #»p − 𝑚 #»r ).
Le terme entre parenthèses est donc une constante du mouvement. Nous pouvons le
vérifier :

𝑚 #»r − #»p 𝑡 = 𝑚 ( #»r − #»v 𝑡)
= 𝑚 [ #»r − ( #»r − #»r 0)]
= 𝑚 #»r 0

où #»r 0 est le vecteur position initiale du mobile.
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Exemple 6.7.2
Reprenons l’ex. 3.1.4 page 78 pour un mobile de masse 𝑚 et de charge 𝑞 dans un champ
magnétique uniforme orienté selon l’axe des 𝑧 positifs. Son lagrangien est alors :

ℒ = 1
2
𝑚𝑣2 + 𝑞

2
( #»𝐵 × #»r ) ⋅ #»v

= 1
2
𝑚𝑣2 +

𝑞
2 [(

0
0
𝐵
) × (

𝑥
𝑦
𝑧
)] ⋅ (

𝑣𝑥
𝑣𝑦
𝑣𝑧
)

ℒ = 1
2
𝑚𝑣2 +

𝑞
2 (

−𝐵𝑦
𝐵𝑥
0
) ⋅ (

𝑣𝑥
𝑣𝑦
𝑣𝑧
)

= 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2) + 1

2
𝑞𝐵(𝑥 ̇𝑦 − 𝑦 ̇𝑥)

Les impulsions généralisée ont pour expressions :

⎧⎪
⎨⎪
⎩

𝑝𝑥 = 𝜕ℒ/𝜕 ̇𝑥 = 𝑚 ̇𝑥 − 1
2
𝑞𝐵𝑦

𝑝𝑦 = 𝜕ℒ/𝜕 ̇𝑦 = 𝑚 ̇𝑦 + 1
2
𝑞𝐵𝑥

𝑝𝑧 = 𝜕ℒ/𝜕 ̇𝑧 = 𝑚 ̇𝑧

⇒
⎧⎪
⎨⎪
⎩

𝑚 ̇𝑥 = 𝑝𝑥 +
1
2
𝑞𝐵𝑦

𝑚 ̇𝑦 = 𝑝𝑦 −
1
2
𝑞𝐵𝑥

𝑚 ̇𝑧 = 𝑝𝑧

(6.6)

Le hamiltonien qui s’écrit

ℋ = 𝑝𝑥 ̇𝑥 + 𝑝𝑦 ̇𝑦 + 𝑝𝑧 ̇𝑧 − ℒ

= (𝑚 ̇𝑥 − 1
2
𝑞𝐵𝑦) ̇𝑥 + (𝑚 ̇𝑦 + 1

2
𝑞𝐵𝑥) ̇𝑦 + 𝑚 ̇𝑧2 − 1

2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2) − 1

2
𝑞𝐵(𝑥 ̇𝑦 − 𝑦 ̇𝑥)

= 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2)

est égal à l’énergie cinétique. Exprimons-le en fonction des impulsions généralisées :

ℋ = 1
2𝑚 (𝑝𝑥 +

1
2𝑞𝐵𝑦)

2
+ 1
2𝑚 (𝑝𝑦 −

1
2𝑞𝐵𝑥)

2
+ 1
2𝑚 𝑝2𝑧

Les équations du mouvement sont données par (6.2) page 170 :

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡(𝑚 ̇𝑥) = [𝑚 ̇𝑥,ℋ]

d
d𝑡(𝑚 ̇𝑦) = [𝑚 ̇𝑦,ℋ]

d
d𝑡(𝑚 ̇𝑧) = [𝑚 ̇𝑧,ℋ]

En utilisant la linéarité à droite des crochets de Poisson :

[𝑚 ̇𝑥,ℋ] = [𝑚 ̇𝑥, 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2)]

= 1
2𝑚

[𝑚 ̇𝑥, (𝑚 ̇𝑥)2] + 1
2𝑚

[𝑚 ̇𝑥, (𝑚 ̇𝑦)2] + 1
2𝑚

[𝑚 ̇𝑥, (𝑚 ̇𝑧)2]
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Avec l’identité de Leibniz et l’antisymétrie du crochet de Poisson, le premier terme est
nul :

1
2𝑚

[𝑚 ̇𝑥, (𝑚 ̇𝑥)2] = − 1
2𝑚

[(𝑚 ̇𝑥)2, 𝑚 ̇𝑥]

= − 1
2𝑚

{𝑚 ̇𝑥 [𝑚 ̇𝑥,𝑚 ̇𝑥] + 𝑚 ̇𝑥 [𝑚 ̇𝑥,𝑚 ̇𝑥]}

= 0

Le dernier terme est également nul car 𝑚 ̇𝑧 n’est fonction que de 𝑝𝑧 et la coordonnée 𝑧
n’apparait pas dans (6.6) :

1
2𝑚 [𝑚 ̇𝑥, (𝑚 ̇𝑧)2] = 1

2𝑚 [𝜕𝑚 ̇𝑥
𝜕𝑥

𝜕(𝑚 ̇𝑧)2
𝜕𝑝𝑥

− 𝜕𝑚 ̇𝑥
𝜕𝑝𝑥

𝜕(𝑚 ̇𝑧)2
𝜕𝑥 + 𝜕𝑚 ̇𝑥

𝜕𝑦
𝜕(𝑚 ̇𝑧)2
𝜕𝑝𝑦

− 𝜕𝑚 ̇𝑥
𝜕𝑝𝑦

𝜕(𝑚 ̇𝑧)2
𝜕𝑦

+𝜕𝑚 ̇𝑥
𝜕𝑧

𝜕(𝑚 ̇𝑧)2
𝜕𝑝𝑧

− 𝜕𝑚 ̇𝑥
𝜕𝑝𝑧

𝜕(𝑚 ̇𝑧)2
𝜕𝑧 ] = 0

Il reste :

[𝑚 ̇𝑥,ℋ] = 1
2𝑚

[𝑚 ̇𝑥, (𝑚 ̇𝑦)2]

= 1
2𝑚 [𝜕𝑚 ̇𝑥

𝜕𝑥
𝜕(𝑚 ̇𝑦)2

𝜕𝑝𝑥
− 𝜕𝑚 ̇𝑥
𝜕𝑝𝑥

𝜕(𝑚 ̇𝑦)2

𝜕𝑥 + 𝜕𝑚 ̇𝑥
𝜕𝑦

𝜕(𝑚 ̇𝑦)2

𝜕𝑝𝑦
− 𝜕𝑚 ̇𝑥

𝜕𝑝𝑦
𝜕(𝑚 ̇𝑦)2

𝜕𝑦 + 0]

= 1
2𝑚 [0 − 𝜕

𝜕𝑥 (𝑝
2
𝑦 − 𝑝𝑦𝑞𝐵𝑥 +

𝑞2𝐵2𝑥2

4 ) +
𝑞𝐵
2

𝜕
𝜕𝑝𝑦

(𝑝2𝑦 − 𝑝𝑦𝑞𝐵𝑥 +
𝑞2𝐵2𝑥2

4 ) + 0]

= 1
2𝑚 (𝑝𝑦𝑞𝐵 +

1
2𝑞

2𝐵2𝑥 + 𝑞𝐵𝑝𝑦 −
1
2𝑞

2𝐵2𝑥)

= 𝑞𝐵 ̇𝑦

De même,

[𝑚 ̇𝑦,ℋ] = [𝑚 ̇𝑦, 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2)]

= 1
2𝑚

[𝑚 ̇𝑦, (𝑚 ̇𝑥)2] + 1
2𝑚

[𝑚 ̇𝑦, (𝑚 ̇𝑦)2] + 1
2𝑚

[𝑚 ̇𝑦, (𝑚 ̇𝑧)2]

Pour les mêmes raisons que précédemment seul le premier terme est non nul.

[𝑚 ̇𝑦,ℋ] = 1
2𝑚

[𝑚 ̇𝑦, (𝑚 ̇𝑥)2]

= 1
2𝑚 [

𝜕𝑚 ̇𝑦
𝜕𝑥

𝜕(𝑚 ̇𝑥)2
𝜕𝑝𝑥

−
𝜕𝑚 ̇𝑦
𝜕𝑝𝑥

𝜕(𝑚 ̇𝑥)2
𝜕𝑥 +

𝜕𝑚 ̇𝑦
𝜕𝑦

𝜕(𝑚 ̇𝑥)2
𝜕𝑝𝑦

−
𝜕𝑚 ̇𝑦
𝜕𝑝𝑦

𝜕(𝑚 ̇𝑥)2
𝜕𝑦 ]

= 1
2𝑚 [−

𝑞𝐵
2

𝜕
𝜕𝑝𝑥

(𝑝2𝑥 − 𝑝𝑥𝑞𝐵𝑦 +
𝑞2𝐵2𝑦2

4 ) − 0 + 0 − 𝜕
𝜕𝑦 (𝑝

2
𝑥 + 𝑝𝑥𝑞𝐵𝑦 +

𝑞2𝐵2𝑦2

4 )]

= 1
2𝑚 (−𝑞𝐵𝑝𝑥 +

1
2𝑞

2𝐵2𝑦 − 𝑝𝑥𝑞𝐵 −
1
2𝑞

2𝐵2𝑦)

= −𝑞𝐵 ̇𝑥

[𝑚 ̇𝑧,ℋ] = [𝑚 ̇𝑧, 1
2
𝑚( ̇𝑥2 + ̇𝑦2 + ̇𝑧2)]

= 1
2𝑚 [𝜕𝑚 ̇𝑧

𝜕𝑥
𝜕(𝑚 ̇𝑥)2
𝜕𝑝𝑥

− 𝜕𝑚 ̇𝑧
𝜕𝑝𝑥

𝜕(𝑚 ̇𝑥)2
𝜕𝑥 + 𝜕𝑚 ̇𝑧

𝜕𝑦
𝜕(𝑚 ̇𝑥)2
𝜕𝑝𝑦

− 𝜕𝑚 ̇𝑧
𝜕𝑝𝑦

𝜕(𝑚 ̇𝑥)2
𝜕𝑦 ]

= 0
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Les équations du mouvement ont alors pour expression :

⎧
⎪⎪

⎨
⎪⎪
⎩

d
d𝑡(𝑚 ̇𝑥) = 𝑞𝐵 ̇𝑦

d
d𝑡(𝑚 ̇𝑦) = −𝑞𝐵 ̇𝑥

d
d𝑡(𝑚 ̇𝑧) = 0

Théorème 6.7.2 : Théorème de Poisson
Le crochet de Poisson de deux intégrales premières du mouvement est une intégrale
première du mouvement.

Démonstration.

d[𝑓, 𝑔]
d𝑡 = d

d𝑡

𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)

=
𝑛
∑
𝑘=1

[ dd𝑡 (
𝜕𝑓
𝜕𝑞𝑘

)
𝜕𝑔
𝜕𝑝𝑘

+
𝜕𝑓
𝜕𝑞𝑘

d
d𝑡 (

𝜕𝑔
𝜕𝑝𝑘

) − d
d𝑡 (

𝜕𝑓
𝜕𝑝𝑘

)
𝜕𝑔
𝜕𝑞𝑘

−
𝜕𝑓
𝜕𝑝𝑘

d
d𝑡 (

𝜕𝑔
𝜕𝑞𝑘

)]

=
𝑛
∑
𝑘=1

[ 𝜕
𝜕𝑞𝑘

(
d𝑓
d𝑡 )

𝜕𝑔
𝜕𝑝𝑘

+
𝜕𝑓
𝜕𝑞𝑘

𝜕
𝜕𝑝𝑘

(
d𝑔
d𝑡 ) −

𝜕
𝜕𝑝𝑘

(
d𝑓
d𝑡 )

𝜕𝑔
𝜕𝑞𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕
𝜕𝑞𝑘

(
d𝑔
d𝑡 )]

=
𝑛
∑
𝑘=1

[ 𝜕
𝜕𝑞𝑘

(
d𝑓
d𝑡 )

𝜕𝑔
𝜕𝑝𝑘

− 𝜕
𝜕𝑝𝑘

(
d𝑓
d𝑡 )

𝜕𝑔
𝜕𝑞𝑘

] +
𝑛
∑
𝑘=1

[
𝜕𝑓
𝜕𝑞𝑘

𝜕
𝜕𝑝𝑘

(
d𝑔
d𝑡 ) −

𝜕𝑓
𝜕𝑝𝑘

𝜕
𝜕𝑞𝑘

(
d𝑔
d𝑡 )]

= [
d𝑓
d𝑡 , 𝑔] + [𝑓,

d𝑔
d𝑡 ]

Si d𝑡𝑓 = 0 et d𝑡𝑔 = 0, alors d𝑡[𝑓, 𝑔] = 0.

Ce théorème permet de trouver de nouvelles intégrales premières du mouvement.

Théorème 6.7.3 : Invariance canonique des crochets de Poisson
Une transformation canonique préserve les crochets de Poisson.

Démonstration. Soit la transformation quelconque suivante :

{
𝑄 = 𝑄(𝑞, 𝑝)
𝑃 = 𝑃(𝑞, 𝑝)

⎧⎪

⎨
⎪
⎩

d𝑄(𝑞, 𝑝) =
𝑛
∑
𝑖=1

𝜕𝑄
𝜕𝑞𝑖

d𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝑄
𝜕𝑝𝑖

d𝑝𝑖

d𝑃(𝑞, 𝑝) =
𝑛
∑
𝑖=1

𝜕𝑃
𝜕𝑞𝑖

d𝑞𝑖 +
𝑛
∑
𝑖=1

𝜕𝑃
𝜕𝑝𝑖

d𝑝𝑖

Soient 𝑓(𝑞, 𝑝) et 𝑔(𝑞, 𝑝) deux fonctions des variables canoniques, de crochet de Poisson :

[𝑓, 𝑔]𝑞,𝑝 =
𝑛
∑
𝑘=1

(
𝜕𝑓
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑞𝑘

)
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En utilisant le rappel sur la dérivation des fonctions composées (6.4) page 172 appliqué à 𝑓 et 𝑔 :

[𝑓, 𝑔]𝑞,𝑝 =
𝑛
∑
𝑘=1

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

[(
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑞𝑘

+
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑞𝑘

) (
𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑝𝑘

+
𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑝𝑘

)

− (
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑝𝑘

+
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑝𝑘

) (
𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑞𝑘

+
𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑞𝑘

)]

[𝑓, 𝑔]𝑞,𝑝 =
𝑛
∑
𝑘=1

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑝𝑘

+
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑝𝑘

+
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑞𝑘

+
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑞𝑘

𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑝𝑘

−
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑞𝑘

−
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑄𝑖
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑞𝑘

−
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑄𝑗

𝜕𝑄𝑗
𝜕𝑞𝑘

−
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑃𝑖
𝜕𝑝𝑘

𝜕𝑔
𝜕𝑃𝑗

𝜕𝑃𝑗
𝜕𝑞𝑘

)

=
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑔
𝜕𝑄𝑗

[𝑄𝑖, 𝑄𝑗]𝑞,𝑝 +
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑔
𝜕𝑃𝑗
[𝑃𝑖, 𝑃𝑗]𝑞,𝑝

+
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑔
𝜕𝑃𝑗
[𝑄𝑖, 𝑃𝑗]𝑞,𝑝 −

𝜕𝑓
𝜕𝑃𝑖

𝜕𝑔
𝜕𝑄𝑗

[𝑄𝑗, 𝑃𝑖]𝑞,𝑝)

Les coordonnées généralisées étant indépendantes par hypothèse, on utilise les crochets de
Poisson fondamentaux 6.5.4 page 176. Les deux premiers termes sont identiquement nuls, il
reste :

[𝑓, 𝑔]𝑞,𝑝 =
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑔
𝜕𝑃𝑗

−
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑔
𝜕𝑄𝑗

) 𝛿𝑖𝑗

=
𝑛
∑
𝑖=1

(
𝜕𝑓
𝜕𝑄𝑖

𝜕𝑔
𝜕𝑃𝑖

−
𝜕𝑓
𝜕𝑃𝑖

𝜕𝑔
𝜕𝑄𝑖

)

= [𝑓, 𝑔]𝑄,𝑃

Le crochet de Poisson de deux fonctions quelconques des variables canoniques est un invariant
par transformation canonique, ou invariant canonique.

Exemple 6.7.3 : Oscillateur harmonique simple à une dimension
Pour de petites oscillations d’un système à un degré de liberté dans le champ de gravitation,
on peut développer le potentiel 𝒱 de la force gravitationnelle (ou énergie potentielle) autour
d’une position d’équilibre stable q̃. La position d’équilibre doit être stable car sinon le
système n’oscille pas. D’après le § 1.10.1 page 25 cela implique 𝒱″(q̃) > 0 :

𝒱(q) = 𝒱(q̃) + 𝒱′(q̃) + 1
2
𝒱″(q̃)(𝑞 − q̃)2 +…

Comme l’on utilise toujours qu’une différence de potentiel, celui-ci n’est défini qu’à une
constante près et l’on peut supprimer𝒱(q̃). De plus, l’équilibre est réalisé dans un minimum
de potentiel, et 𝒱′(q̃) = 0. En posant 𝑘

def
= 𝒱″(q̃), nous avons :

𝒱(q) = 1
2
𝑘(q − q̃)2 +…
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On effectue le changement de variable 𝑞 = q − q̃. Les oscillations étant petites, 𝑞 est petit,
et nous pouvons négliger les termes d’ordre supérieur à 2 :

𝒱(𝑞) = 1
2
𝑘𝑞2

On suppose le système holonome scléronome et d’après le § 4.4 page 134 puisque le
potentiel ne dépend pas des vitesses généralisées le hamiltonien se confond avec l’énergie
mécanique :

ℋ(𝑝, 𝑞) = ℰ
= 𝒯 + 𝒱

=
𝑝2

2𝑚 +
𝑘𝑞2

2

Il ne dépend pas explicitement du temps, donc d’après (4.8) page 133 il se conserve.
L’énergie mécanique se conserve car toutes les forces dérivent d’un potentiel. En posant
𝑘
def
= 𝑚𝜔2 avec 𝜔 une vitesse angulaire en rad/s, nous avons :

ℋ(𝑝, 𝑞) =
𝑝2

2𝑚 + 𝑚𝜔2
2 𝑞2

= 1
2𝑚 (𝑝2 +𝑚2𝜔2𝑞2) (6.7)

Le hamiltonien est une somme de deux carrés. Nous cherchons une transformation des
coordonnées (𝑞, 𝑝) telle que l’une des nouvelles coordonnées soit cyclique, donc de la
forme

{
𝑝 = 𝑓(𝑃) cos𝑄

𝑞 =
𝑓(𝑃)
𝑚𝜔 sin𝑄

car alors le nouvel hamiltonien a pour expression

H(𝑃,𝑄) = 1
2𝑚 [𝑓2 (𝑃) cos2𝑄 + 𝑓2 (𝑃) sin2𝑄]

=
𝑓2 (𝑃)
2𝑚

où 𝑄 est cyclique. La fonction génératrice ne contenant pas explicitement le temps :

H = ℋ

Pour que les nouvelles variables 𝑄 et 𝑃 soient des variables conjuguées, autrement dit pour
que la transformation soit canonique, le crochet de Poisson doit être égale à l’unité :

[𝑞, 𝑝]𝑄,𝑃 =
𝜕𝑞
𝜕𝑄

𝜕𝑝
𝜕𝑃 −

𝜕𝑞
𝜕𝑃

𝜕𝑝
𝜕𝑄

=
𝑓(𝑃)
𝑚𝜔 cos𝑄 ⋅

𝜕𝑓(𝑃)
𝜕𝑃 cos𝑄 + 1

𝑚𝜔
𝜕𝑓(𝑃)
𝜕𝑃 sin𝑄 ⋅ 𝑓(𝑃) sin𝑄

=
𝑓(𝑃)
𝑚𝜔

𝜕𝑓(𝑃)
𝜕𝑃

184 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 6 : Les crochets de Poisson

Soit,

𝑓(𝑃)
𝑚𝜔

𝜕𝑓(𝑃)
𝜕𝑃 = 1

𝑓(𝑃)
𝜕𝑓(𝑃)
𝜕𝑃 = 𝑚𝜔

𝑓(𝑃) = √2𝑚𝜔𝑃

La transformation canonique s’écrit donc

⎧
⎨
⎩

𝑝 = √2𝑚𝜔𝑃 cos𝑄

𝑞 = √
2𝑃
𝑚𝜔 sin𝑄

(6.8)

et le nouvel hamiltonien :
H = 2𝑚𝜔𝑃

2𝑚 = 𝜔𝑃

Nous obtenons les équations de Hamilton pour les nouvelles variables :

⎧

⎨
⎩

̇𝑃 = −𝜕H𝜕𝑄

𝑄̇ = 𝜕H
𝜕𝑃

⇒ {
̇𝑃 = 0

𝑄̇ = 𝜔
⇒ {

𝑃 = 𝛼
𝑄 = 𝜔𝑡 + 𝛽

(6.9)

Remarque 6.7.1
𝑃 = H/𝜔 est homogène à une action (en J s), et 𝑄 = 𝜔𝑡+𝛽 est homogène à un angle (en rad, c.-à-d. en m/m). Les variables
action et angle sont donc conjuguées.

En utilisant
ℋ = ℰ = H = 𝜔𝑃 = 𝜔𝛼 (6.10)

la solution en termes des anciennes coordonnées s’écrit donc :

⎧
⎨
⎩

𝑝(𝑡) = √2𝑚𝜔𝛼 cos(𝜔𝑡 + 𝛽)

𝑞(𝑡) = √
2𝛼
𝑚𝜔 sin(𝜔𝑡 + 𝛽)

⇒
⎧
⎨
⎩

𝑝(𝑡) = √2𝑚ℰ cos(𝜔𝑡 + 𝛽)

𝑞(𝑡) = 1
𝜔√

2ℰ
𝑚 sin(𝜔𝑡 + 𝛽)

(6.11)

La solution 𝑞(𝑡) étant sinusoïdale, l’oscillateur est appelé oscillateur harmonique.
Comparons les solutions données en termes d’anciennes et de nouvelles variables. Pour
les anciennes variables (𝑝, 𝑞), les équations paramétriques (6.11) donnent les courbes
suivantes (fig. 6.1) :
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𝑝

𝑡

𝜋
𝜔
+

2𝜋
𝜔

+

√2𝑚ℰ +

−√2𝑚ℰ +
0
+

𝑞

𝑡

𝜋
𝜔
+

2𝜋
𝜔

+

1
𝜔√

2ℰ
𝑚

+

− 1
𝜔√

2ℰ
𝑚

+

0
+

Fig. 6.1 – Oscillateur harmonique, 𝑝 = 𝑝(𝑡) et 𝑞 = 𝑞(𝑡), avec 𝛽 ≠ 0

Cherchons l’équation en coordonnées rectangulaires dans l’espace des phases. En prenant
le carré des équations paramétriques (6.11) :

⎧

⎨
⎩

𝑝2

2𝑚ℰ = cos2(𝜔𝑡 + 𝛽)

𝑚𝜔2𝑞2

2ℰ = sin2(𝜔𝑡 + 𝛽)
⇒

𝑝2

2𝑚ℰ +
𝑞2

2ℰ/ (𝑚𝜔2)
= 1

qui est l’équation d’une ellipse de demi-axes √2𝑚ℰ et 1
𝜔√

2ℰ
𝑚

(fig. 6.2) :

𝑝

𝑞

√2𝑚ℰ
+

1
𝜔√

2ℰ
𝑚

+

0

Fig. 6.2 – Oscillateur harmonique, 𝑝 = 𝑝 (𝑞)

Pour les nouvelles variables (𝑄, 𝑃), les équations paramétriques (6.9) page précédente
donnent les courbes suivantes (fig. 6.3) :

186 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 6 : Les crochets de Poisson

𝑃

𝑡

ℰ
𝜔
+

0

𝑄

𝑡
𝜋−𝛽
𝜔

+
0

𝛽 +

𝜋+

Fig. 6.3 – Oscillateur harmonique, 𝑃 = 𝑃(𝑡) et 𝑄 = 𝑄(𝑡)

Dans l’espace des phases nous avons alors (fig. 6.4) :

𝛽
+

𝑃

𝑄

ℰ
𝜔
+

0

Fig. 6.4 – Oscillateur harmonique, 𝑃 = 𝑃(𝑄)
()

Déterminons les constantes 𝛼 et 𝛽 en fonction des conditions initiales 𝑞0 = 𝑞(𝑡 = 0) et
𝑝0 = 𝑝(𝑡 = 0) :

⎧
⎨
⎩

𝑝0 = √2𝑚𝜔𝛼 cos(𝛽)

𝑞0 =√
2𝛼
𝑚𝜔 sin(𝛽)

Avec (6.10) page 185 et (6.7) page 184 à 𝑡 = 0 :

𝛼 = 𝐻/𝜔

= 1
2𝑚𝜔 (𝑝20 +𝑚2𝜔2𝑞20)

Pour 𝛽 :

𝑞0
𝑝0

= 1
𝑚𝜔 tan(𝛽)

𝛽 = arctan (𝑚𝜔
𝑞0
𝑝0
)
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En remplaçant 𝛼 et 𝛽 par leurs expressions dans (6.11) page 185 :

⎧⎪
⎨⎪
⎩

𝑝(𝑡) = √𝑝20 +𝑚2𝜔2𝑞20 cos [𝜔𝑡 + arctan (𝑚𝜔
𝑞0
𝑝0
)]

𝑞(𝑡) = 1
𝑚𝜔√𝑝20 +𝑚2𝜔2𝑞20 sin [𝜔𝑡 + arctan (𝑚𝜔

𝑞0
𝑝0
)]

Cherchons l’expression de la fonction génératrice 𝐹1(𝑞, 𝑄) de l’oscillateur harmonique.

⎧⎪
⎨⎪
⎩

𝜕𝐹1
𝜕𝑞 = 𝑝(𝑞, 𝑄)

𝜕𝐹1
𝜕𝑄 = −𝑃(𝑞, 𝑄)

(6.12)

En injectant (6.10) page 185 dans la solution (6.11) page 185, exprimons 𝑝 et 𝑃 en fonction
de 𝑞 et 𝑄 :

⎧
⎨
⎩

𝑝 = √2𝑚𝜔𝑃 cos𝑄

𝑞 = √
2𝑃
𝑚𝜔 sin𝑄

⇒ {
𝑝 = √2𝑚𝜔𝑃 cos𝑄
𝑚𝜔𝑞2 = 2𝑃 sin2𝑄

⇒

⎧
⎪

⎨
⎪
⎩

𝑝 =
√

2𝑚𝜔𝑚𝜔𝑞2

2 sin2𝑄
cos𝑄

𝑃 =
𝑚𝜔𝑞2

2 sin2𝑄

⇒ {
𝑝 = 𝑚𝜔𝑞 cot𝑄

𝑃 =
𝑚𝜔𝑞2

2 sin2𝑄
⇒

⎧⎪
⎨⎪
⎩

𝜕𝐹1
𝜕𝑞 = 𝑚𝜔𝑞 cot𝑄

𝜕𝐹1
𝜕𝑄 = −

𝑚𝜔𝑞2

2 sin2𝑄

⇒ {
𝐹1(𝑞, 𝑄) =

1
2
𝑚𝜔𝑞2 cot𝑄 + ℎ (𝑄)

𝐹1(𝑞, 𝑄) =
1
2
𝑚𝜔𝑞2 cot𝑄 + 𝑔 (𝑞)

La fonction génératrice est donc :

𝐹1(𝑞, 𝑄) =
1
2
𝑚𝜔𝑞2 cot𝑄

La théorie de Hamilton-Jacobi que nous allons voir dans le prochain chapitre permet de
trouver la fonction génératrice qui rend toutes les nouvelles variables 𝑄 cycliques.
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7.1 Équation de Hamilton-Jacobi

Nous cherchons la fonction génératrice 𝐹𝑖 de la transformation canonique qui rend toutes les
nouvelles variables 𝑄 cycliques. Supposons qu’elles soient effectivement toutes cycliques et
donc n’apparaissent pas dans le nouvel hamiltonien H. Les équations de Hamilton transformées
s’écrivent :

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑃𝑗 = −
𝜕H(𝑃𝑖, 𝑡)
𝜕𝑄𝑗

𝑄̇𝑗 =
𝜕H(𝑃𝑖, 𝑡)
𝜕𝑃𝑗

⇒ {
̇𝑃𝑗 = 0

𝑄̇𝑗 =
𝜕H(𝑃𝑖, 𝑡)
𝜕𝑃𝑗

⇒
⎧

⎨
⎩

𝑃𝑗 = 𝑐 𝑠𝑡𝑒

𝑄̇𝑗 =
𝜕H(𝑃𝑖, 𝑡)
𝜕𝑃𝑗

|
|
|
𝑃𝑗=𝑐 𝑠𝑡𝑒

Soient 𝛼𝑗 = 𝑃𝑗(𝑡 = 0), 𝑤𝑗 = 𝑄̇𝑗(𝑡 = 0) et 𝛽𝑗 = 𝑄𝑗(𝑡 = 0) des constantes :

∀𝑗 = 1,… , 𝑛 {
𝑃𝑗 = 𝑃𝑗(𝑡 = 0)
𝑄̇𝑗 = 𝑐 𝑠𝑡𝑒

⇒ {
𝑃𝑗 = 𝛼𝑗
𝑄𝑗 = 𝑤𝑗𝑡 + 𝛽𝑗

Les coordonnées étant cycliques et les impulsions constantes, le nouvel hamiltonien s’écrit :

H = H(𝛼1,… , 𝛼𝑛, 𝑡)

Tous les hamiltoniens transformés s’écrivant sous la forme ci-dessus sont solutions de notre
problème initial. Nous pouvons alors imposer la condition supplémentaire que le hamiltonien
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transformé se conserve, 𝜕𝑡𝐻 = 0. Il ne dépend donc pas explicitement du temps et devient une
constante :

H = 𝑐 𝑠𝑡𝑒

Tous les hamiltoniens transformés constants sont solutions, nous choisissons un hamiltonien
transformé nul. Avec H = 0 les équations de Hamilton transformées deviennent

∀𝑗 = 1,… , 𝑛 {
̇𝑃𝑗 = 0

𝑄̇𝑗 = 0
⇒ {

𝑃𝑗 = 𝛼𝑗
𝑄𝑗 = 𝛽𝑗

(7.1)

où les constantes 𝛼𝑗 et 𝛽𝑗 sont les conditions initiales des 𝑃𝑗 et des 𝑄𝑗.

7.1.1 Fonction F1

Nous avons le choix parmi quatres fonctions génératrices. Commençons par 𝐹1(𝑞, 𝑄, 𝑡) et repre-
nons (5.4) page 148 en injectant H = 0, 𝑃𝑗 = 𝛼𝑗, 𝑄𝑗 = 𝛽𝑗 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑞𝑗

= 𝑝𝑗

𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑄𝑗

= −𝑃𝑗

𝜕𝐹1(𝑞, 𝑄, 𝑡)
𝜕𝑡 = H −ℋ(𝑞, 𝑝, 𝑡)

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹1(𝑞, 𝛽, 𝑡)
𝜕𝑞𝑗

= 𝑝𝑗

𝜕𝐹1(𝑞, 𝛽, 𝑡)
𝜕𝛽𝑗

= −𝛼𝑗

𝜕𝐹1(𝑞, 𝛽, 𝑡)
𝜕𝑡 +ℋ(𝑞,

𝜕𝐹1
𝜕𝑞 , 𝑡) = 0

où l’on a reporté la première relation dans la troisième. Dans l’ex. 5.2.1 page 149, nous avons
noté qu’étant donnée une transformation des coordonnées, l’intégration des 2𝑛 + 1 équations aux
dérivées partielles ci-dessus donne la fonction génératrice.

7.1.2 Fonction F2

Faisons à présent le choix historique de Jacobi et cherchons une fonction génératrice de type 2,
notée 𝒮(𝑞, 𝑃, 𝑡) et appelée action. On l’appelle aussi action de Hamilton pour la distinguer de
l’action de Maupertuis (cf. § 8.5.2 page 234), et fonction principale de Hamilton pour insister sur
le fait qu’il s’agit d’une fonction. Comme précédemment, reprenons (5.7) page 152,

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝒮(𝑞, 𝑃, 𝑡)
𝜕𝑞𝑗

= 𝑝𝑗

𝜕𝒮(𝑞, 𝑃, 𝑡)
𝜕𝑃𝑗

= 𝑄𝑗

𝜕𝒮(𝑞, 𝑃, 𝑡)
𝜕𝑡 = H −ℋ(𝑞, 𝑝, 𝑡) (7.2a)

et injectons les équations (7.1) de la dynamique de Hamilton H = 0, 𝑃𝑗 = 𝛼𝑗, 𝑄𝑗 = 𝛽𝑗 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝑞𝑗

= 𝑝𝑗

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝛼𝑗

= 𝛽𝑗

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝑡 +ℋ(𝑞,

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝑞𝑗

, 𝑡) = 0

(7.3a)

(7.3b)

(7.3c)
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Remarque 7.1.1
𝜕𝒮(𝑞,𝛼, 𝑡)

𝜕𝛼𝑗
est un abus de notation pour

𝜕𝒮(𝑞, 𝑃, 𝑡)
𝜕𝑃𝑗

|||𝑃𝑗=𝛼𝑗
.

(7.3a) permet de changer de variable dans (7.3c). Celle-ci est une équation différentielle aux
dérivées partielles du 1er ordre en 𝑞 et du 1er ordre en 𝑡, appelée équation de Hamilton-Jacobi
en représentation 𝑞, qu’il faut intégrer pour trouver l’action de Hamilton 𝒮(𝑞, 𝛼, 𝑡) que nous
cherchons. Nous pourrons l’intégrer car ℋ est connu. Elle est à 𝑛 + 1 variables (𝑞, 𝑡), et est
non linéaire car ℋ est une fonction quadratique des 𝑝, donc des 𝜕𝒮/𝜕𝑞. Lorsque 𝒮(𝑞, 𝛼, 𝑡) est
déterminée, (7.3b) donnent les équations du mouvement 𝑞𝑗(𝑡).

𝒮(𝑞, 𝛼, 𝑡) sera de fait la fonction génératrice de la transformation des coordonnées telle que toutes
les nouvelles coordonnées 𝑄 soient cycliques.

L’intégration complète de l’équation de Hamilton-Jacobi fait apparaitre une constante d’intégra-
tion pour chaque variable 𝑞 et pour le temps, soit 𝑛 + 1 constantes d’intégration arbitraires 𝛾, si
bien que la solution de l’équation différentielle est de la forme :

𝒮 = 𝒮(𝑞, 𝛾1,… , 𝛾𝑛+1, 𝑡)

𝒮 n’apparait pas dans l’équation de Hamilton-Jacobi, seules ses dérivées partielles sont présentes.
Par conséquent, si 𝒮 est solution alors 𝒮 + 𝑐 𝑠𝑡𝑒 est aussi solution, et donc l’une des constantes est
purement additive :

𝒮 = 𝒮(𝑞, 𝛾1,… , 𝛾𝑛, 𝑡) + 𝛾𝑛+1
Mais une constante additive n’a pas d’importance pour une fonction génératrice puisque seules
ses dérivées partielles sont utilisées dans les transformations canoniques (5.7 page 152). Par
conséquent :

𝒮 = 𝒮(𝑞, 𝛾1,… , 𝛾𝑛, 𝑡)

Les 𝑃𝑗 = 𝛼𝑗 et les 𝛾𝑗 étant des constantes non encore fixées, nous pouvons poser 𝛾𝑗 = 𝛼𝑗, et l’on
retrouve :

𝒮 = 𝒮(𝑞, 𝛼1,… , 𝛼𝑛, 𝑡) = 𝒮(𝑞, 𝛼, 𝑡) (7.4)

7.1.3 Fonction F3

Faisons le choix d’une fonction génératrice de type 3. Injectons H = 0, 𝑃𝑗 = 𝛼𝑗, 𝑄𝑗 = 𝛽𝑗 dans
(5.11) page 160 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝑝𝑗

= −𝑞𝑗

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝛽𝑗

= −𝛼𝑗

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝑡 +ℋ(−

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝑝 , 𝑝, 𝑡) = 0

(7.5a)

(7.5b)

(7.5c)

(7.5c) est une équation différentielle aux dérivées partielles du 1er ordre en 𝑝 et du 1er ordre en 𝑡,
appelée équation de Hamilton-Jacobi en représentation 𝑝. Elle est à 𝑛 + 1 variables (𝑝𝑗, 𝑡), et
son degré dépend du degré de ℋ en fonction de 𝑞.
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7.1.4 Fonction F4

En injectant H = 0, 𝑃𝑗 = 𝛼𝑗, 𝑄𝑗 = 𝛽𝑗 dans une fonction de type 4 nous obtenons un système
d’équations similaire au système d’équations d’une fonction de type 3 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹4(𝑝, 𝛼, 𝑡)
𝜕𝑝𝑗

= −𝑞𝑗

𝜕𝐹4(𝑝, 𝛼, 𝑡)
𝜕𝛼𝑗

= 𝛽𝑗

𝜕𝐹4(𝑝, 𝛼, 𝑡)
𝜕𝑡 +ℋ(−

𝜕𝐹4
𝜕𝑝 , 𝑝, 𝑡) = 0

7.2 Séparation des variables

7.2.1 Équation de Hamilton-Jacobi en représentation 𝑞 indépendante du temps

Dans le cas oùℋ ne dépend pas explicitement du temps, c.-à-d. lorsque la somme des énergies po-
tentielles ne dépend pas explicitement du temps, l’équation de Hamilton-Jacobi en représentation
𝑞 (7.3c) page 190 devient

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝑡 = −ℋ(𝑞, 𝜕𝒮𝜕𝑞 (𝑞, 𝛼))

𝒮(𝑞, 𝛼, 𝑡) = −ℋ(𝑞, 𝜕𝒮𝜕𝑞 (𝑞, 𝛼)) 𝑡 + 𝒮0(𝑞, 𝛼)

Cette relation n’est pas cohérente : 𝒮 fonction de (𝑞, 𝛼, 𝑡) dans le membre de gauche, et 𝜕𝒮/𝜕𝑞
fonction de (𝑞, 𝛼) dans le membre de droite. Remplaçons 𝒮 par 𝒮0 dans le hamiltonien puisque
par hypothèse il ne dépend pas explicitement du temps :

𝒮(𝑞, 𝛼, 𝑡) = −ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) 𝑡 + 𝒮0(𝑞, 𝛼)

𝒮0(𝑞, 𝛼) est appelée fonction caractéristique de Hamilton ou action réduite. (4.8) page 133 indique
qu’un hamiltonien ne dépendant pas explicitement du temps se conserve, et donc n’est fonction
que des constantes d’intégration :

𝒮(𝑞, 𝛼, 𝑡) = −ℋ(𝛼)𝑡 + 𝒮0(𝑞, 𝛼) (7.6)

Dans l’action de Hamilton 𝒮(𝑞, 𝛼, 𝑡), la variable temporelle est maintenant séparée des variables
𝑞. Au lieu de garder ℋ comme fonction des 𝑛 constantes 𝛼𝑗, il est parfois plus intéressant de
poser simplement ℋ = 𝛼1.
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D’après le § 4.4 page 134, lorsque le système est holonome scléronome et lorsque le potentiel
de force 𝒱(𝑞) (la somme des énergies potentielles) ne dépend pas explicitement des vitesses
généralisées, le hamiltonien se confond avec l’énergie mécanique et la solution de l’équation de
Hamilton-Jacobi en représentation 𝑞 est de la forme

𝒮(𝑞, 𝛼, 𝑡) = −ℰ(𝛼)𝑡 + 𝒮0(𝑞, 𝛼) (7.7)

dans laquelle ℋ(𝛼) = ℰ(𝛼). D’après le § 4.4 page 134, l’énergie mécanique étant constante, le
système est conservatif. Nous avons déterminé la fonction génératrice de type 2 qui donnera le
changement de coordonnées

∀𝑗 = 1,… , 𝑛 {
𝑃𝑗 = 𝛼𝑗
𝑄𝑗 = 𝛽𝑗

avec un nouvel hamiltonien nul :
H = 0

En remplaçant l’expression de 𝒮(𝑞, 𝛼, 𝑡) dans les transformations canoniques (7.3) page 190, et
avec 𝜕𝒮/𝜕𝑞𝑗 = 𝜕𝒮0/𝜕𝑞𝑗 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝒮0(𝑞, 𝛼)
𝜕𝑞𝑗

= 𝑝𝑗

− 𝜕ℰ(𝛼)
𝜕𝛼𝑗

𝑡 +
𝜕𝒮0(𝑞, 𝛼)

𝜕𝛼𝑗
= 𝛽𝑗

− ℰ +ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) = 0

Remarque 7.2.1
Dans le hamiltonien, le potentiel ne dépendant par hypothèse que des 𝑞, seule l’énergie cinétique dépend des 𝜕𝒮0/𝜕𝑞.

Nous voyons que nous pouvons utiliser 𝒮0 à la place de 𝒮 comme fonction génératrice de la
transformation en écrivant :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝒮0(𝑞, 𝛼)
𝜕𝑞𝑗

= 𝑝𝑗

𝜕𝒮0(𝑞, 𝛼)
𝜕𝛼𝑗

= 𝛽𝑗 +
𝜕ℰ(𝛼)
𝜕𝛼𝑗

𝑡

− ℰ +ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) = 0

(7.9a)

(7.9b)

(7.9c)

(7.9c) est l’équation de Hamilton-Jacobi en représentation 𝑞 indépendante du temps. La fonction
𝒮0 génère la transformation qui passe des coordonnées (𝑞, 𝑝) aux coordonnées (𝑄𝑗, 𝑃𝑗), telles que
((5.7) page 152) :

∀𝑗 = 1,… , 𝑛 {
𝑃𝑗 = 𝛼𝑗

𝑄𝑗 = 𝛽𝑗 +
𝜕ℰ(𝛼)
𝜕𝛼𝑗

𝑡

Pour trouver le nouvel hamiltonien H′ associé à la fonction génératrice 𝒮0, reprenons la relation
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générale (7.2a) page 190 :

H =
𝜕𝒮(𝑞, 𝑃, 𝑡)

𝜕𝑡 +ℋ(𝑞, 𝑝, 𝑡)

= 𝜕
𝜕𝑡 [−ℰ(𝛼)𝑡 + 𝒮0(𝑞, 𝛼)] +ℋ(𝑞, 𝑝, 𝑡)

= −ℰ(𝛼) +
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑡 +ℋ(𝑞, 𝑝, 𝑡)

= 0

Donc
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑡 +ℋ(𝑞, 𝑝, 𝑡) = ℰ(𝛼)

Or, la relation générale (7.2a) page 190 appliquée à H′ avec 𝒮0(𝑞, 𝛼) pour fonction génératrice
donne :

H′ =
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑡 +ℋ(𝑞, 𝑝, 𝑡)

= ℰ(𝛼)

Le nouvel hamiltonien n’est pas fonction des 𝑄, les nouvelles coordonnées sont toutes cycliques.

Exemple 7.2.1 : Masse glissant sans frottements sur un plan incliné
Une masse glisse sans frottements sur un plan incliné. Quelle est l’équation de son mouve-
ment?
Pour appliquer la méthode de résolution de Hamilton-Jacobi en représentation 𝑞 ou 𝑝, il
faut l’expression du hamiltonien. À partir de sa définition, d’après l’ex. 4.2.2 page 131 :

ℋ(𝑞, 𝑝) =
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)

Nous pouvons obtenir le hamiltonien d’une autre façon. D’après (4.8) page 133, il ne dépend
pas explicitement du temps donc il se conserve. La liaison étant holonome scléronome et
le potentiel ne dépendant pas des vitesses généralisées, l’énergie mécanique se confond
avec le hamiltonien :

ℋ(𝑞, 𝑝) = ℰ
= 𝒯 + 𝒱

=
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)

Dans cette relation, remplaçons l’impulsion généralisée grâce à (7.9a) page précédente :

ℋ(𝑞,
𝜕𝒮0
𝜕𝑞 ) =

1
2𝑚 (

𝜕𝒮0
𝜕𝑞 )

2
−𝑚𝑔𝑞 sin(𝛼)

L’équation de Hamilton-Jacobi en représentation 𝑞 indépendante du temps (7.9c) page 193
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donne :

−ℰ+ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) = 0

−ℰ+ 1
2𝑚 (

𝜕𝒮0
𝜕𝑞 )

2
−𝑚𝑔𝑞 sin(𝛼) = 0

𝜕𝒮0
𝜕𝑞 = ±√2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼)

𝒮0(𝑞, ℰ) = ±
ˆ
√2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼) d𝑞 + 𝑐

= ± 1
3𝑚2𝑔 sin(𝛼) (

2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼))3/2 + 𝑐

Nous pouvons oublier la constante d’intégration car seules les dérivées de la fonction
principale de Hamilton interviennent dans la résolution du problème. (7.9b) page 193
donne l’équation du mouvement 𝑡(𝑞) :

𝛽 = −𝑡 +
𝜕𝒮0
𝜕ℰ

= −𝑡 ± 1
𝑚𝑔 sin(𝛼) √2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼)

= −𝑡 ± 1
𝑔 sin(𝛼) √

2ℰ
𝑚 + 2𝑔𝑞 sin(𝛼) (7.10)

Remarque 7.2.2
Pour trouver (7.10) on peut aussi garder 𝒮 sous forme d’intégrale et dériver sous l’intégrale :

𝛽 = −𝑡 ±
ˆ

𝜕
𝜕ℰ√2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼)d𝑞

= −𝑡 ± 𝑚
ˆ d𝑞

√2𝑚ℰ + 2𝑚2𝑔𝑞 sin(𝛼)

= −𝑡 ±√
𝑚
2ℰ

ˆ d𝑞

√1 + 𝑚𝑔 sin(𝛼)
ℰ

𝑞

Effectuons le changement de variable suivant :

𝑞′ = 𝑚𝑔 sin(𝛼)
ℰ 𝑞 ⇒ 𝑞 = ℰ

𝑚𝑔 sin(𝛼)
𝑞′ ⇒ d𝑞 = ℰ

𝑚𝑔 sin(𝛼)
d𝑞′

qui donne,

𝛽 = −𝑡 ±√
𝑚
2ℰ

ℰ
𝑚𝑔 sin(𝛼)

ˆ d𝑞′

√1 + 𝑞′

= −𝑡 ± 2
𝑔 sin(𝛼)√

ℰ
2𝑚√1+ 𝑞′

= −𝑡 ± 1
𝑔 sin(𝛼)√

2ℰ
𝑚√1+ 𝑚𝑔 sin(𝛼)

ℰ 𝑞

= −𝑡 ± 1
𝑔 sin(𝛼)√

2ℰ
𝑚 + 2𝑔𝑞 sin(𝛼)

et l’on retrouve bien le résultat (7.10).
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En isolant la coordonnée généralisée 𝑞 on trouve l’équation du mouvement 𝑞(𝑡) :

𝑞 = 1
2𝑔 sin(𝛼) {[

±(𝑡 + 𝛽)𝑔 sin(𝛼)]2 − 2ℰ
𝑚 }

= 1
2
𝑔(𝑡 + 𝛽)2 sin(𝛼) − ℰ

𝑚𝑔 sin(𝛼)

= 1
2
𝑔𝑡2 sin(𝛼) + 𝑔𝛽𝑡 sin(𝛼) + 1

2
𝑔𝛽2 sin(𝛼) − ℰ

𝑚𝑔 sin(𝛼)

Exprimons les constantes ℰ et 𝛽 en fonction des conditions initiales 𝑞0 et ̇𝑞0. La constante
𝛽 a même valeur à un instant 𝑡 quelconque et à l’instant initial 𝑡 = 0 :

𝛽 = ± 1
𝑔 sin(𝛼)√

2ℰ
𝑚 + 2𝑔𝑞0 sin(𝛼)

L’énergie est constante, sa valeur est celle de l’instant initial :

ℰ =
𝑝20
2𝑚 −𝑚𝑔𝑞0 sin(𝛼)

Avec (4.4) page 131 :
̇𝑞20 =

2ℰ
𝑚 + 2𝑔𝑞0 sin(𝛼)

Si bien que

𝑞 = 1
2
𝑔𝑡2 sin(𝛼) ±√

2ℰ
𝑚 + 2𝑔𝑞0 sin(𝛼) 𝑡 + 1

2𝑔 sin(𝛼) (
2ℰ
𝑚 + 2𝑔𝑞0 sin(𝛼)) − ℰ

𝑚𝑔 sin(𝛼)

= 1
2
𝑔𝑡2 sin(𝛼) ± ̇𝑞0

𝑚 𝑡 + 𝑞0

Nous gardons le signe positif car si 𝑔 et 𝑞0 sont nuls alors 𝑞 croit avec le temps lorsque ̇𝑞0
est positif :

𝑞 = 1
2
𝑔𝑡2 sin(𝛼) + ̇𝑞0

𝑚 𝑡 + 𝑞0

Exemple 7.2.2 : Oscillateur harmonique simple à une dimension
D’après l’ex. 6.7.3 page 183, le hamiltonien est constant et se confond avec l’énergie
mécanique :

ℋ(𝑞, 𝑝) = ℰ =
𝑝2

2𝑚 + 𝑘
2 𝑞

2 (7.11)

Remplaçons l’impulsion généralisée grâce à (7.9a) page 193 :

ℋ(𝑞,
𝜕𝒮0
𝜕𝑞 ) =

1
2𝑚 (

𝜕𝒮0
𝜕𝑞 )

2
+ 𝑘
2 𝑞

2

L’équation de Hamilton-Jacobi en représentation 𝑞 indépendante du temps (7.9c) page 193
donne :

−ℰ + 1
2𝑚 (

𝜕𝒮0
𝜕𝑞 )

2
+ 𝑘
2 𝑞

2 = 0
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𝜕𝒮0
𝜕𝑞 = ±√2𝑚ℰ −𝑚𝑘𝑞2

𝒮0(𝑞, ℰ) = ±√2ℰ𝑚
ˆ
√1−

𝑘𝑞2
2ℰ d𝑞 (7.12)

où la constante est choisie nulle. Effectuons le changement de variable suivant :

𝑞′ = 𝑞√
𝑘
2ℰ ⇒ 𝑞′2 =

𝑘𝑞2

2ℰ et 𝑞 = 𝑞′√
2ℰ
𝑘 ⇒ d𝑞 = √

2ℰ
𝑘 d𝑞′

qui donne,

𝒮0(𝑞, ℰ, 𝑡) = ±√2ℰ𝑚√
2ℰ
𝑘

ˆ
√1 − 𝑞′2 d𝑞′

= ±2ℰ√
𝑚
𝑘 (𝑞′√1 − 𝑞′2 + arcsin 𝑞′)

𝒮0(𝑞, ℰ, 𝑡) = ±2ℰ√
𝑚
𝑘 [𝑞√

𝑘
2ℰ√1 −

𝑘𝑞2
2ℰ + arcsin (𝑞√

𝑘
2ℰ)]

= ±𝑞√2𝑚ℰ −𝑚𝑘𝑞2 ± 2ℰ√
𝑚
𝑘 arcsin (𝑞√

𝑘
2ℰ)

(7.9b) page 193 donne l’équation du mouvement 𝑡(𝑞) :

𝛽 = −𝑡 +
𝜕𝒮0
𝜕ℰ

= −𝑡 ±
𝑞𝑚

√2𝑚ℰ −𝑚𝑘𝑞2
± 2√

𝑚
𝑘 arcsin (𝑞√

𝑘
2ℰ) ∓ 2ℰ√

𝑚
𝑘 ×

𝑞√𝑘/2
ℰ√4ℰ − 2𝑞2𝑘

= −𝑡 ±√
𝑚
𝑘 arcsin (𝑞√

𝑘
2ℰ)

Remarque 7.2.3
On peut aussi garder 𝒮 sous forme d’intégrale et dériver sous l’intégrale :

𝛽 = −𝑡 + 𝜕
𝜕ℰ (±

ˆ
√2𝑚ℰ −𝑚𝑘𝑞2 d𝑞) (7.13)

= −𝑡 ±
ˆ 𝑚d𝑞

√2𝑚ℰ −𝑚𝑘𝑞2

= −𝑡 ±√
𝑚
2ℰ

ˆ d𝑞

√1 − 𝑘
2ℰ

𝑞2

Effectuons le même changement de variable que précédemment, nous avons

𝛽 = −𝑡 ±√
𝑚
2ℰ√

2ℰ
𝑘

ˆ d𝑞′

√1 − 𝑞′2

= −𝑡 ±√
𝑚
𝑘 arcsin𝑞′

= −𝑡 ±√
𝑚
𝑘 arcsin (𝑞√

𝑘
2ℰ)

et l’on retrouve le résultat.
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En isolant la coordonnée généralisée 𝑞, nous trouvons l’équation du mouvement 𝑞(𝑡) :

arcsin (𝑞√
𝑘
2ℰ) = ±√

𝑘
𝑚 (𝑡 + 𝛽)

𝑞 = ±√
2ℰ
𝑘 sin [√

𝑘
𝑚 (𝑡 + 𝛽)]

En posant,

{ 𝜔 = √𝑘/𝑚
𝜑0 = 𝜔𝛽 (7.14)

nous avons :

𝑞 = ± 1𝜔√
2ℰ
𝑚 sin(𝜔𝑡 + 𝜑0) (7.15)

𝑝 =
𝜕𝒮0
𝜕𝑞

= ±√2𝑚ℰ −𝑚𝑘𝑞2

= ±
√√

√
2𝑚ℰ − 2𝑚ℰ sin2 [√

𝑘
𝑚
(𝑡 + 𝛽)]

= ±√2𝑚ℰ cos(𝜔𝑡 + 𝜑0) (7.16)

Déterminons les constantes ℰ et 𝜑0 en fonction des conditions initiales 𝑞0 et 𝑝0 :

⎧
⎨
⎩

𝑞0 = ± 1𝜔√
2ℰ
𝑚 sin(𝜑0)

𝑝0 = ±√2𝑚ℰ cos(𝜑0)
⇒ {

𝑞20 =
2ℰ
𝑚𝜔2 sin2 𝜑0

𝑝20 = 2𝑚ℰ cos2 𝜑0

2𝑚ℰ (cos2 𝜑0 + sin2 𝜑0) = 𝑝20 +𝑚2𝜔2𝑞20

ℰ =
𝑝20
2𝑚 + 𝑘

2 𝑞
2
0

Nous retrouvons (7.11) page 196. Pour 𝜑0 nous avons,

𝑞0
𝑝0

= 1
𝑚𝜔 tan𝜑0

𝜑0 = arctan (𝑚𝜔𝑞0/𝑝0)

et à partir de (7.14) nous avons l’expression de la constante 𝛽 :

𝛽 = 𝜑0/𝜔
= arctan (𝑚𝜔𝑞0/𝑝0) /𝜔
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7.2.2 Équation de Hamilton-Jacobi en représentation 𝑝 indépendante du temps

Dans le cas où ℋ ne dépend pas explicitement du temps, l’équation de Hamilton-Jacobi en
représentation 𝑝 (7.5c) page 191 devient :

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝑡 = −ℋ(−

𝜕𝐹3
𝜕𝑝 (𝑝, 𝛽) , 𝑝)

𝐹3(𝑝, 𝛽, 𝑡) = −ℋ(−
𝜕𝐹3
𝜕𝑝 (𝑝, 𝛽) , 𝑝) 𝑡 + 𝐹30(𝑝, 𝛽)

Remplaçons 𝐹3 par 𝐹30 dans le hamiltonien puisque par hypothèse il ne dépend pas explicitement
du temps :

𝐹3(𝑝, 𝛽, 𝑡) = −ℋ(−
𝜕𝐹30(𝑝, 𝛽)

𝜕𝑝 , 𝑝) 𝑡 + 𝐹30(𝑝, 𝛽)

(4.8) page 133 indique qu’un hamiltonien ne dépendant pas explicitement du temps se conserve,
et donc n’est fonction que des constantes d’intégration :

𝐹3(𝑝, 𝛽, 𝑡) = −ℋ(𝛽)𝑡 + 𝐹30(𝑝, 𝛽)

D’après le § 4.4 page 134, lorsque le système est holonome scléronome et lorsque le potentiel
de force 𝒱(𝑞, 𝑡) (la somme des énergies potentielles) ne dépend pas explicitement des vitesses
généralisées, le hamiltonien se confond avec l’énergie mécanique et la solution de l’équation de
Hamilton-Jacobi en représentation 𝑞 est de la forme

𝐹3(𝑝, 𝛽, 𝑡) = −ℰ(𝛽)𝑡 + 𝐹30(𝑝, 𝛽)

dans laquelle ℋ(𝛽) = ℰ(𝛽).

En remplaçant l’expression de 𝐹3(𝑝, 𝛽, 𝑡) dans les transformations canoniques (7.5) page 191, et
avec 𝜕𝐹3/𝜕𝑝𝑗 = 𝜕𝐹30/𝜕𝑝𝑗 :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹30(𝑝, 𝛽)
𝜕𝑝𝑗

= −𝑞𝑗

𝜕𝐹3(𝑝, 𝛽, 𝑡)
𝜕𝛽𝑗

= −𝛼𝑗

− ℰ(𝛽) +ℋ(−
𝜕𝐹30
𝜕𝑝 , 𝑝) = 0

(7.18c) est l’équation de Hamilton-Jacobi en représentation 𝑝 indépendante du temps. Nous
voyons que nous pouvons utiliser 𝐹30 à la place de 𝐹3 comme fonction génératrice de la transfor-
mation :

∀𝑗 = 1,… , 𝑛

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕𝐹30(𝑝, 𝛽)
𝜕𝑝𝑗

= −𝑞𝑗

𝜕𝐹30(𝑝, 𝛽, 𝑡)
𝜕𝛽𝑗

= 𝑡 − 𝛼𝑗

− ℰ(𝛽) +ℋ(−
𝜕𝐹30
𝜕𝑝 , 𝑝) = 0

(7.18a)

(7.18b)

(7.18c)
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Exemple 7.2.3
Reprenons l’ex. 7.2.1 page 194 d’une masse glissant sans frottements sur un plan incliné.
Le hamiltonien a pour expression :

ℋ(𝑞, 𝑝) = ℰ =
𝑝2

2𝑚 −𝑚𝑔𝑞 sin(𝛼)

Remplaçons la coordonnée généralisée grâce à (7.18a) :

ℋ(−
𝜕𝐹30(𝑝, 𝛽)

𝜕𝑝𝑗
, 𝑝) =

𝑝2

2𝑚 +𝑚𝑔
𝜕𝐹30(𝑝, 𝛽)

𝜕𝑝𝑗
sin(𝛼)

L’équation de Hamilton-Jacobi en représentation 𝑝 indépendante du temps (7.18c) donne :

−ℰ(𝛽) +ℋ(−
𝜕𝐹30
𝜕𝑝 , 𝑝) = 0

−ℰ+
𝑝2

2𝑚 +𝑚𝑔
𝜕𝐹30
𝜕𝑝 sin(𝛼) = 0

𝜕𝐹30
𝜕𝑝 = 1

𝑚𝑔 sin(𝛼) (ℰ −
𝑝2

2𝑚)

𝐹30 =
1

𝑚𝑔 sin(𝛼)

ˆ
ℰ −

𝑝2

2𝑚 d𝑝

= 1
𝑚𝑔 sin(𝛼) (

𝒱 −
𝑝3

6𝑚) + 𝑐

où l’on a supprimé la constante d’intégration. (7.5b) page 191 donne 𝑝(𝑡) :

𝛼1 = 𝑡 −
𝜕𝐹30
𝜕ℰ

= 𝑡 −
𝑝

𝑚𝑔 sin(𝛼)
𝑝 = 𝑚𝑔 sin(𝛼) (𝑡 − 𝛼1)

Notons 𝑝0 la condition initiale sur l’impulsion :

𝑝0 = −𝑚𝑔 sin(𝛼) 𝛼1

(7.5a) page 191 donne l’équation du mouvement 𝑞(𝑡),

𝑞 = −
𝜕𝐹30
𝜕𝑝

= − 1
𝑚𝑔 sin(𝛼) (

ℰ −
𝑝2

2𝑚)

= − ℰ
𝑚𝑔 sin(𝛼) +

1
2𝑚2𝑔 sin(𝛼) [𝑚

2𝑔2 sin2(𝛼)(𝑡 − 𝛼1)2]

= 1
2
𝑔(𝑡 − 𝛼1)2 sin(𝛼) − ℰ

𝑚𝑔 sin(𝛼)
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7.2.3 Cas des coordonnées cycliques

Nous parlons ici des anciennes variables, les nouvelles étant toutes cycliques. Supposons que 𝑞1
n’apparaisse pas dans le hamiltonien. D’après le § 3.3.2 page 108, si 𝑞1 est cyclique alors son
moment conjugué 𝑝1 est constant :

ℋ(𝑞2,… , 𝑞𝑛, 𝑝1,
𝜕𝒮
𝜕𝑞2

,… , 𝜕𝒮𝜕𝑞𝑛
, 𝑡)

Dans l’équation de Hamilton-Jacobi en représentation 𝑞 dépendante du temps (7.3c) page 190, la
coordonnée 𝑞1 n’apparaissant pas dans le membre de droite elle ne peut apparaitre dans celui de
gauche :

𝜕𝒮
𝜕𝑡 (𝑞2,… , 𝑞𝑛, 𝑝1, 𝛼2,… , 𝛼𝑛, 𝑡) = −ℋ(𝑞2,… , 𝑞𝑛, 𝑝1,

𝜕𝒮
𝜕𝑞2

,… , 𝜕𝒮𝜕𝑞𝑛
, 𝑡)

Par conséquent

𝒮(𝑞1,… , 𝑞𝑛, 𝛼1,… , 𝛼𝑛, 𝑡) = 𝑝1𝑞1 + 𝒮1(𝑞2,… , 𝑞𝑛, 𝑝1, 𝛼2,… , 𝛼𝑛, 𝑡)

et l’équation de Hamilton-Jacobi en représentation 𝑞 dépendante du temps se réécrit :

𝜕𝒮
𝜕𝑡 (𝑞2,… , 𝑞𝑛, 𝑝1, 𝛼2,… , 𝛼𝑛, 𝑡) = −ℋ(𝑞2,… , 𝑞𝑛, 𝑝1,

𝜕𝒮1
𝜕𝑞2

,… , 𝜕𝒮1𝜕𝑞𝑛
, 𝑡)

Les équations de Hamilton-Jacobi permettent la séparation des variables cycliques.

Exemple 7.2.4 : Balistique

Étudions le mouvement dans le plan (𝑥, 𝑦) d’un projectile dans le champ de gravitation
terrestre en l’absence de frottement de l’air. La force de pesanteur dérivant d’une énergie
potentielle, le hamiltonien se conserve et est égal à l’énergie mécanique :

ℋ = 𝑚
2 ( ̇𝑥2 + ̇𝑦2) + 𝑚𝑔𝑦

= 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + 𝑚𝑔𝑦

= ℰ

Le temps est cyclique, l’équation de Hamilton-Jacobi en représentation 𝑞 indépendante du
temps (7.9c) page 193 s’écrit :

−ℰ +ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) = 0

1
2𝑚 [(

𝜕𝒮0
𝜕𝑥 )

2
+ (

𝜕𝒮0
𝜕𝑦 )

2
] + 𝑚𝑔𝑦 = ℰ

La variable 𝑥 étant cyclique, appliquons la séparation des variables :

𝒮0(𝑥, 𝑦, ℰ, 𝛼2, 𝑡) = 𝛼2𝑥 + 𝒮1(𝑦, ℰ, 𝛼2, 𝑡)
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L’équation de Hamilton-Jacobi devient :

1
2𝑚[𝛼22+(

𝜕𝒮1
𝜕𝑦 )

2
] + 𝑚𝑔𝑦 = ℰ

(
𝜕𝒮1
𝜕𝑦 )

2
= 2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22

𝒮1 = ±
ˆ
√2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22 d𝑦 + 𝑐

= ∓ 1
3𝑚2𝑔 (2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22)

3/2 + 𝑐

L’action (de Hamilton) s’écrit,

𝒮 = −ℰ𝑡 + 𝛼2𝑥 ∓
1

3𝑚2𝑔 (2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22)
3/2

définie à une constante additive près. (7.3b) page 190 donnent d’une part l’équation du
mouvement 𝑡(𝑦) :

𝛽1 =
𝜕𝒮
𝜕ℰ

= −𝑡 ∓ 1
3𝑚2𝑔 ×

3
2 (2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22)

1/2 × 2𝑚

= −𝑡 ∓ 1
𝑚𝑔√2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22

Pour trouver la valeur de la constante 𝛽1, prenons l’instant initial (𝑡 = 0) :

𝛽1 = ∓ 1
𝑚𝑔√2𝑚ℰ − 2𝑚2𝑔𝑦0 − 𝛼22

On inverse la relation pour trouver l’équation du mouvement 𝑦(𝑡) :

[𝑚𝑔 (𝑡 + 𝛽1)]
2 = 2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22

2𝑚2𝑔𝑦 = −𝑚2𝑔2 (𝑡 + 𝛽1)
2 + 2𝑚ℰ − 𝛼22

𝑦 = −
𝑔
2 (𝑡 + 𝛽1)

2 + ℰ
𝑚𝑔 −

𝛼22
2𝑚2𝑔

𝑦0 = −
𝑔𝛽21
2 + ℰ

𝑚𝑔 −
𝛼22

2𝑚2𝑔

Nous pouvons exprimer 𝛽1 en fonction des conditions initiales :

̇𝑦 = −𝑔(𝑡 + 𝛽1) ⇒ ̇𝑦0 = −𝑔𝛽1 ⇒ 𝛽1 = −
̇𝑦0
𝑔

D’autre part, (7.3b) page 190 donnent l’équation de la trajectoire 𝑥(𝑦) :

𝛽2 =
𝜕𝒮
𝜕𝛼2

= 𝜕
𝜕𝛼2

[−ℰ𝑡 + 𝛼2𝑥 ∓
1

3𝑚2𝑔 (2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22)
3/2]
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𝛽2 = 𝑥 ∓ 1
3𝑚2𝑔 ×

3
2 (2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22)

1/2 × (−2)𝛼2

= 𝑥 ± 𝛼2
𝑚2𝑔√2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22

Pour trouver la valeur de la constante 𝛽2, on considère l’instant initial :

𝛽2 = 𝑥0 ±
𝛼2
𝑚2𝑔√2𝑚ℰ − 2𝑚2𝑔𝑦0 − 𝛼22

= 𝑥0 −
𝛼2𝛽1
𝑚

= 𝑥0 +
𝛼2 ̇𝑦0
𝑚𝑔

On inverse la relation pour trouver l’équation de la trajectoire 𝑦(𝑥) :

[
𝑚2𝑔
𝛼2

(𝛽2 − 𝑥)]
2

= 2𝑚ℰ − 2𝑚2𝑔𝑦 − 𝛼22

2𝑚2𝑔𝑦 = −
𝑚4𝑔2

𝛼22
(𝛽2 − 𝑥)2 + 2𝑚ℰ − 𝛼22

𝑦 = −
𝑚2𝑔
2𝛼22

(𝛽2 − 𝑥)2 + ℰ
𝑚𝑔 −

𝛼22
2𝑚2𝑔

= −
𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥 + 𝑥2) + 𝑦0 +
𝑔𝛽21
2

= −
𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥 + 𝑥2) + 𝑦0 +
̇𝑦20
2𝑔 (7.19)

Notons 𝑥0 la condition initiale sur la position horizontale :

𝑦0 = −
𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥0 + 𝑥20) + 𝑦0 +
̇𝑦20
2𝑔

̇𝑦20
2𝑔 =

𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥0 + 𝑥20)

En remplaçant ̇𝑦20/ (2𝑔) puis 𝛽2 dans (7.19) :

𝑦 = −
𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥 + 𝑥2) +
𝑚2𝑔
2𝛼22

(𝛽22 − 2𝛽2𝑥0 + 𝑥20) + 𝑦0

=
𝑚2𝑔
𝛼22

𝛽2(𝑥 − 𝑥0) −
𝑚2𝑔
2𝛼22

(𝑥2 − 𝑥20) + 𝑦0

=
𝑚2𝑔
𝛼22

(𝑥0 +
𝛼2 ̇𝑦0
𝑚𝑔 ) (𝑥 − 𝑥0) −

𝑚2𝑔
2𝛼22

(𝑥2 − 𝑥20) + 𝑦0

=
𝑚2𝑔(𝑥 − 𝑥0)

𝛼22
[𝑥0 +

𝛼2 ̇𝑦0
𝑚𝑔 −

(𝑥 + 𝑥0)
2 ] + 𝑦0

=
𝑚2𝑔(𝑥 − 𝑥0)

𝛼22
[
𝛼2 ̇𝑦0
𝑚𝑔 −

(𝑥 − 𝑥0)
2 ] + 𝑦0

= −
𝑚2𝑔
2𝛼22

(𝑥 − 𝑥0)2 +
𝑚 ̇𝑦0
𝛼2

(𝑥 − 𝑥0) + 𝑦0
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Avec (7.3a) page 190,

𝑝𝑥 =
𝜕𝒮
𝜕𝑥

𝑚 ̇𝑥0 = 𝛼2

nous avons l’équation de la trajectoire :

𝑦 = −
𝑔
2 ̇𝑥20

(𝑥 − 𝑥0)2 +
̇𝑦0
̇𝑥0
(𝑥 − 𝑥0) + 𝑦0 (7.20)

7.2.4 Équation de Hamilton-Jacobi et forme du hamiltonien

Lorsque le hamiltonien est de la forme

ℋ = ℋ1 (𝑞1,
𝜕𝒮1
𝜕𝑞1

) +ℋ𝑎 (𝑞2,… , 𝑞𝑛,
𝜕𝒮𝑎
𝜕𝑞2

,… ,
𝜕𝒮𝑎
𝜕𝑞𝑛

, 𝑡)

nous supposerons que 𝑞1 est une variable séparable la fonction principale de Hamilton :

𝒮(𝑞, 𝛼, 𝑡) = 𝒮𝑎(𝑞2,… , 𝑞𝑛, 𝛼2,… , 𝛼𝑛, 𝑡) + 𝒮1(𝑞1, 𝛼1)

L’équation de Hamilton-Jacobi en représentation 𝑞 dépendante du temps (7.3c) page 190 devient
𝜕𝒮𝑎(𝑞2,… , 𝑞𝑛, 𝛼2,… , 𝛼𝑛, 𝑡)

𝜕𝑡 +ℋ1 (𝑞1,
𝜕𝒮1
𝜕𝑞1

) +ℋ𝑎 (𝑞2,… , 𝑞𝑛,
𝜕𝒮𝑎
𝜕𝑞2

,… ,
𝜕𝒮𝑎
𝜕𝑞𝑛

, 𝑡) = 0

ℋ1 étant la seule fonction de 𝑞1, nous obtenons le système suivant :

⎧⎪
⎨⎪
⎩

ℋ1 (𝑞1,
d𝒮1(𝑞1, 𝛼1)

d𝑞1
) = 𝛼1

𝜕𝒮𝑎(𝑞2,… , 𝑞𝑛, 𝛼2,… , 𝛼𝑛, 𝑡)
𝜕𝑡 +ℋ𝑎 (𝑞2,… , 𝑞𝑛,

𝜕𝒮𝑎
𝜕𝑞2

,… ,
𝜕𝒮𝑎
𝜕𝑞𝑛

, 𝑡) = −𝛼1

La première équation différentielle, du 1er ordre en 𝑞1 et du second degré en d𝒮1/d𝑞1, permet
d’obtenir 𝒮1. De même, si le hamiltonien est de la forme

ℋ = ℋ1 (𝑞1,
𝜕𝒮1
𝜕𝑞1

) +ℋ2 (𝑞2,
d𝒮2
d𝑞1

) +ℋ𝑏 (𝑞3,… , 𝑞𝑛,
𝜕𝒮𝑏
𝜕𝑞3

,… ,
𝜕𝒮𝑏
𝜕𝑞𝑛

, 𝑡)

nous supposerons 𝑞1 et 𝑞2 séparables dans la fonction principale de Hamilton :

𝒮(𝑞, 𝛼, 𝑡) = 𝒮𝑏(𝑞3,… , 𝑞𝑛, 𝛼3,… , 𝛼𝑛, 𝑡) + 𝒮1(𝑞1, 𝛼1) + 𝒮2(𝑞2, 𝛼2)

L’équation de Hamilton-Jacobi en représentation 𝑞 dépendante du temps (7.3c) page 190 devient
𝜕𝒮𝑏
𝜕𝑡 +ℋ1 (𝑞1,

𝜕𝒮1
𝜕𝑞1

) +ℋ2 (𝑞2,
d𝒮2
d𝑞2

) +ℋ𝑏 (𝑞3,… , 𝑞𝑛,
𝜕𝒮𝑏
𝜕𝑞3

,… ,
𝜕𝒮𝑏
𝜕𝑞𝑛

, 𝑡) = 0

Nous obtenons le système suivant :

⎧
⎪
⎪

⎨
⎪
⎪
⎩

ℋ1 (𝑞1,
d𝒮1(𝑞1, 𝛼1)

d𝑞1
) = 𝛼1

ℋ2 (𝑞2,
d𝒮2(𝑞2, 𝛼2)

d𝑞1
) = 𝛼2

𝜕𝒮𝑏(𝑞3,… , 𝑞𝑛, 𝛼2,… , 𝛼𝑛, 𝑡)
𝜕𝑡 +ℋ𝑏 (𝑞3,… , 𝑞𝑛,

𝜕𝒮𝑏
𝜕𝑞3

,… ,
𝜕𝒮𝑏
𝜕𝑞𝑛

, 𝑡) = −(𝛼1 + 𝛼2)
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Les équations de Hamilton-Jacobi permettent parfois la séparation de variables non cycliques,
selon comment elles apparaissent dans le hamiltonien.

Exemple 7.2.5 : Coordonnées sphériques

En coordonnées sphériques (𝑟, 𝜃, 𝜙), la vitesse a pour expression,

#»v = ̇𝑟𝒆𝑟 + 𝑟 ̇𝜃𝒆𝜃 + 𝑟 sin(𝜃) ̇𝜙𝒆𝜙

et l’énergie cinétique s’écrit :

𝒯
def
= 1

2
𝑚𝑣2

= 1
2
𝑚( ̇𝑟2 + 𝑟2 ̇𝜃2 + 𝑟2 ̇𝜙2 sin2(𝜃))

On considère un mobile dans un champ de force d’énergie potentielle 𝒱(𝑞) indépendante
des vitesses généralisées ̇𝑞. D’après la déf. 3.4.1 page 109 les impulsions généralisées ont
pour expressions

⎧

⎨
⎩

𝑝𝑟 = 𝑚 ̇𝑟
𝑝𝜃 = 𝑚𝑟2 ̇𝜃
𝑝𝜙 = 𝑚𝑟2 sin2(𝜃) ̇𝜙

et le hamiltonien s’écrit

ℋ = 1
2𝑚 (𝑝2𝑟 +

𝑝2𝜃
𝑟2 +

𝑝2𝜙
𝑟2 sin2(𝜃)

) + 𝒱(𝑟, 𝜃, 𝜙)

et les variables pourront être séparées si,

𝒱(𝑟, 𝜃, 𝜙) = 𝑎(𝑟) + 𝑏(𝜃)
𝑟2 +

𝑐(𝜙)
𝑟2 sin2(𝜃)

où 𝑎(𝑟), 𝑏(𝜃) et 𝑐(𝜙) sont des fonctions arbitraires, car alors le hamiltonien aura la forme
vue au § 7.2.4 page ci-contre. La symétrie sphérique étant rompue par le sin2(𝜃), le terme
𝑐(𝜙) est choisi nul :

𝒱(𝑟, 𝜃) = 𝑎(𝑟) + 𝑏(𝜃)
𝑟2

L’équation de Hamilton-Jacobi en représentation 𝑞 dépendante du temps (7.3c) page 190
s’écrit

𝜕𝒮(𝑞, 𝛼, 𝑡)
𝜕𝑡 + 𝐻(𝑞, 𝜕𝒮𝜕𝑞 , 𝑡) = 0

𝜕𝒮
𝜕𝑡 +

1
2𝑚 [(𝜕𝒮𝜕𝑟 )

2
+ 1
𝑟2 (

𝜕𝒮
𝜕𝜃)

2
+ 1
𝑟2 sin2(𝜃)

(𝜕𝒮𝜕𝜙)
2
] + 𝑎(𝑟) + 𝑏(𝜃)

𝑟2 = 0

Nous avons vu ((7.4) page 191) que le nombre de constantes dans 𝒮 est égale au nombre
de coordonnées généralisées. Le hamiltonien ne dépendant pas explicitement du temps et
l’énergie potentielle n’étant pas fonction des vitesses généralisées, nous cherchons une
solution de la forme (7.7) page 193 :

𝒮(𝑟, 𝜃, 𝜙, ℰ, 𝛼2, 𝛼3, 𝑡) = −ℰ𝑡 + 𝒮0(𝑟, 𝜃, 𝜙, ℰ, 𝛼2, 𝛼3)
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L’équation de Hamilton-Jacobi devient :

1
2𝑚 [(

𝜕𝒮0
𝜕𝑟 )

2
+ 1
𝑟2 (

𝜕𝒮0
𝜕𝜃 )

2
+ 1
𝑟2 sin2(𝜃)

(
𝜕𝒮0
𝜕𝜙 )

2
] + 𝑎(𝑟) + 𝑏(𝜃)

𝑟2 = ℰ

La coordonnée 𝜙 étant cyclique (elle n’apparait pas dans ℋ) son moment conjugué 𝑝𝜙 est
constant, d’après le § 7.2.3 page 201 nous pouvons la séparer :

𝒮0(𝑟, 𝜃, 𝜙, ℰ, 𝑝𝜙, 𝛼3) = 𝑝𝜙𝜙 + 𝒮1(𝑟, 𝜃, ℰ, 𝑝𝜙, 𝛼3)

L’équation de Hamilton-Jacobi devient :

1
2𝑚 [(

𝜕𝒮1
𝜕𝑟 )

2
+ 1
𝑟2 (

𝜕𝒮1
𝜕𝜃 )

2
+

𝑝2𝜙
𝑟2 sin2(𝜃)

] + 𝑎(𝑟) + 𝑏(𝜃)
𝑟2 = ℰ

𝑟2 (
𝜕𝒮1
𝜕𝑟 )

2
+ 2𝑚𝑟2𝑎(𝑟) − 2𝑚𝑟2ℰ + (

𝜕𝒮1
𝜕𝜃 )

2
+

𝑝2𝜙
sin2(𝜃)

+ 2𝑚𝑏(𝜃) = 0

D’après le § 7.2.4 page 204, nous supposons les variables séparables dans l’expression de
l’action de Hamilton (donc aussi dans 𝒮1) :

𝒮1(𝑟, 𝜃, 𝜙, ℰ, 𝑝𝜙, 𝛼3) = 𝒮2(𝑟, ℰ, 𝑝𝜙, 𝛼3) + 𝒮3(𝜃, ℰ, 𝑝𝜙, 𝛼3)

L’équation de Hamilton-Jacobi s’écrit alors,

1
2𝑚 [(

d𝒮2
𝑑𝑟 )

2
+ 1
𝑟2 (

d𝒮3
d𝜃 )

2
+

𝑝2𝜙
𝑟2 sin2(𝜃)

] + 𝑎(𝑟) + 𝑏(𝜃)
𝑟2 = ℰ

1
2𝑚 (

d𝒮2
𝑑𝑟 )

2
+ 𝑎(𝑟) + 1

2𝑚𝑟2 [(
d𝒮3
d𝜃 )

2
+

𝑝2𝜙
sin2(𝜃)

+ 2𝑚𝑏(𝜃)] = ℰ

et donne le système suivant,

⎧⎪
⎨
⎪
⎩

(
d𝒮3
d𝜃 )

2
+

𝑝2𝜙
sin2(𝜃)

+ 2𝑚𝑏(𝜃) = 𝛼3

1
2𝑚 (

d𝒮2
𝑑𝑟 )

2
+ 𝑎(𝑟) +

𝛼3
2𝑚𝑟2 = ℰ

⇒

⎧
⎪

⎨
⎪
⎩

d𝒮3
d𝜃 = ±

√√

√
𝛼3 − 2𝑚𝑏(𝜃) −

𝑝2𝜙
sin2(𝜃)

d𝒮2
𝑑𝑟 = ±√2𝑚[ℰ − 𝑎(𝑟)] −

𝛼3
𝑟2

où 𝛼3 est la dernière constante arbitraire (après 𝑝𝜙 et ℰ). L’intégration donne :

𝒮 = −ℰ𝑡 + 𝑝𝜙𝜙 ±
ˆ √√

√
𝛼3 − 2𝑚𝑏(𝜃) −

𝑝2𝜙
sin2(𝜃)

d𝜃 ±
ˆ
√2𝑚[ℰ − 𝑎(𝑟)] −

𝛼3
𝑟2 𝑑𝑟

(7.3b) page 190 donne l’équation du mouvement 𝑡(𝑞) :

𝜕𝒮
𝜕ℰ = 𝛽1,

𝜕𝒮
𝜕𝑝𝜙

= 𝛽2,
𝜕𝒮
𝜕𝛼3

= 𝛽3
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7.3 Représentation de l’action de Hamilton

Considérons un mobile se déplaçant dans un champ de forces conservatives (chaque force dérive
d’un potentiel). Prenons les coordonnées rectangulaires comme coordonnées généralisées :

𝑞1 = 𝑥, 𝑞2 = 𝑦, 𝑞3 = 𝑧 et 𝑝1 = 𝑝𝑥, 𝑝2 = 𝑝𝑦, 𝑝3 = 𝑝𝑧

D’après (7.3a) page 190 :

𝑝𝑥 =
𝜕𝒮
𝜕𝑥, 𝑝𝑦 =

𝜕𝒮
𝜕𝑦 , 𝑝𝑧 =

𝜕𝒮
𝜕𝑧 ⇔ #»p ( #»r , 𝑡) =

#     »grad [𝒮( #»r , 𝑡)] (7.21)

Le gradient d’une fonction 𝑓 quelconque est toujours perpendiculaire aux surfaces équipotentielles
(𝑓 = 𝑐 𝑠𝑡𝑒) de cette fonction. Par conséquent les trajectoires sont à la fois tangentes au vecteur
quantité de mouvement #»p et normales aux surfaces équipotentielles 𝒮, surfaces pour lesquelles
l’action est constante. Les trajectoires sont les rayons des surfaces équiaction.

Supposons de plus que l’énergie potentielle ne dépende pas explicitement du temps (elle dépend
toujours implicitement du temps par l’intermédiaire de la position du mobile). Sous cette condition,
l’énergie mécanique ℰ se conserve dans le temps et devient une constante du mouvement. Nous
cherchons alors une solution de la forme (7.7) page 193,

𝒮(𝑥, 𝑦, 𝑧, 𝛼1, 𝛼2, 𝛼3, 𝑡) = −ℰ𝑡 + 𝒮0(𝑥, 𝑦, 𝑧, 𝛼1, 𝛼2, 𝛼3) (7.22)

ce qui implique
#     »grad [𝒮(𝑥, 𝑦, 𝑧, 𝛼1, 𝛼2, 𝛼3, 𝑡)] =

#     »grad [𝒮0(𝑥, 𝑦, 𝑧, 𝛼1, 𝛼2, 𝛼3)]

(7.21) devient :

𝑝𝑥 =
𝜕𝒮0
𝜕𝑥 , 𝑝𝑦 =

𝜕𝒮0
𝜕𝑦 , 𝑝𝑧 =

𝜕𝒮0
𝜕𝑧 ⇔ #»p ( #»r ) =

#     »grad [𝒮0(
#»r )] (7.23)

Réciproquement, à un champ 𝒮0 donné correspond toutes les trajectoires perpendiculaires aux
surfaces équipotentielles de 𝒮0 et nous avons :

𝛥𝒮0 =
ˆ

#»p ( #»r ) ⋅ d #»r (7.24)

Au signe négatif près, l’impulsion #»p est analogue à un champ électrique et les surfaces 𝒮0 aux
équipotentielles de ce champ.

Les surfaces équiaction 𝒮 qui dans l’espace de configuration coïncident à chaque instant avec les
différentes surfaces équiaction 𝒮0 s’identifient aux surfaces d’onde progressives équiphases. Les
surfaces équiaction 𝒮0 sont fixes dans l’espace puisqu’indépendantes du temps. En un point donné
de l’espace, la valeur des surfaces équiaction 𝒮 évolue dans le temps selon (7.22). Cependant,
nous pouvons aussi considérer que les surfaces équiaction 𝒮 se déplacent dans l’espace au cours
du temps selon cette même équation.
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Remarque 7.3.1
Ceci a pour analogue en mécanique des fluides, la représentation de Lagange dans laquelle on suit une particule du fluide, et celle
d’Euler où l’on se place en un point donné duquel on observe le mouvement du fluide.

Suivons p. ex. le trajet de la surface équiaction 𝒮 = 0 :

À 𝑡 = 0, 𝒮 = 𝒮0. Elle est donc superposée avec la surface équiaction 𝒮0 = 0.

À 𝑡 = 1, 𝒮 = −ℰ + 𝒮0. Elle est superposée avec la surface équiaction 𝒮0 = ℰ.

À 𝑡 = 2, 𝒮 = −2ℰ + 𝒮0. Elle est superposée avec la surface équiaction 𝒮0 = 2ℰ.

Les surfaces d’action constantes 𝒮 se déplacent donc dans l’espace au cours du temps à travers
les surfaces 𝒮0 constantes, dans le sens des 𝒮0 croissantes si l’énergie mécanique ℰ est positive.

Calculons la vitesse à laquelle ces surfaces 𝒮 constantes se déplacent dans l’espace au cours
du temps. (7.22) montre que pour rester constante au cours du temps, la surface 𝒮 doit en se
déplaçant de surface 𝒮0 en surface 𝒮0 compenser le gain ou la perte de valeur −ℰ𝑡. Ce sont donc
le gradient des 𝒮0 et l’énergie mécanique ℰ qui vont intervenir dans la vitesse des surfaces 𝒮.
Plaçons-nous à bord d’une surface 𝒮. D’une part

d𝒮
d𝑡 = 0

car la valeur de cette surface est constante dans le temps pour un observateur qui lui est lié, et
d’autre part :

d𝒮
d𝑡 = −ℰ +

d𝒮0
d𝑡

= −ℰ +
#     »grad (𝒮0) ⋅

d #»r 𝒮0
d𝑡

= −ℰ + #»p ⋅ #»v 𝒮0

où #»v 𝒮0 est le vecteur vitesse de chacune des surfaces 𝒮0 vu depuis 𝒮, donc vers « l’arrière ». Les
vecteurs #»p et #»v 𝒮0 étant perpendiculaires aux surfaces 𝒮, ils sont colinéaires. De plus ils sont de
sens contraire :

#»p ⋅ #»v 𝒮0 = −‖ #»p ‖‖ #»v 𝒮0‖

Nous avons donc, vu d’une surface 𝒮 :

−ℰ − ‖ #»p ‖‖ #»v 𝒮0‖ = 0

‖ #»v 𝒮0‖ =
−ℰ
‖ #»p ‖

Plaçons-nous maintenant à bord d’une surface 𝒮0 pour observer une surface 𝒮 :

‖ #»v 𝒮‖ =
ℰ
‖ #»p ‖

(7.25)

À énergie mécanique ℰ constante, plus la vitesse des particules est grande, c.-à-d. plus ‖ #»p ‖ est
grand, plus les surfaces 𝒮 sont lentes. Nous reconnaissons l’expression d’une vitesse de phase.
Les surfaces d’action constante sont des surfaces d’ondes progressives dans l’espace des 𝑞, qui
restent les mêmes au cours du temps et dont la vitesse de phase est donnée par (7.25).
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Nous obtenons la vitesse de la particule à partir de (7.22) page 207 :

𝒮0 = 𝒮 + ℰ𝑡
𝜕𝒮0
𝜕ℰ = 𝑡

𝜕
𝜕ℰ(d𝒮0) = d𝑡

Soit 𝑠 la distance parcourue par la particule mesurée le long de sa trajectoire :

d𝑡 = 𝜕
𝜕ℰ (

𝜕𝒮0
𝜕𝑠 d𝑠)

Avec (7.23) page 207

d𝑡 =
𝜕𝑝
𝜕ℰ d𝑠

d𝑡
d𝑠 =

𝜕𝑝
𝜕ℰ

D’où :
𝑣𝑝𝑎𝑟𝑡𝑖𝑐ᵆ𝑙𝑒 =

𝜕ℰ
𝜕𝑝

Nous reconnaissons l’expression d’une vitesse de groupe.

Exemple 7.3.1
Reprenons l’ex. 7.2.4 page 201 de balistique, en trois dimensions pour l’exemple (bien en-
tendu, la solution est en deux dimensions). L’équation de Hamilton-Jacobi en représentation
𝑞 indépendante du temps s’écrit :

1
2𝑚 [(

𝜕𝒮0
𝜕𝑥 )

2
+ (

𝜕𝒮0
𝜕𝑦 )

2
+ (

𝜕𝒮0
𝜕𝑧 )

2
] + 𝑚𝑔𝑧 = ℰ

Les variables 𝑥 et 𝑦 étant cycliques, nous appliquons la séparation des variables,

𝒮0(𝑥, 𝑦, 𝑧, ℰ, 𝛼𝑥, 𝛼𝑦, 𝑡) = 𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝒮𝑧(𝑧, ℰ, 𝛼𝑥, 𝛼𝑦, 𝑡) (7.26)

et l’équation de Hamilton-Jacobi s’écrit :

1
2𝑚 [𝛼2𝑥 + 𝛼2𝑦 + (

d𝒮𝑧
d𝑧 )

2
] + 𝑚𝑔𝑧 = ℰ

1
2𝑚 (

d𝒮𝑧
d𝑧 )

2
+𝑚𝑔𝑧 = ℰ −

𝛼2𝑥 + 𝛼2𝑦
2𝑚

= 𝛼𝑧

L’introduction de cette nouvelle constante 𝛼𝑧 permet de simplifier la résolution du pro-
blème.

𝒮𝑧 = ±
ˆ
√2𝑚(𝛼𝑧 −𝑚𝑔𝑧) d𝑧 + 𝑐

= ∓ 2
3𝑔√

2
𝑚 (𝛼𝑧 −𝑚𝑔𝑧)3/2 + 𝑐
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On pose 𝛼𝑧 de la forme 𝛼𝑧 = 𝑚𝑔ℎ, avec ℎ constante,

{
𝒮𝑧 = ∓2𝑚3 √2𝑔 (ℎ − 𝑧)3/2 + 𝑐

ℰ = 1
2𝑚 (𝛼2𝑥 + 𝛼2𝑦) + 𝑚𝑔ℎ

si bien que l’action de Hamilton s’écrit,

𝒮 = −ℰ𝑡 + 𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝒮𝑧

= −[ 1
2𝑚 (𝛼2𝑥 + 𝛼2𝑦) + 𝑚𝑔ℎ] 𝑡 + 𝛼𝑥𝑥 + 𝛼𝑦𝑦 ∓

2𝑚
3 √2𝑔 (ℎ − 𝑧)3/2

définie à une constante additive près. (7.3b) page 190 donnent les équations du mouvement,

𝛽𝑥 =
𝜕𝒮
𝜕𝛼𝑥

, 𝛽𝑦 =
𝜕𝒮
𝜕𝛼𝑦

, 𝛽𝑧 =
𝜕𝒮
𝜕𝛼𝑧

où,
𝜕𝒮
𝜕𝛼𝑧

= 𝜕𝒮
𝜕(𝑚𝑔ℎ)

Nous savons que 𝜕𝒮/𝜕𝛼𝑧 est un abus de notation, nous ne pouvons pas dériver par rapport
à une constante. Dans 𝑚𝑔ℎ, seule ℎ est une nouvelle constante car 𝑚 et 𝑔 apparaissent déjà
dans 𝒮. Donc ℎ est supposée variable pour effectuer la dérivation puis posée constante :

𝜕𝒮
𝜕𝛼𝑧

= 1
𝑚𝑔

𝜕𝒮
𝜕ℎ

𝛽𝑧 étant une constante quelconque, on peut supprimer 𝑚𝑔 et poser 𝛽𝑧 = 𝜕𝒮/𝜕ℎ.

𝛽𝑥 = 𝑥 −
𝛼𝑥𝑡
𝑚 , 𝛽𝑦 = 𝑦 −

𝛼𝑦𝑡
𝑚 , 𝛽𝑧 = ∓𝑚√2𝑔(ℎ − 𝑧) − 𝑚𝑔𝑡

(7.3a) page 190 donne les impulsions généralisées :

𝑝𝑥 =
𝜕𝒮
𝜕𝑥 = 𝛼𝑥, 𝑝𝑦 =

𝜕𝒮
𝜕𝑦 = 𝛼𝑦, 𝑝𝑧 =

𝜕𝒮
𝜕𝑧 = ±𝑚√2𝑔(ℎ − 𝑧)

Nous avons alors,

𝑝2𝑧 = 2𝑔𝑚2(ℎ − 𝑧)
𝑝2𝑧
2𝑚 = 𝑚𝑔ℎ −𝑚𝑔𝑧

et l’on vérifie que :

ℰ = 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + 𝑚𝑔ℎ

= 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧) + 𝑚𝑔𝑧

𝑚𝑔𝑧 est l’énergie potentielle fonction de la hauteur 𝑧, et ℎ est la hauteur maximale atteinte
par le projectile. Reprenons les expressions des impulsions :

𝑚 ̇𝑥 = 𝛼𝑥, 𝑚 ̇𝑦 = 𝛼𝑦, 𝑚 ̇𝑧 = ±𝑚√2𝑔(ℎ − 𝑧)
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La vitesse dans le plan horizontal (𝑥, 𝑦) est constante et vaut la vitesse initiale :

𝑚 ̇𝑥0 = 𝛼𝑥, 𝑚 ̇𝑦0 = 𝛼𝑦, ̇𝑧0 = ±√2𝑔(ℎ − 𝑧0) (7.27)

La fonction caractéristique de Hamilton, (7.26) page 209, s’écrit :

𝒮0 = 𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝒮𝑧
= 𝑚 ̇𝑥0𝑥 + 𝑚 ̇𝑦0𝑦 ∓

2
3
𝑚√2𝑔 (ℎ − 𝑧)3/2

Si l’on pose que la vitesse dans le plan horizontal est nulle

̇𝑥0 = ̇𝑦0 = 0

ainsi que la hauteur maximale atteinte en 𝑧

ℎ = 0

cela correspond à un tir parfaitement vertical dirigé vers le haut, de hauteur maximale
ℎ = 0. Alors :

𝒮0 = ∓2
3
𝑚√2𝑔(−𝑧)3/2

𝑧 ⩽ 0 puisque la hauteur maximale est nulle. De plus 𝒮0 = 𝑐 𝑠𝑡𝑒 implique 𝑧 = 𝑐 𝑠𝑡𝑒 : les
surfaces 𝒮0 = 𝑐 𝑠𝑡𝑒 sont des plans à 𝑧 constante inférieure à zéro (plans parallèles au plan
(𝑥, 𝑦)).
En 𝑧 = 0, 𝒮0 = 0
En 𝑧 = −1, 𝒮0 = ∓2/3𝑚√2𝑔
En 𝑧 = −2, 𝒮0 = ∓8/3𝑚√𝑔
La fonction principale de Hamilton 𝒮 se propage dans le sens des 𝒮0 croissantes. D’abord
vers le haut car 𝒮0 est négative et croit pour atteindre 0 en ℎ, puis vers le bas car 𝒮0
est positive et croit vers le bas. Les trajectoires sont donc des demi-droites verticales
ascendantes jusqu’à ℎ, puis descendantes.
Prenons maintenant une vitesse horizontale constante strictement positive, p. ex. :

̇𝑥0 = 0, ̇𝑦0 =
2
3
√2𝑔, ℎ = 0

La fonction caractéristique de Hamilton s’écrit :

𝒮0 = 𝑚 ̇𝑦0𝑦 ∓
2
3
𝑚√2𝑔(−𝑧)3/2

= 2
3
𝑚√2𝑔 𝑦 ∓ 2

3
𝑚√2𝑔(−𝑧)3/2

= 2
3
𝑚√2𝑔 [𝑦 ∓ (−𝑧)3/2]

𝒮0 = 𝑐 𝑠𝑡𝑒 implique,

𝑦 ∓ (−𝑧)3/2 = 𝑐 𝑠𝑡𝑒

𝑦 = 𝑐 𝑠𝑡𝑒 ± (−𝑧)3/2

qui est l’équation de deux paraboles semi-cubiques, de sommet l’axe des 𝑦, représentées
fig. 7.1 pour une constante égale à 1.
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𝑦 = 1 + (−𝑧)3/2

𝑦 = 1 − (−𝑧)3/2

𝑦

𝑧

1

0

Fig. 7.1 – 𝑦 = 1 ± (−𝑧)3/2

Les surfaces 𝒮0 = 𝑐 𝑠𝑡𝑒 sont deux cylindres engendrés par une droite qui se déplace
parallèlement à l’axe des 𝑥, en suivant les deux paraboles semi-cubiques. Lorsque 𝒮0
augmente (𝒮0 est la constante qui vaut 1 sur la fig. 7.1), le sommet des paraboles semi-
cubiques se déplace dans le sens des 𝑦 croissants.
En reprenant (7.20) page 204 avec l’axe 𝑧 vertical, toujours avec ̇𝑦0 = 2√2𝑔/3 et avec
𝑦0 = 0, nous avons :

𝑧 = −
𝑔
2 ̇𝑦20

𝑦2 +
̇𝑧0
̇𝑦0
𝑦 + 𝑧0

= − 9
16 𝑦

2 + 3
2√2𝑔

̇𝑧0𝑦 + 𝑧0

(7.27) page précédente donne ̇𝑧0 :

𝑧 = − 9
16 𝑦

2 ± 3
2√−𝑧0 𝑦 + 𝑧0

Choisissons un tir vers le haut, ̇𝑧0 > 0,

𝑧 = − 9
16 𝑦

2 + 3
2√−𝑧0 𝑦 + 𝑧0
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𝑧

𝑦

𝑧0 = 1
𝑧0 = 2 𝑧0 = 3

Fig. 7.2 – 𝑧 = − 9
16
𝑦2 + 3

2√−𝑧0 𝑦 + 𝑧0

Les trajectoires sont des paraboles perpendiculaires aux paraboles semi-cubiques, ayant
pour plus hauts points l’axe des 𝑦, le projectile se déplaçant selon les 𝑦 croissants.

7.4 Mécanique ondulatoire

7.4.1 Relation de de Broglie

Au § précédent nous avons obtenu une famille de surfaces équiaction 𝒮0 orthogonales aux
trajectoires des particules. Cela suggère une analogie entre mécanique et optique géométrique,
où dans la théorie de Huygens les rayons lumineux sont orthogonaux aux surfaces d’ondes.
Cherchons l’analogue optique de (7.23) page 207. Les surfaces d’onde de phase constante,
surfaces équiphase, sont les analogues des surfaces équiaction. Elles ont pour expression :

𝜙( #»r , 𝑡)
def
=

#»

k ⋅ #»r − 2𝜋𝜈𝑡
= 𝑐 𝑠𝑡𝑒

Remarque 7.4.1
La forme de cette relation est analogue à la solution de l’équation de Hamilton-Jacobi en représentation 𝑞 indépendante du temps (7.7)
page 193 :

𝒮(𝑞,𝛼, 𝑡) = 𝒮0(𝑞, 𝛼) − ℰ(𝛼)𝑡

La dérivation dans l’espace donne l’expression du vecteur d’onde :
#»

k ( #»r ) =
#     »grad [𝜙( #»r )]

qui est l’analogue optique de (7.23) page 207. Le vecteur d’onde est l’analogue optique du vecteur
impulsion généralisée.
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La relation de Planck-Einstein, tirée de l’expérience,

ℰ = ℎ𝜈

fait le lien entre une notion mécanique, l’énergie, et une notion ondulatoire, la fréquence. Elle
permet de sortir de la simple analogie pour établir des relations entre mécanique et optique.
Il nous faut le lien entre action et énergie, et entre phase et fréquence. La dérivée par rapport
au temps de (7.22) page 207 valable lorsque le système est conservatif et l’énergie potentielle
indépendante du temps, nous donne la première relation :

𝜕𝒮
𝜕𝑡 = −ℰ

La dérivation dans le temps de la phase donne la seconde relation :

𝜕𝜙
𝜕𝑡 = −2𝜋𝜈

En remplaçant dans la relation de Planck-Einstein :

𝜕𝒮
𝜕𝑡 = ℏ

𝜕𝜙
𝜕𝑡

Si on admet la relation
𝒮 = ℏ𝜙

alors on trouve la relation de de Broglie :
#»p =

#     »grad (𝒮)

= ℏ
#     »grad (𝜙)

= ℏ
#»

k

7.4.2 Équation de Schrödinger

Cherchons l’équation d’onde qui donnera la fonction d’onde associée à la particule. Pour cela
servons-nous de la vitesse de phase (7.25) page 208 :

△𝜓( #»r , 𝑡) − 1
𝑣2𝒮

𝜕2𝜓( #»r , 𝑡)
𝜕𝑡2 = 0

où 𝑣𝒮 est la vitesse de propagation d’une onde 𝜓 dans le milieu (vitesse de phase). Le mouvement
du point matériel est associé à la propagation de cette onde. Cherchons une solution de la forme

𝜓( #»r , 𝑡) = 𝜓0𝑒𝑖(
#»

k⋅ #»r −2𝜋𝜈𝑡)

= 𝜓0𝑒𝑖
#»

k⋅ #»r 𝑒−2𝑖𝜋𝜈𝑡

= 𝑒−2𝑖𝜋𝜈𝑡𝜓( #»r )

où l’amplitude maximale 𝜓0 est réelle, et
#»

k est le vecteur d’onde. On utilise la relation de
Planck-Einstein, tirée de l’expérience, liant l’énergie d’une onde à sa fréquence :

ℰ = ℎ𝜈
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L’énergie étant supposée constante dans le temps :

𝜓( #»r , 𝑡) = 𝑒−2𝑖𝜋ℰ𝑡/ℎ𝜓( #»r )
𝜕𝜓( #»r , 𝑡)

𝜕𝑡 = −2𝑖𝜋ℰ
ℎ 𝑒−2𝑖𝜋ℰ𝑡/ℎ𝜓( #»r )

𝜕2𝜓( #»r , 𝑡)
𝜕𝑡2 = −4𝜋2ℰ2

ℎ2 𝑒−2𝑖𝜋ℰ𝑡/ℎ𝜓( #»r )

Avec (7.25) page 208 donnant l’expression de la vitesse de phase, l’équation d’onde indépendante
du temps s’écrit

△𝜓( #»r , 𝑡) + 4𝜋2ℰ2

𝑣2𝒮ℎ2
𝜓( #»r , 𝑡) = 0

𝑒−2𝑖𝜋𝜈𝑡 △𝜓( #»r ) + 4𝜋2ℰ2

𝑣2𝒮ℎ2
𝑒−2𝑖𝜋𝜈𝑡𝜓( #»r ) = 0

△𝜓( #»r ) +
4𝜋2 #»p 2

ℎ2 𝜓( #»r ) = 0

Lorsque le système est conservatif l’équation de Hamilton-Jacobi en représentation 𝑞 indépendante
du temps d’une particule de masse 𝑚 et d’énergie ℰ dans un potentiel de force 𝒱(𝑞) est donnée
par (7.9c) page 193 :

−ℰ +ℋ(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) = 0

Supposons les conditions remplies pour avoir (4.12) page 136 et remplaçons ℋ par 𝒯 + 𝒱

−ℰ + 𝒯(𝑞,
𝜕𝒮0(𝑞, 𝛼)

𝜕𝑞 ) + 𝒱 (𝑞) = 0

qui n’est autre que l’équation de conservation de l’énergie mécanique. Avec (7.23) page 207 :

1
2𝑚 {

#     »grad [𝒮0(𝑞)]}2 = ℰ − 𝒱(𝑞)
#»p 2 = 2𝑚[ℰ − 𝒱(𝑞)]

Nous trouvons l’équation de Schrödinger indépendante du temps, d’une particule dans un champ
conservatif :

△𝜓( #»r ) + 8𝜋2𝑚
ℎ2 [ℰ − 𝒱(𝑞)]𝜓( #»r ) = 0

Cette relation est la relation fondamentale de la mécanique ondulatoire. La mécanique classique 1

du point matériel est donc une approximation de la mécanique ondulatoire lorsque la longueur
d’onde de l’onde de phase associée au corpuscule (relation de de Broglie #»p = ℏ

#»

k ) est considérée
comme très petite. Le même lien unit l’optique géométrique et l’optique physique, de ce fait, on
peut appeler la mécanique classique du point matériel, mécanique géométrique.

1. classique signifiant non relativiste et non quantique
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7.5 Action de Hamilton et lagrangien

D’après (7.1) page 190, les impulsions généralisées 𝑃 étant constantes dans la fonction principale
de Hamilton 𝒮(𝑞, 𝑃, 𝑡) :

d𝒮(𝑞, 𝑃, 𝑡) = 𝜕𝒮
𝜕𝑞𝑗

d𝑞𝑗 +
𝜕𝒮
𝜕𝑡 d𝑡

Avec (5.7) page 152 et avec H = 0,

d𝒮
d𝑡 = 𝑝𝑗 ̇𝑞𝑗 −ℋ

= ℒ

𝒮 =
ˆ
ℒd𝑡 (7.28)

définie à une constante additive près. L’action (de Hamilton) est donc l’intégrale indéfinie du
lagrangien par rapport au temps.

Exemple 7.5.1
Vérifions le sur l’ex. 7.2.2 page 196 de l’oscillateur harmonique. Reprenons l’expression
(7.15) page 198 de la coordonnée généralisée :

𝑞 = ± 1𝜔√
2ℰ
𝑚 sin(𝜔𝑡 + 𝜑0) ⇒ 𝑞2 = 2ℰ

𝑚𝜔2 sin2(𝜔𝑡 + 𝜑0)

d𝑞
d𝑡 = ±√

2ℰ
𝑚 cos(𝜔𝑡 + 𝜑0) ⇒ d𝑞 = ±√

2ℰ
𝑚 cos(𝜔𝑡 + 𝜑0)d𝑡

En partant de l’expression (7.12) page 197 de l’action de Hamilton, avec 𝑘 = 𝑚𝜔2 :

𝒮 = −ℰ𝑡 ± √2𝑚ℰ
ˆ
√1− 𝑚𝜔2

2ℰ 𝑞2 d𝑞

= −ℰ𝑡 + √2𝑚ℰ
ˆ
√1− sin2(𝜔𝑡 + 𝜑0)√

2ℰ
𝑚 cos(𝜔𝑡 + 𝜑0)d𝑡

= 2ℰ
ˆ
[cos2(𝜔𝑡 + 𝜑0) −

1
2
] d𝑡

= ℰ
ˆ

cos 2(𝜔𝑡 + 𝜑0)d𝑡

Reprenons l’expression (7.16) page 198 de l’impulsion :

𝑝 = ±√2𝑚ℰ cos(𝜔𝑡 + 𝜑0) ⇒ 𝑝2 = 2𝑚ℰ cos2(𝜔𝑡 + 𝜑0)
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Le lagrangien s’écrit,

ℒ =
𝑝2

2𝑚 − 𝑚𝜔2
2 𝑞2

= ℰ cos2(𝜔𝑡 + 𝜑0) −
𝑚𝜔2
2

2ℰ
𝑚𝜔2 sin2(𝜔𝑡 + 𝜑0)

= 2ℰ [cos2(𝜔𝑡 + 𝜑0) −
1
2
]

= ℰ cos 2(𝜔𝑡 + 𝜑0)

Nous avons bien
𝒮 =
ˆ
ℒd𝑡
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LE PRINCIPE VARIATIONNEL
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8.1 Principe de moindre distance

En étudiant la réflexion de la lumière sur un miroir (𝐷), Héron d’Alexandrie observe l’égalité des
angles incident 𝑖 et réfléchi 𝑟. La normale au miroir est représentée en traits interrompus.

𝐴
𝐵

(𝐷)

b

b𝑖
𝑟

Fig. 8.1 – Égalité des angles incident et réfléchi sur un miroir

Il montre que la lumière emprunte le chemin le plus court en distance pour aller de 𝐴 à 𝐵.

En effet, si 𝐵′ est le symétrique de 𝐵 par rapport à (𝐷), alors

∀𝑀 ∈ (𝐷), 𝑀𝐵 = 𝑀𝐵′

𝐴𝑀 +𝑀𝐵 = 𝐴𝑀 +𝑀𝐵′
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où 𝐴𝑀,𝑀𝐵,𝑀𝐵′,… sont des distances positives ou nulles. Appelons 𝑀 le point d’incidence et
utilisons les angles complémentaires notés avec une barre :

𝐴
𝐵

𝐵′

(𝐷)
𝑀

̄𝑖 ̄𝑟

̄𝑟′

b

b

b

Fig. 8.2 – 𝐵′ symétrique de 𝐵 par rapport à (𝐷)

𝐴𝑀 +𝑀𝐵 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ⇔ 𝐴𝑀 +𝑀𝐵′ 𝑚𝑖𝑛𝑖𝑚𝑎𝑙
⇔ 𝑀 ∈ (𝐴𝐵′)
⇔ ̄𝑖 = ̄𝑟′

⇔ ̄𝑖 = ̄𝑟
⇔ 𝑖 = 𝑟

Le trajet le plus court en distance pour aller du point 𝐴 au point 𝐵 en touchant le miroir (𝐷)
est donc celui pour lequel les angles d’incidence et de réflexion sont égaux, et réciproquement.
Évidemment, le trajet le plus court en distance pour la lumière est aussi le plus court en distance
pour un corps quelconque, cette notion est absolue et ne dépend pas de ce qui parcourt le trajet.

𝐴
𝐵

𝐵′

(𝐷)
𝑀

b

b

b

̄𝑖
̄𝑟′
̄𝑟

Fig. 8.3 – Chemin le plus court en distance

Pour la réflexion, la lumière suit donc un principe de moindre distance. C’est aussi un principe
de moindre temps si la vitesse de ce qui parcourt le trajet ne varie pas pendant le trajet.
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8.2 Principe de moindre temps

Le principe de moindre distance donne toujours une droite par franchissement d’un dioptre
(surface de séparation de deux milieux transparents d’indices de réfraction différents) et par
conséquent ce principe ne peut expliquer la réfraction de la lumière. Pierre de Fermat applique
donc le principe de moindre temps et non celui de moindre distance, pour généraliser son
application de la réflexion à la réfraction.

La démonstration qui suit s’applique à tout corps subissant un changement de vitesse par change-
ment de milieu. Un sauveteur côtier courant plus vite sur la plage qu’il ne nage, choisit son point
d’entrée dans l’eau de façon à minimiser le temps total jusqu’à la personne à secourir, son angle
𝑟 est plus petit que son angle 𝑖. En optique le milieu Á est dit plus réfringent que le milieu À,
autrement dit la vitesse de la lumière est plus petite dans le milieu Á.

Soit 𝑀 le point d’incidence et (𝐷) le dioptre :

À

Á

𝐴

𝐵

(𝐷)
𝑀

𝑖

𝑟

b

b

Fig. 8.4 – Réfraction en 𝑀 dans le cas 𝑣2 < 𝑣1 ⇔ 𝑟 < 𝑖

Le temps de trajet est minimal si pour un trajet infiniment proche (représenté en pointillés sur la
fig. 8.4) la variation du temps de trajet est nulle à l’ordre un. Soient 𝑡1 et 𝑡2 les temps de trajets
respectifs dans les milieux À et Á.

(𝑡1 + 𝑡2) 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ⇔ d(𝑡1 + 𝑡2) = 0
⇔ d𝑡1 + d𝑡2 = 0

Soient 𝑐, 𝑣1 et 𝑣2 les vitesses respectives de la lumière dans le vide et dans les milieux À et Á.
Autour du trajet de temps minimal, si la longueur du trajet augmente dans un milieu, elle diminue
dans l’autre (voir fig. 8.4), d’où le signe négatif :

(𝑡1 + 𝑡2) 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ⇔ d[𝐴𝑀]
𝑣1

− d[𝑀𝐵]
𝑣2

= 0

⇔ 𝑐d[𝐴𝑀]
𝑣1[𝑀𝑀′]

− 𝑐 d[𝑀𝐵]
𝑣2[𝑀𝑀′]

= 0
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Soient 𝑛1
def
= 𝑐/𝑣1 et 𝑛2

def
= 𝑐/𝑣2 les indices de réfraction respectifs des milieux À et Á :

(𝑡1 + 𝑡2) 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ⇔ 𝑛1
d[𝐴𝑀]
[𝑀𝑀′]

− 𝑛2
d[𝑀𝐵]
[𝑀𝑀′]

= 0

À

Á

(𝐷)𝑀
𝑀′

𝑁

𝑁′

𝑖

𝑟

d[𝐴𝑀]

d[𝑀𝐵]

Fig. 8.5 – Différence de marche dans le cas 𝑣2 < 𝑣1 ⇔ 𝑟 < 𝑖 ⇔ 𝑛2 > 𝑛1

Lorsque 𝑀′ tend vers 𝑀, l’arc de cercle 𝑀𝑁 se confond avec sa corde, le triangle 𝑀𝑀′𝑁 devient
rectangle en 𝑁, l’angle en 𝑀′ tend vers ̄𝑖 et :

d[𝐴𝑀]
𝑀𝑀′ ≈ sin(𝑖)

De même, lorsque 𝑀′ tend vers 𝑀, l’arc de cercle 𝑀′𝑁′ se confond avec sa corde, le triangle
𝑀𝑀′𝑁′ devient rectangle en 𝑁′, l’angle en 𝑀′ tend vers 𝑟 et :

d[𝑀𝐵]
𝑀𝑀′ ≈ sin(𝑟)

Fermat trouve l’équivalence

(𝑡1 + 𝑡2) 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ⇔ 𝑛1 sin(𝑖) = 𝑛2 sin(𝑟)

et retrouve donc la loi des sinus de Descartes. On vérifie que si 𝑣2 < 𝑣1 alors 𝑛2 > 𝑛1 donc 𝑟 > 𝑖
le rayon réfracté se referme sur la normale.

Lorsqu’un trajet est de temps minimum, chacune de ses parties est de temps minimum. Cette
remarque permet de généraliser le principe de temps minimum à une succession de dipotres :

𝑡1 + 𝑡2 +⋯+ 𝑡𝑛 𝑚𝑖𝑛𝑖𝑚𝑎𝑙

Faisons tendre le nombre de dioptres vers l’infini, la vitesse varie de façon continue :ˆ
𝑡𝑟𝑎𝑗𝑒𝑡

d𝑡 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 =
ˆ
𝑡𝑟𝑎𝑗𝑒𝑡

d𝑠
𝑣(𝑠)

𝑚𝑖𝑛𝑖𝑚𝑎𝑙

Pour la lumière, multiplions par la constante 𝑐 pour faire apparaitre l’indice de réfraction. L’inté-
grale sur le trajet passe par un extremum ssi sa variation infinitésimale est nulle :

𝛿
ˆ
𝑡𝑟𝑎𝑗𝑒𝑡

𝑛d𝑠 = 0
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Le principe de moindre temps appliqué à la lumière est appelé principe de Fermat.

Jean Bernoulli est en possession de deux méthodes pour trouver l’équation d’un trajet de temps
minimal, la loi des sinus de Descartes et le principe de Fermat. Grâce à la loi des sinus, il va
résoudre le problème de la détermination de l’équation de la brachistochrone posé par Galilée en
1633 :

Quelle est la courbe, appelée brachistochrone, joignant deux points 𝐴 et 𝐵 du plan vertical, telle
qu’un corps pesant partant au repos du point le plus haut 𝐴 (𝑥𝐴, 𝑦𝐴) et glissant sans frottements
le long de cette courbe sous l’influence d’un champ de gravitation uniforme, arrive au point
𝐵 (𝑥𝐵, 𝑦𝐵) en un temps minimal?

En 1696 ayant trouvé la solution, il adresse le problème aux mathématiciens de son temps.

8.3 Passage de l’optique à la mécanique

Jean Bernoulli applique la loi des sinus de Descartes à un indice variant de façon discontinue puis
passe à la limite pour avoir une variation d’indice continue. Si les milieux sont moins réfringents
à mesure que 𝑦 diminue, la trajectoire prend la forme suivante :

𝑦

𝑥

À

Á

𝑟𝑛
n© 𝑖𝑛

Fig. 8.6 – Couches d’indices de réfraction dans le cas 𝑣2 > 𝑣1 ⇔ 𝑛2 < 𝑛1 ⇔ 𝑟 > 𝑖

Au franchissement de chaque dioptre, la loi des sinus de Descartes s’écrit :

sin(𝑟𝑛+1)
𝑣𝑛+1

=
sin(𝑖𝑛)
𝑣𝑛

sin(𝑟𝑛+2)
𝑣𝑛+2

=
sin(𝑖𝑛+1)
𝑣𝑛+1

⋮
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Tout angle réfracté devient angle d’incidence

∀𝑛, 𝑟𝑛 = 𝑖𝑛

si bien que
sin(𝑖𝑛)
𝑣𝑛

=
sin(𝑖𝑛+1)
𝑣𝑛+1

=
sin(𝑖𝑛+2)
𝑣𝑛+2

= ⋯ = 1
𝑘

où 𝑘 est une constante. Faisons tendre le nombre de couche vers l’infini, ce qui revient à une
variation continue de l’indice de réfraction :

sin[𝑖(𝑥)]
𝑣[𝑖(𝑥)]

= 1
𝑘

Pour un corps autre que la lumière, lorsque la vitesse est nulle le sinus doit aussi être nul pour
que leur rapport donne une constante

𝑣[𝑖(𝑥)] = 0 ⇔ sin[𝑖(𝑥)] = 0

L’angle d’incidence est nul ssi la vitesse est nulle, la trajectoire est alors normale au dioptre. La
vitesse croît avec le sinus. Lorsque le sinus tend vers 1, l’angle d’incidence tend vers 𝜋/2, la
trajectoire devient horizontale et la vitesse atteint son maximum possible (si la trajectoire se
prolonge jusque là) :

𝑣(𝜋/2) = 𝑘 (8.1)

Soit 𝑦 = 𝑓(𝑥) l’équation de la trajectoire suivie en un temps minimum. En tout point de cette
trajectoire la dérivée est la tangente de l’angle que fait cette trajectoire avec l’horizontale :

𝑦′(𝑥) = tan( ̄𝑟)

Or

sin(𝑖) = sin(𝑟)
= cos( ̄𝑟)

= 1
√1 + tan2( ̄𝑟)

𝑣(𝑥)
𝑣(𝜋/2)

= 1
√1 + 𝑦′2(𝑥)

Pour résoudre cette équation différentielle il nous faut l’expression explicite de la vitesse en
fonction de 𝑥. Prenons le cas d’un corps qui tombe en chute libre dans le champ de pesanteur
terrestre, de vitesse nulle en 𝐴. Si l’on néglige les frottements de l’air, la force d’interaction gra-
vitationnelle étant conservative (elle dérive d’une énergie potentielle, appelée énergie potentielle
de gravitation ou de pesanteur), on peut écrire la conservation de l’énergie mécanique :

1
2
𝑚𝑣2(𝑥) + 𝑚𝑔𝑦(𝑥) = 1

2
𝑚𝑣2𝐴 +𝑚𝑔𝑦𝐴

1
2
𝑚𝑣2(𝑥) = 𝑚𝑔[𝑦𝐴 − 𝑦(𝑥)]

𝑣(𝑥) = √2𝑔[𝑦𝐴 − 𝑦(𝑥)] (8.2)
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Effectuons le changement de variable :

y(𝑥) = 𝑦𝐴 − 𝑦(𝑥)
y′ = −𝑦′(𝑥)

y′2(𝑥) = 𝑦′2(𝑥)

L’équation différentielle devient :

√2𝑔y(𝑥)
𝑣(𝜋/2)

= 1
√1 + y′2(𝑥)

√2𝑔y(𝑥) [1 + y′2(𝑥)] = 𝑣(𝜋/2)

y(𝑥) [1 + y′2(𝑥)] = 𝑣2(𝜋/2)
2𝑔 (8.3)

Revenons à la variable 𝑦(𝑥) :

[𝑦𝐴 − 𝑦(𝑥)] [1 + 𝑦′2(𝑥)] = 𝑣2(𝜋/2)
2𝑔

𝑦(𝑥) [1 + 𝑦′2(𝑥)] = 𝑦𝐴 −
𝑣2(𝜋/2)
2𝑔

C’est l’équation différentielle d’ordre un non linéaire de degré deux d’une cycloïde. La brachis-
tochrone est donc un arc de cycloïde de concavité vers le bas, de tangente verticale au point de
départ.

8.4 La brachistochrone

Retrouvons le résultat de Jean Bernoulli en utilisant le calcul des variations. Cherchons l’expres-
sion de la durée d’une trajectoire quelconque 𝑦(𝑥) entre les points 𝐴 et 𝐵. Soit d𝑠 un élément
infinitésimal de cette trajectoire. La vitesse (instantanée) a pour expression :

𝑣 = d𝑠
d𝑡

d𝑡 = d𝑠
𝑣

𝛥𝑡𝐴𝐵 =
ˆ 𝐵

𝐴

d𝑠
𝑣 (8.4)

Dans un système de coordonnées rectilignes orthogonales (𝑥, 𝑦), le carré de l’élément infinitésimal
de trajectoire a pour expression :

d𝑠2 = d𝑥2 + d𝑦2

Mettons d𝑥 ou d𝑦 en facteur :

⎧⎪
⎨⎪
⎩

d𝑠2 = (1 +
d𝑦2

d𝑥2) d𝑥
2

d𝑠2 = (d𝑥
2

d𝑦2 + 1) d𝑦2
⇒ {

d𝑠 = √1 + 𝑦′2(𝑥) |d𝑥|

d𝑠 = √1 + 𝑥′2(𝑦) |d𝑦|
(8.5)
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où le prime indique la dérivation par rapport à la coordonnée restante. La conservation de l’énergie
mécanique (8.2) page 224 donne l’expression de la vitesse. En remplaçant 𝑣 et d𝑠 dans (8.4) nous
obtenons les deux expressions suivantes pour la durée d’un trajet quelconque :

⎧
⎪⎪

⎨
⎪⎪
⎩

𝛥𝑡𝐴𝐵 =
ˆ 𝑥𝐵

𝑥𝐴 √
1+ 𝑦′2

2𝑔(𝑦𝐴 − 𝑦)
|d𝑥|

𝛥𝑡𝐴𝐵 =
ˆ 𝑦𝐵

𝑦𝐴 √
1+ 𝑥′2

2𝑔(𝑦𝐴 − 𝑦)
|d𝑦|

(8.6a)

(8.6b)

Nous supposons 𝑥 croissant le long de la trajectoire. Nous conservons (8.6a) sans la valeur
absolue. Posons :

𝑓(𝑦(𝑥), 𝑦′(𝑥)) =
√

1 + 𝑦′2(𝑥)
2𝑔 [𝑦𝐴 − 𝑦(𝑥)]

(8.7)

où le prime désigne la dérivation par rapport à 𝑥. La durée d’un trajet𝛥𝑡𝐴𝐵 le long d’une trajectoire
quelconque est donc la fonction de fonction, appelée fonctionnelle, suivante :

𝛥𝑡𝐴𝐵 =
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥

La variation de durée entre la trajectoire de durée minimale et une trajectoire infiniment proche
est nulle

𝛿𝛥𝑡𝐴𝐵 = 0

𝛿
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥 = 0 (8.8)

où 𝑦(𝑥) est supposée être la trajectoire de durée minimale.

Remarque 8.4.1
Mathématiquement, cette condition de durée stationnaire est nécessaire mais n’est pas suffisante pour avoir une durée minimale car elle
pourrait aussi être maximale ou admettre un point-selle (point d’inflexion horizontal, aussi appelé point-col). Cependant, en physique
parler d’une trajectoire de durée maximale n’a pas de sens. La comparaison de la durée du trajet solution avec la durée de trajets voisins
montrera que c’est effectivement le trajet de durée minimale.

Soient donc 𝑦(𝑥) la trajectoire de durée minimale, et 𝑔(𝑥) une autre trajectoire entre les mêmes
points de départ et d’arrivée.

Comparons leurs durées :

𝛥(𝛥𝑡𝐴𝐵) =
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑔(𝑥), 𝑔′(𝑥))d𝑥 −

ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑔(𝑥), 𝑔′(𝑥)) − 𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥
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𝐴

𝐵

𝑦

𝑥

Fig. 8.7 – La brachistochrone (noire) et une trajectoire très proche

Notons 𝛥𝑦(𝑥) la différence en ordonnées entre les fonctions 𝑦(𝑥) et 𝑔(𝑥), c.-à-d. la différence en
𝑦 pour un 𝑥 fixé, nulle aux points de départ et d’arrivée car les deux fonctions passent par les
points 𝐴 et 𝐵 :

𝛥(𝛥𝑡𝐴𝐵) =
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑦(𝑥) + 𝛥𝑦(𝑥), 𝑦′(𝑥) + 𝛥𝑦′(𝑥)) − 𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥

Remarque 8.4.2
Il n’y a pas de variation en 𝑥 mais seulement en 𝑦 et en 𝑦′, par conséquent pour une fonction 𝑓 (𝑦(𝑥), 𝑦′(𝑥), 𝑥) explicite de la variable
𝑥, nous aurions la même résolution.

Supposons les deux trajectoires infiniment proches :

𝛿 (𝛥𝑡𝐴𝐵) =
ˆ 𝑥𝐵

𝑥𝐴
𝑓(𝑦(𝑥) + 𝛿𝑦(𝑥), 𝑦′(𝑥) + 𝛿𝑦′(𝑥)) − 𝑓(𝑦(𝑥), 𝑦′(𝑥))d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
𝛿𝑓 (𝑦, 𝑦′) d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
(
𝜕𝑓
𝜕𝑦 𝛿𝑦 +

𝜕𝑓
𝜕𝑦′ 𝛿𝑦

′) d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴

𝜕𝑓
𝜕𝑦 𝛿𝑦 d𝑥 +

ˆ 𝑥𝐵

𝑥𝐴

𝜕𝑓
𝜕𝑦′ 𝛿𝑦

′ d𝑥

On intègre par partie le second terme en posant 𝑢 = 𝜕𝑦′𝑓 et 𝑣′ = 𝛿𝑦′ :

𝛿 (𝛥𝑡𝐴𝐵) =
ˆ 𝑥𝐵

𝑥𝐴

𝜕𝑓
𝜕𝑦 𝛿𝑦 d𝑥 + [

𝜕𝑓
𝜕𝑦′ 𝛿𝑦 ]

𝑥𝐵

𝑥𝐴
−
ˆ 𝑥𝐵

𝑥𝐴

d
d𝑥 (

𝜕𝑓
𝜕𝑦′) 𝛿𝑦 d𝑥

La variation 𝛿𝑦 étant nulle aux extrémités de la trajectoire :

𝛿 (𝛥𝑡𝐴𝐵) =
ˆ 𝑥𝐵

𝑥𝐴

𝜕𝑓
𝜕𝑦 𝛿𝑦 d𝑥 −

ˆ 𝑥𝐵

𝑥𝐴

d
d𝑥 (

𝜕𝑓
𝜕𝑦′) 𝛿𝑦 d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
[
𝜕𝑓
𝜕𝑦 −

d
d𝑥 (

𝜕𝑓
𝜕𝑦′)] 𝛿𝑦 d𝑥
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Écrivons la condition nécessaire :

∀𝛿𝑦,
ˆ 𝑥𝐵

𝑥𝐴
[
𝜕𝑓
𝜕𝑦 −

d
d𝑥 (

𝜕𝑓
𝜕𝑦′)] 𝛿𝑦 d𝑥 = 0

d
d𝑥 (

𝜕𝑓
𝜕𝑦′) −

𝜕𝑓
𝜕𝑦 = 0 (8.9)

appelée équation d’Euler. La fonction 𝑓 (𝑦(𝑥), ̇𝑦(𝑥)) donnée par (8.7) page 226 ne dépendant pas
explicitement de la variable 𝑥, nous pouvons intégrer l’équation différentielle une première fois :

d𝑓(𝑦, 𝑦′) =
𝜕𝑓
𝜕𝑦 d𝑦 +

𝜕𝑓
𝜕𝑦′ d𝑦

′

d𝑓
d𝑥 =

𝜕𝑓
𝜕𝑦 𝑦

′ +
𝜕𝑓
𝜕𝑦′ 𝑦

″

En utilisant l’équation d’Euler (8.9) pour remplacer le terme 𝜕𝑦𝑓 :

d𝑓
d𝑥 = d

d𝑥 (
𝜕𝑓
𝜕𝑦′) 𝑦

′ +
𝜕𝑓
𝜕𝑦′ 𝑦

″

= d
d𝑥 (

𝜕𝑓
𝜕𝑦′ 𝑦

′)

d
d𝑥 (𝑓 −

𝜕𝑓
𝜕𝑦′ 𝑦

′) = 0

𝑓 −
𝜕𝑓
𝜕𝑦′ 𝑦

′ = 1
𝑘 (8.10)

où 𝑘 est une constante par rapport à 𝑥. L’équation différentielle (8.9) est maintenant du 1er ordre
en 𝑦(𝑥). Dans la fonction 𝑓, effectuons le changement de variable :

y(𝑥) = 𝑦𝐴 − 𝑦(𝑥)
y′(𝑥) = −𝑦′(𝑥)
y′2(𝑥) = 𝑦′2(𝑥)

L’axe « y »a pour origine 𝑦𝐴 et est dirigé vers le bas. Reprenons l’expression (8.7) page 226 de la
fonction 𝑓 :

𝑓(𝑦(𝑥), 𝑦′(𝑥)) = [
1 + 𝑦′2

2𝑔(𝑦𝐴 − 𝑦)]
1/2

𝑓(y(𝑥), y′(𝑥)) = (
1 + y′2

2𝑔y )
1/2

𝜕𝑓
𝜕y′ =

1
2 (

1 + y′2

2𝑔y )
−1/2

×
2y′

2𝑔y

= (
2𝑔y

1 + y′2)
1/2

×
y′

2𝑔y

=
y′

√2𝑔y (1 + y′2)
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En notant que y′ = −𝑦′ implique dy′ = −d𝑦′ :

d𝑓(y′, y) = d𝑓 (𝑦′, 𝑦)
𝜕𝑓
𝜕y dy +

𝜕𝑓
𝜕y′ dy

′ =
𝜕𝑓
𝜕𝑦 d𝑦 +

𝜕𝑓
𝜕𝑦′ d𝑦

′

𝜕𝑓
𝜕y′ = −

𝜕𝑓
𝜕𝑦′

Remplaçons dans l’équation différentielle (8.10) :

√1 + y′2

√2𝑔y
+

y′

√2𝑔y (1 + y′2)
(−y′) = 1

𝑘
1

√2𝑔y (1 + y′2)
= 1
𝑘

y (1 + y′2) = 𝑘2
2𝑔 (8.11)

Nous retrouvons l’équation d’une cycloïde (8.3) page 225.

8.4.1 Résolution de l’équation différentielle

Cherchons la solution y(𝑥) de cette équation différentielle sous la forme de deux équations
paramétriques y(𝜃) et 𝑥(𝜃) où le paramètre 𝜃 est une fonction du temps qu’il faudra déterminer,
𝜃 = 𝜃(𝑡). Effectuons le changement de variable suivant :

y′(𝜃) = 1/ tan (𝜃
2
) (8.12)

1 + y′2(𝜃) = 1 +
cos2 (𝜃

2
)

sin2 (𝜃
2
)

= [sin2 (𝜃
2
)]
−1

Remplaçons dans l’équation différentielle (8.11) :

y(𝜃) = 𝑘2
2𝑔 sin2 (𝜃

2
) (8.13)

= 𝑘2
4𝑔 [1 − cos(𝜃)]

Revenons à la variable 𝑦 :

𝑦(𝜃) = 𝑦𝐴 +
𝑘2
4𝑔 [cos(𝜃) − 1]

Cherchons l’expression de 𝑥(𝜃). À partir de (8.12) :

dy
d𝑥 = 1/ tan (𝜃

2
)

d𝑥 = tan (𝜃
2
) dy
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En dérivant (8.13),

dy
d𝜃 =

𝑘2
2𝑔 2 sin (𝜃

2
) × 1

2
cos (𝜃

2
)

dy = 𝑘2
2𝑔 sin (𝜃

2
) cos (𝜃

2
) d𝜃

Nous avons donc :

d𝑥 = 𝑘2
2𝑔 tan (𝜃

2
) sin (𝜃

2
) cos (𝜃

2
) d𝜃

ˆ 𝑥

𝑥𝐴
d𝑥 = 𝑘2

2𝑔

ˆ 𝜃

𝜃𝐴
sin2 (𝜃

2
) d𝜃

𝑥 − 𝑥𝐴 = 𝑘2
4𝑔

ˆ 𝜃

0
1 − cos(𝜃) d𝜃

𝑥(𝜃) = 𝑥𝐴 +
𝑘2
4𝑔 [𝜃 − sin(𝜃)]

Centrons le repère (𝑥, 𝑦) sur le point 𝐴 qui a alors pour coordonnées (0, 0), nous obtenons

⎧⎪
⎨⎪
⎩

𝑦(𝜃) = 𝑘2
4𝑔 [cos(𝜃) − 1]

𝑥(𝜃) = 𝑘2
4𝑔 [𝜃 − sin(𝜃)]

(8.14)

qui sont les équations paramétriques d’une cycloïde de paramètre 𝜃, dont la concavité est dirigée
vers le bas. Cherchons les valeurs de 𝜃 qui annulent la dérivée de 𝑦(𝜃) :

𝑘2
4𝑔 sin(𝜃) = 0

𝜃 = 0 [𝜋]

En ces points les fonctions 𝑦(𝜃) et 𝑥(𝜃) prennent les valeurs :

{
𝑦(0) = 0
𝑥(0) = 0

{
𝑦(𝜋) = −𝑘2/2𝑔
𝑥(𝜋) = 𝜋𝑘2/4𝑔

{
𝑦(2𝜋) = 0
𝑥(2𝜋) = 𝜋𝑘2/2𝑔

𝐴(0, 0)
b + +

+

+

𝑦

𝑥

𝜋𝑘2

2𝑔

−𝑘2

2𝑔

+

𝜋𝑘2

4𝑔𝜃 = 0

𝜃 = 𝜋

𝜃 = 2𝜋

Fig. 8.8 – Arche de cycloïde : premier cycle (0 ⩽ 𝜃 ⩽ 2𝜋)
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La hauteur de chute est maximale en 𝜃 = 𝜋. En ce point nous avons la relation :

𝑥(𝜋) = −𝜋2 𝑦(𝜋)

La cycloïde est la courbe engendrée par un point de la circonférence d’un cercle qui roule sur
une droite. Le diamètre du cercle est égale à la hauteur de chute maximale, 𝑘2/(2𝑔).

En notant 𝐻 = 𝑦𝐴 − 𝑦𝐵 la hauteur finale de chute et 𝐷 = 𝑥𝐵 − 𝑥𝐴 la distance parcourue en 𝑥, le
système d’équations (8.14) donne :

⎧⎪
⎨⎪
⎩

𝐻 = 𝑘2
4𝑔 [1 − cos(𝜃𝐵)] (8.15)

𝐷 = 𝑘2
4𝑔 [𝜃𝐵 − sin(𝜃𝐵)]

Si 𝐷 ⩽ 𝜋
2
𝐻 (c.-à-d. si 𝜃 ⩽ 𝜋) le corps descend directement au point 𝐵.

Si 𝐷 > 𝜋
2
𝐻 le corps passe par une hauteur minimale puis remonte jusqu’au point 𝐵.

𝐻

b

b

+

𝐵

𝐷 ⩽ 𝜋
2
𝐻

𝑦

𝑥

𝐻

b

b
𝐵

𝐷 > 𝜋
2
𝐻

𝑦

𝑥

Fig. 8.9 – Brachistochrones

En dérivant par rapport au temps (8.14) page ci-contre, nous obtenons la vitesse en fonction du
paramètre 𝜃 :

𝑣2(𝜃) = 𝑣2𝑦(𝜃) + 𝑣2𝑥(𝜃)

= (
d𝑦[𝜃(𝑡)]
d𝜃

d𝜃
d𝑡 )

2
+ (d𝑥[𝜃(𝑡)]d𝜃

d𝜃
d𝑡 )

2

= [𝑘
2

4𝑔 sin(𝜃) ̇𝜃]
2

+ [𝑘
2

4𝑔 (cos(𝜃) − 1) ̇𝜃]
2

= 𝑘4 ̇𝜃2

16𝑔2 (sin
2(𝜃) + cos2(𝜃) − 2 cos(𝜃) + 1)

= 𝑘4 ̇𝜃2

8𝑔2 [1 − cos(𝜃)]

𝑣(𝜃) = 𝑘2 ̇𝜃
2𝑔√2

√1 − cos(𝜃)
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À partir du carré de la vitesse, ((8.2) page 224) :

𝑣2(𝜃) = −2𝑔𝑦(𝜃)
𝑘4 ̇𝜃2

8𝑔2 [1 − cos(𝜃)] = 𝑘2
2 [1 − cos(𝜃)]

̇𝜃2 =
4𝑔2

𝑘2

̇𝜃 = ±
2𝑔
𝑘

si bien que
𝑣(𝜃) = ±𝑘

√2
√1 − cos(𝜃)

La vitesse maximale possible est en 𝜃 = 𝜋, on retrouve le résultat (8.1) page 224 :

𝑣(𝜋) = 𝑘

La constante 𝑘 est donc positive et :

𝑣(𝜃) = 𝑣(𝜋)
√2

√1 − cos(𝜃)

Nous avons alors :

d𝜃
d𝑡 =

2𝑔
𝑣(𝜋)ˆ 𝜃𝐵

𝜃𝐴=0
d𝜃 =

2𝑔
𝑣(𝜋)

ˆ 𝑡𝐵

𝑡𝐴=0
d𝑡

𝜃𝐵 =
2𝑔𝑡𝐵
𝑣(𝜋)

𝑡𝐵 =
𝜃𝐵𝑣(𝜋)
2𝑔

Pour 𝜃𝐵 = 𝜋 (plus longue descente « directe »)

𝑣(𝜋) = √2𝑔𝐻

La relation de cinématique classique 𝑥 = 1
2
𝑔𝑡2 donne le temps de chute libre d’une hauteur 𝐻

𝑇 =
√

2𝐻
𝑔

et l’on a :

𝑡𝐵 =
𝜋
2 √

2𝐻
𝑔

= 𝜋
2 𝑇
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8.5 Principes de moindre action

8.5.1 Principe de moindre action de Hamilton

Dans les équations d’Euler (8.9) page 228, en remplaçant la fonction 𝑓 par le lagrangien et la
variable 𝑥 par le temps, nous retrouvons l’équation de Lagrange pour la coordonnée 𝑦 :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦 ) −

𝜕ℒ
𝜕𝑦 = 0

Par analogie de (8.8) page 226 qui donne les équations d’Euler (8.9), on déduit que les équations
de Lagrange dérive du principe variationnel

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ (𝑦(𝑡), ̇𝑦(𝑡), 𝑡) d𝑡 = 0

où la trajectoire est variée mais pas le temps, la durée du parcours est fixée à 𝑡𝐵 − 𝑡𝐴. Ce principe
est appelé principe de moindre action de Hamilton. L’intégrale du lagrangien par rapport au
temps est l’action de Hamilton ((7.28) page 216) :

𝛿𝒮 = 0 (8.16)

L’action de Hamilton n’est pas toujours minimale, elle est extrémale (ou stationnaire) car dans
certains cas elle peut être maximale pour la totalité de la trajectoire. Cependant elle est toujours
minimale pour chaque partie suffisamment petite de la trajectoire. De façon explicite, le principe
de moindre action s’écrit

𝛿
ˆ 𝑡𝐵

𝑡𝐴
(𝒯 − 𝒱) d𝑡 = 0

Lorsqu’un système évolue dans l’espace et dans le temps, la différence entre énergie cinétique et
potentielle est la plus petite possible au cours du temps.

Pour généraliser le principe variationnel au cas de plusieurs fonctions d’une même variable,
considérons une fonctionnelle de deux fonctions supposées linéairement indépendantes 𝑦1(𝑥) et
𝑦2(𝑥), de première variation nulle :

𝛿
ˆ
𝑓 (𝑦1(𝑥), 𝑦2(𝑥), 𝜕𝑥𝑦1(𝑥), 𝜕𝑥𝑦2(𝑥), 𝑥) d𝑥 = 0 (8.17)

Appelons 𝒥 cette fonctionnelle :

𝛿𝒥 =
ˆ 𝑥𝐵

𝑥𝐴
𝛿𝑓(𝑦1(𝑥), 𝑦2(𝑥), 𝑦′1(𝑥), 𝑦′2(𝑥), 𝑥)d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
(
𝜕𝑓
𝜕𝑦1

𝛿𝑦1 +
𝜕𝑓
𝜕𝑦2

𝛿𝑦2 +
𝜕𝑓
𝜕𝑦′1

𝛿𝑦′1 +
𝜕𝑓
𝜕𝑦′2

𝛿𝑦′2) d𝑥

=
ˆ 𝑥𝐵

𝑥𝐴
(
𝜕𝑓
𝜕𝑦1

𝛿𝑦1 +
𝜕𝑓
𝜕𝑦′1

𝛿𝑦′1 ) d𝑥 +
ˆ 𝑥𝐵

𝑥𝐴
(
𝜕𝑓
𝜕𝑦2

𝛿𝑦2 +
𝜕𝑓
𝜕𝑦′2

𝛿𝑦′2 ) d𝑥
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En intégrant par partie,

𝛿𝒥 =
ˆ 𝑥𝐵

𝑥𝐴
[
𝜕𝑓
𝜕𝑦1

− d
d𝑥 (

𝜕𝑓
𝜕𝑦′1

)] 𝛿𝑦1 d𝑥 +
ˆ 𝑥𝐵

𝑥𝐴
[
𝜕𝑓
𝜕𝑦2

− d
d𝑥 (

𝜕𝑓
𝜕𝑦′2

)] 𝛿𝑦2 d𝑥

Les fonctions 𝑦1(𝑥) et 𝑦2(𝑥) étant linéairement indépendantes, 𝛿𝒥 est nulle quelles que soient
𝛿𝑦1 et 𝛿𝑦2 si et seulement si 𝑓 satisfait les équations :

⎧⎪
⎨⎪
⎩

d
d𝑥 (

𝜕𝑓
𝜕𝑦′1

) −
𝜕𝑓
𝜕𝑦1

= 0

d
d𝑥 (

𝜕𝑓
𝜕𝑦′2

) −
𝜕𝑓
𝜕𝑦2

= 0
(8.18)

En remplaçant la fonction 𝑓 par le lagrangien et la variable 𝑥 par le temps, nous retrouvons les
équations de Lagrange pour les coordonnées 𝑦1(𝑡) et 𝑦2(𝑡) :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦1

) − 𝜕ℒ
𝜕𝑦1

= 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑦2

) − 𝜕ℒ
𝜕𝑦2

= 0

(8.17) donnant les équations (8.18), on en déduit que les équations de Lagrange dérivent du
principe variationnel

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ (𝑦1(𝑡), 𝑦2(𝑡), ̇𝑦1(𝑡), ̇𝑦2(𝑡), 𝑡) d𝑡 = 0 (8.19)

La généralisation à plus de deux coordonnées est immédiate.

8.5.2 Principe de moindre action de Maupertuis

Lorsque le hamiltonien ne dépend pas explicitement du temps, d’après (4.8) page 133 il se
conserve dans le temps le long de la trajectoire réelle :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℋd𝑡 = 0

Ajoutons ce terme nul au principe de moindre action de Hamilton (8.19) de la présente page :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒd𝑡 + 𝛿

ˆ 𝑡𝐵

𝑡𝐴
ℋd𝑡 = 0

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ +ℋd𝑡 = 0

𝛿
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 d𝑡 = 0

où l’intégrale est appelée action de Maupertuis :

𝑊
def
=
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 d𝑡

La variation de l’action de Maupertuis est donc nulle :

𝛿𝑊 = 0
Cette relation est appelée principe de moindre action de Maupertuis.

234 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 8 : Le principe variationnel

Remarque 8.5.1
En utilisant la linéarité de la fonction intégrale :

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 d𝑡 =
𝑛
∑
𝑗=1

ˆ 𝑡𝐵

𝑡𝐴
𝑝𝑗 ̇𝑞𝑗 d𝑡

=
𝑛
∑
𝑗=1

ˆ 𝐵

𝐴
𝑝𝑗d𝑞𝑗

=
ˆ 𝐵

𝐴

𝑛
∑
𝑗=1

𝑝𝑗d𝑞𝑗

Remarque 8.5.2
Avec ℋ constant dans le temps :

𝒮 =
ˆ 𝑡𝐵

𝑡𝐴
ℒd𝑡

=
ˆ 𝑡𝐵

𝑡𝐴
(

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 −ℋ)d𝑡

=
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 d𝑡 −ℋ
ˆ 𝑡𝐵

𝑡𝐴
d𝑡

D’après (7.6) page 192, l’action de Maupertuis se confond avec l’action réduite 𝒮0.

À partir de la définition de l’impulsion généralisée 3.4.1 page 109, avec 𝒱(𝑞) indépendant des
vitesses généralisées (et du temps) :

𝑝𝑗
def
= 𝜕ℒ

𝜕 ̇𝑞𝑗

= 𝜕𝒯
𝜕 ̇𝑞𝑗

Si le hamiltonien constant est égal à l’énergie totale ℰ, d’après l’identité d’Euler (4.10) page 134 :
𝑛
∑
𝑗=1

𝜕𝒯
𝜕 ̇𝑞𝑗

̇𝑞𝑗 = 2𝒯

Le principe de moindre action de Maupertuis devient :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
2𝒯d𝑡 = 0 (8.20)

Exemple 8.5.1
Pour un mobile libre, l’énergie cinétique se confond avec l’énergie totale constante du
mobile :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
d𝑡 = 0

𝛿(𝑡𝐵 − 𝑡𝐴) = 0
𝑡𝐵 − 𝑡𝐴 minimal

Le principe de moindre action de Maupertuis devient un principe de moindre temps.
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Exprimons l’énergie cinétique à partir de la vitesse et de l’abscisse curviligne (élément de
longueur sur la trajectoire) :

𝒯 = 1
2
𝑚𝑣2

= 1
2
𝑚 (d𝑠d𝑡)

2

d𝑡 = d𝑠
√2𝒯/𝑚

Le principe de moindre action de Maupertuis (8.20) s’écrit :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
2𝒯d𝑡 = 0

𝛿
ˆ 𝐵

𝐴

2𝒯
√2𝒯/𝑚

d𝑠 = 0

𝛿
ˆ 𝐵

𝐴
√2𝑚𝒯d𝑠 = 0

𝛿
ˆ 𝐵

𝐴
√2𝑚[ℰ − 𝒱(𝑞)] d𝑠 = 0

Nous voyons que la condition d’extrémum est directement sur la trajectoire, sans passer par
l’équation horaire. C’est là l’intérêt principal du principe de moindre action de Maupertuis.
Cependant ce principe est moins général que le principe de moindre action de Hamilton puisqu’il
ne s’applique que pour les systèmes conservatifs.

Exemple 8.5.2
Pour un mobile libre l’énergie potentielle est nulle et l’énergie totale constante :

𝛿
ˆ 𝐵

𝐴
√2𝑚[ℰ − 𝒱(𝑞)] d𝑠 = 0

𝛿(𝒮𝐵 − 𝒮𝐴) = 0
𝒮𝐵 − 𝒮𝐴 minimal

Le principe de moindre action de Maupertuis devient un principe de moindre chemin
parcouru.

Exemple 8.5.3 : Balistique
Reprenons l’ex. 7.2.4 page 201, concernant l’étude du mouvement dans le plan (𝑥, 𝑦)
d’un projectile dans le champ de gravitation terrestre en l’absence de frottement de l’air.
Nous pouvons utiliser le principe de moindre action de Maupertuis car la force de pesan-
teur dérivant d’une énergie potentielle, le hamiltonien se conserve et est égal à l’énergie
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mécanique :

ℋ = 𝑚
2 ( ̇𝑥2 + ̇𝑦2) + 𝑚𝑔𝑦

= 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + 𝑚𝑔𝑦

= ℰ

Avec l’énergie potentielle de pesanteur 𝒱(𝑦) = 𝑚𝑔𝑦, l’action réduite s’écrit

𝑊 =
ˆ 𝐵

𝐴
√2𝑚[ℰ − 𝑚𝑔𝑦(𝑥)] d𝑠

En se servant des l’expressions (8.5) page 225 pour l’élément de trajectoire, nous obtenons
deux expressions pour l’action de Maupertuis :

⎧⎪

⎨
⎪
⎩

𝑊 =
ˆ 𝑥𝐵

𝑥𝐴
√2𝑚(ℰ − 𝑚𝑔𝑦)√1 + 𝑦′2(𝑥) |d𝑥|

𝑊 =
ˆ 𝑦𝐵

𝑦𝐴
√2𝑚(ℰ − 𝑚𝑔𝑦)√1 + 𝑥′2(𝑦) |d𝑦|

Le principe de moindre action de Maupertuis s’écrit

⎧⎪

⎨
⎪
⎩

𝛿
ˆ 𝑥𝐵

𝑥𝐴
√2𝑚[ℰ − 𝑚𝑔𝑦(𝑥)]√1 + 𝑦′2(𝑥) |d𝑥| = 0

𝛿
ˆ 𝑦𝐵

𝑦𝐴
√2𝑚[ℰ − 𝑚𝑔𝑦(𝑥)]√1 + 𝑥′2(𝑦) |d𝑦| = 0

de la forme
⎧⎪

⎨
⎪
⎩

𝛿
ˆ 𝑥𝐵

𝑥𝐴
ℒ(𝑦(𝑥), 𝑦′(𝑥), 𝑥)|d𝑥| = 0

𝛿
ˆ 𝑦𝐵

𝑦𝐴
ℒ(𝑥(𝑦), 𝑥′(𝑦), 𝑦)|d𝑦| = 0

avec les lagrangiens respectifs

{
ℒ(𝑦(𝑥), 𝑦′(𝑥), 𝑥) = √2𝑚[ℰ − 𝑚𝑔𝑦(𝑥)]√1 + 𝑦′2(𝑥)

ℒ(𝑥(𝑦), 𝑥′(𝑦), 𝑦) = √2𝑚[ℰ − 𝑚𝑔𝑦(𝑥)]√1 + 𝑥′2(𝑦)

Nous pouvons appliquer le principe de moindre action de Hamilton (8.19) page 234 (!) où
le paramètre temps est remplacé par la coordonnée 𝑥 ou 𝑦. Plutôt que d’écrire les équations
de Lagrange, remarquons que dans le second lagrangien la coordonnée 𝑥 est cyclique. Par
conséquent

𝜕ℒ
𝜕𝑥′ = 𝑐 𝑠𝑡𝑒

𝜕√2𝑚(ℰ − 𝑚𝑔𝑦)√1 + 𝑥′2(𝑦)
𝜕𝑥′ = 𝑐 𝑠𝑡𝑒

√2𝑚(ℰ − 𝑚𝑔𝑦)𝑥′(𝑦)
√1 + 𝑥′2(𝑦)

= 𝑐 𝑠𝑡𝑒
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Il reste à résoudre cette équation différentielle. Soit 𝐻 la hauteur maximale atteinte par le
projectile en 𝑥𝑚. En ce point l’énergie potentielle 𝑚𝑔𝐻 est maximale et l’énergie cinétique
est minimale, le vecteur vitesse est horizontal. On pose

𝒯(𝑥𝑚) =
1
2
𝑚𝑣2𝑥

= 𝑚𝑔𝐴
𝐴 = 𝑣2𝑥/(2𝑔)

Nous avons alors :

√2𝑚2𝑔(𝐻 + 𝐴 − 𝑦)𝑥′(𝑦)
√1 + 𝑥′2(𝑦)

= 𝐶

𝐻 + 𝐴 − 𝑦 =
𝐶2 [1 + 𝑥′2(𝑦)]
2𝑚2𝑔𝑥′2(𝑦)

On pose

𝐵 = 𝐶2

2𝑚2𝑔
si bien que

𝐻 + 𝐴 − 𝑦 = 𝐵 ( 1
𝑥′2(𝑦)

+ 1)

= 𝐵 [(
d𝑦
d𝑥)

2
+ 1]

Or d𝑦/d𝑥 = 0 en 𝑦 = 𝐻, d’où 𝐴 = 𝐵 :

𝐻 − 𝑦 = 𝐴(
d𝑦
d𝑥)

2

√
𝐻 − 𝑦
𝐴 =

d𝑦
d𝑥

ˆ 𝑥𝑚

𝑥

d𝑥
√𝐴

=
ˆ 𝐻

𝑦

d𝑦
√𝐻 − 𝑦

1
√𝐴

[𝑥]𝑥𝑚𝑥 = − [2√𝐻 − 𝑦]
𝐻

𝑦

1
√𝐴

(𝑥𝑚 − 𝑥) = 2√𝐻 − 𝑦

𝑦 = 𝐻 − 1
4𝐴(𝑥𝑚 − 𝑥)2

= 𝐻 −
𝑔
2𝑣2𝑥

(𝑥𝑚 − 𝑥)2

On trouve l’équation de la parabole sans passer par l’équation horaire.
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Exemple 8.5.4 : Force centrale
Dans le cas d’un mobile soumis à une force centrale le mouvement est plan. En coordonnées
polaire (𝜌, 𝜃), l’énergie potentielle s’écrit 𝒱(𝜌). L’action réduite a pour expression

𝑊 =
ˆ 𝐵

𝐴
√2𝑚[ℰ − 𝒱(𝜌)] d𝑠

En coordonnées polaires (𝜌, 𝜃), le carré de l’élément infinitésimal de trajectoire a pour
expression :

d𝑠2 = d𝜌2 + 𝜌2d𝜃2

Mettons d𝜌 ou d𝜃 en facteur :

⎧⎪
⎨⎪
⎩

d𝑠2 = (1 + 𝜌2d𝜃
2

d𝜌2) d𝜌
2

d𝑠2 = (
d𝜌2

d𝜃2 + 𝜌2) d𝜃2
⇒ {

d𝑠 = √1 + 𝜌2𝜃′2(𝜌) |d𝜌|

d𝑠 = √𝜌2 + 𝜌′2(𝜃) |d𝜃|

où le prime indique la dérivation par rapport à la coordonnée restante. Le principe de
moindre action de Maupertuis s’écrit

⎧
⎪

⎨
⎪
⎩

𝛿
ˆ 𝜌𝐵

𝜌𝐴
√2𝑚[ℰ − 𝒱(𝜌)]√1 + 𝜌2𝜃′2(𝜌) |d𝜌| = 0

𝛿
ˆ 𝜃𝐵

𝜃𝐴
√2𝑚[ℰ − 𝒱(𝜌)]√𝜌2 + 𝜌′2(𝜃) |d𝜃| = 0

de la forme
⎧
⎪

⎨
⎪
⎩

𝛿
ˆ 𝜌𝐵

𝜌𝐴
ℒ(𝜃(𝜌), 𝜃′(𝜌), 𝜌)|d𝜌| = 0

𝛿
ˆ 𝜃𝐵

𝜃𝐴
ℒ(𝜌(𝜃), 𝜌′(𝜃), 𝜃)|d𝜃| = 0

avec les lagrangiens respectifs

{
ℒ(𝜃(𝜌), 𝜃′(𝜌), 𝜌) = √2𝑚[ℰ − 𝒱(𝜌)]√1 + 𝜌2𝜃′2(𝜌)

ℒ(𝜌(𝜃), 𝜌′(𝜃), 𝜃) = √2𝑚[ℰ − 𝒱(𝜌)]√𝜌2 + 𝜌′2(𝜃)

Dans le premier lagrangien la coordonnée 𝜃 est cyclique. Par conséquent

𝜕ℒ
𝜕𝜃′ = 𝑐 𝑠𝑡𝑒

𝜕√2𝑚[ℰ − 𝒱(𝜌)]√1 + 𝜌2𝜃′2(𝜌)
𝜕𝜃′ = 𝑐 𝑠𝑡𝑒

𝜌2𝜃′(𝜌)
√2𝑚[ℰ − 𝒱(𝜌)]
√1 + 𝜌2𝜃′2(𝜌)

= 𝑐 𝑠𝑡𝑒
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Cette constante est la norme 𝐿 du moment cinétique du mobile. Réécrivons cette équation
différentielle :

𝐿 = 𝜌2𝜃′(𝜌)
√

2𝑚[ℰ − 𝒱(𝜌)]
1 + 𝜌2𝜃′2(𝜌)

𝐿2

2𝑚𝜌2 = 𝜌2𝜃′2(𝜌)
ℰ − 𝒱(𝜌)

1 + 𝜌2𝜃′2(𝜌)

ℰ − 𝒱(𝜌) − 𝐿2

2𝑚𝜌2 = 𝜌2𝜃′2(𝜌)
[ℰ − 𝒱(𝜌)][1 + 𝜌2𝜃′2(𝜌) − 𝜌2𝜃′2(𝜌)]

1 + 𝜌2𝜃′2(𝜌)

√
2
𝑚 [ℰ − 𝒱(𝜌) − 𝐿2

2𝑚𝜌2 ] = √
2
𝑚 [

ℰ − 𝒱(𝜌)
1 + 𝜌2𝜃′2(𝜌)]

𝑚𝜌2
√

2
𝑚 (ℰ − 𝒱(𝜌) − 𝐿2

2𝑚𝜌2) = 𝜌2
√

2𝑚[ℰ − 𝒱(𝜌)]
1 + 𝜌2𝜃′2(𝜌)

= 𝐿
𝜃′(𝜌)

𝜃′(𝜌) = 𝐿/ [𝑚𝜌2
√

2
𝑚 (ℰ − 𝒱(𝜌) − 𝐿2

2𝑚𝜌2)]

On appelle potentiel effectif le terme :

𝑈𝑒𝑓𝑓(𝜌)
def
= 𝒱(𝜌) + 𝐿2

2𝑚𝜌2

Nous avons alors :

d𝜃
d𝜌 = 𝐿

𝑚𝜌2√
2
𝑚
[ℰ − 𝑈𝑒𝑓𝑓(𝜌)]ˆ 𝜃

𝜃0
d𝜃 =

ˆ 𝜌

𝜌0

𝐿/𝑚

𝜌2√
2
𝑚
[ℰ − 𝑈𝑒𝑓𝑓(𝜌)]

d𝜌
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LE PRINCIPE DE MOINDRE ACTION DE HAMILTON
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Le principe de moindre action peut servir d’axiome de départ à toute la mécanique.

9.1 Dérivation des équations du mouvement

9.1.1 Les équations de Lagrange

Pour obtenir la trajectoire d’un système il nous faut établir les équations de son mouvement.
Celles-ci sont données par

• une loi générale du mouvement (p. ex. la RFD)
• un modèle propre au système (p. ex. −𝑘𝑥 pour le ressort dans sa partie linéaire), fonction

des coordonnées, des vitesses et du temps
• les conditions initiales du système que sont sa position et sa vitesse à un instant donné,

appelé instant initial

On suppose que tout système mécanique est modélisé par une fonction des coordonnées, des
vitesses et du temps, que l’on appelle lagrangien du système ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡).
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Posons la loi générale du mouvement suivante : entre un point de départ 𝐴 à l’instant 𝑡𝐴 et un
point d’arrivée 𝐵 à l’instant 𝑡𝐵, le système prend la trajectoire qui rend extrémale l’intégrale du
lagrangien entre les instants de départ et d’arrivée. Suivons le raisonnement inverse du § 8.4
page 225 :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗 + 𝛿𝑞𝑗, ̇𝑞𝑗 + 𝛿 ̇𝑞𝑗, 𝑡) d𝑡 −

ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗, ̇𝑞𝑗, 𝑡) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝜕ℒ𝜕𝑞𝑗
𝛿𝑞𝑗 +

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿 ̇𝑞𝑗) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

𝛿𝑞𝑗d𝑡 +
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

d
d𝑡(𝛿𝑞𝑗)d𝑡 = 0

En intégrant par partie le second terme :

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

𝛿𝑞𝑗d𝑡 + [
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗]
𝑡𝐵

𝑡𝐴

−
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗d𝑡 = 0

[
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗]
𝑡𝐵

𝑡𝐴

+
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝜕ℒ𝜕𝑞𝑗
− d
d𝑡
𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗d𝑡 = 0 (9.1)

Les variations 𝛿𝑞 sont nulles aux extrémités de trajectoires prisent entre les mêmes points de
départ et d’arrivée 𝛿𝑞(𝑡𝐴) = 𝛿𝑞(𝑡𝐵) = 0. On retrouve les équations de Lagrange (3.13) page 74 :

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝜕ℒ𝜕𝑞𝑗
− d
d𝑡
𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗d𝑡 = 0

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

Remarque 9.1.1

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴
𝛿ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

( 𝜕ℒ𝜕𝑞𝑗
− d
d𝑡

𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗d𝑡 = 0

donc

𝛿ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) =
𝑛
∑
𝑗=1

( 𝜕ℒ𝜕𝑞𝑗
− d
d𝑡

𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗

∀𝑗 = 1,… ,𝑛 𝛿ℒ(𝑞𝑖(𝑡), ̇𝑞𝑖(𝑡), 𝑡)
𝛿𝑞𝑗

= 𝜕ℒ
𝜕𝑞𝑗

− d
d𝑡

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿ℒ
𝛿𝑞𝑗

s’appelle la dérivée variationnelle de ℒ(𝑞𝑖(𝑡), ̇𝑞𝑖(𝑡), 𝑡) par rapport à 𝑞𝑗.
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9.1.2 Les équations de Hamilton

On pose

ℋ(𝑞𝑗, 𝑝𝑗, 𝑡)
def
=

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 − ℒ(𝑞𝑗, ̇𝑞𝑗, 𝑡)

Le principe de moindre action s’écrit :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

𝛿
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗 −ℋ(𝑞𝑗, 𝑝𝑗, 𝑡) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝛿𝑝𝑗 ̇𝑞𝑗 + 𝑝𝑗𝛿 ̇𝑞𝑗 −
𝜕ℋ
𝜕𝑝𝑗

𝛿𝑝𝑗 −
𝜕ℋ
𝜕𝑞𝑗

𝛿𝑞𝑗) d𝑡 = 0

car 𝛿𝑡 = 0. En intégrant par partie le second terme :

∀𝑗 = 1,… , 𝑛
ˆ 𝑡𝐵

𝑡𝐴
𝑝𝑗𝛿 ̇𝑞𝑗 d𝑡 = [𝑝𝑗𝛿𝑞𝑗]

𝑡𝐵
𝑡𝐴
−
ˆ 𝑡𝐵

𝑡𝐴
̇𝑝𝑗𝛿𝑞𝑗 d𝑡

= −
ˆ 𝑡𝐵

𝑡𝐴
̇𝑝𝑗𝛿𝑞𝑗 d𝑡

car les variations 𝛿𝑞 sont nulles aux extrémités de trajectoires prisent entre les mêmes points de
départ et d’arrivée. Si bien que,

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝛿𝑝𝑗 ̇𝑞𝑗 − ̇𝑝𝑗𝛿𝑞𝑗 −
𝜕ℋ
𝜕𝑝𝑗

𝛿𝑝𝑗 −
𝜕ℋ
𝜕𝑞𝑗

𝛿𝑞𝑗) d𝑡 = 0

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

[( ̇𝑞𝑗 −
𝜕ℋ
𝜕𝑝𝑗

) 𝛿𝑝𝑗 − ( ̇𝑝𝑗 +
𝜕ℋ
𝜕𝑞𝑗

) 𝛿𝑞𝑗] d𝑡 = 0

Dans l’espace des phases, les trajectoires variées peuvent avoir des coordonnées et/ou des
impulsions différentes, les variations 𝛿𝑞𝑗 et 𝛿𝑝𝑗 sont donc indépendantes :

ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

[( ̇𝑞𝑗 −
𝜕ℋ
𝜕𝑝𝑗

) 𝛿𝑝𝑗 − ( ̇𝑝𝑗 +
𝜕ℋ
𝜕𝑞𝑗

) 𝛿𝑞𝑗] d𝑡 = 0

∀𝑗 = 1,… , 𝑛
⎧⎪
⎨⎪
⎩

̇𝑝𝑗 = −𝜕ℋ𝜕𝑞𝑗

̇𝑞𝑗 =
𝜕ℋ
𝜕𝑝𝑗

On retrouve le système d’équations de Hamilton (4.6) page 132.
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9.1.3 L’équation de Hamilton-Jacobi

L’action donne l’équation de la trajectoire 𝑞𝑗 = 𝑞𝑗(𝑡), autrement dit l’action est fonction des 𝑞𝑗 et
du temps :

𝒮 = 𝒮(𝑞𝑗, 𝑡)

d𝑠 =
𝑛
∑
𝑗=1

𝜕𝒮
𝜕𝑞𝑗

d𝑞𝑗 +
𝜕𝒮
𝜕𝑡 d𝑡

Si l’on a la différentielle d’une fonction, c.-à-d. les dérivées partielles de cette fonction par rapport
à chacune de ses variables, alors on a la fonction à une constante près. Pour trouver l’expression
de 𝜕𝒮/𝜕𝑞𝑗 en fonction de 𝑡 et des 𝑞𝑗, cherchons comment varie l’action entre deux trajectoires
réelles infiniment proches, qui commencent au même endroit et se terminent au même moment
mais pas exactement au même endroit :

𝛿𝒮 = [
𝑛
∑
𝑗=1

𝜕𝒮
𝜕𝑞𝑗

𝛿𝑞𝑗]
𝑡𝐵

𝑡𝐴

Par exemple pour deux brachistochrones :

𝐴

𝐵𝐵′

𝑦

𝑥

Fig. 9.1 – Deux brachistochrones infiniment proches, finissant au même moment mais pas au
même endroit

Avec (9.1) page 242 :

𝛿𝒮 =
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝜕ℒ𝜕𝑞𝑗
𝛿𝑞𝑗 +

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿 ̇𝑞𝑗) d𝑡

= [
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗]
𝑡𝐵

𝑡𝐴

+
ˆ 𝑡𝐵

𝑡𝐴

𝑛
∑
𝑗=1

(𝜕ℒ𝜕𝑞𝑗
− d
d𝑡
𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗d𝑡
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Puisque les trajectoires sont réelles, elles vérifient les équations de Lagrange et l’intégrale est
nulle :

𝛿𝒮 = [
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗]
𝑡𝐵

𝑡𝐴

Le lagrangien du système étant connu, nous avons trouvé la première dérivée partielle de 𝒮 :

∀𝑗 = 1,… , 𝑛 𝜕𝒮
𝜕𝑞𝑗

= 𝜕ℒ
𝜕 ̇𝑞𝑗

On pose
∀𝑗 = 1,… , 𝑛 𝑝𝑗

def
= 𝜕ℒ

𝜕 ̇𝑞𝑗
et l’on a :

∀𝑗 = 1,… , 𝑛 𝜕𝒮
𝜕𝑞𝑗

= 𝑝𝑗

C’est la relation (7.3a) page 190. De façon analogue, pour trouver l’expression de 𝜕𝒮/𝜕𝑡 en
fonction de 𝑡 et des 𝑞𝑗, cherchons comment varie l’action entre deux trajectoires confondues, qui
commencent au même endroit et se terminent au même endroit mais pas exactement au même
moment (les deux trajectoires ne peuvent être réelles, car pour une trajectoire il n’existe qu’un
seul temps de parcours possible) :

𝛿𝒮 = [𝜕𝒮𝜕𝑡 𝛿𝑡]
𝑞𝐵

𝑞𝐴

Plutôt que de varier l’intégrale, partons de la différentielle de 𝒮 :

d𝑠 = 𝜕𝒮
𝜕𝑡 d𝑡 +

𝑛
∑
𝑗=1

𝜕𝒮
𝜕𝑞𝑗

d𝑞𝑗

d𝒮
d𝑡 =

𝜕𝒮
𝜕𝑡 +

𝑛
∑
𝑗=1

𝜕𝒮
𝜕𝑞𝑗

̇𝑞𝑗

𝜕𝒮
𝜕𝑡 = ℒ −

𝑛
∑
𝑗=1

𝑝𝑗 ̇𝑞𝑗

Nous avons trouvé le terme 𝜕𝒮/𝜕𝑡. On réécrit cette relation sous la forme

𝜕𝒮
𝜕𝑡 +ℋ(𝑞𝑗,

𝜕𝒮
𝜕𝑞𝑗

, 𝑡) = 0

Les 𝜕𝒮/𝜕𝑞𝑗 et le hamiltonien ℋ étant connus, on trouve 𝜕𝒮/𝜕𝑡 grâce à cette relation. C’est
l’équation de Hamilton-Jacobi (7.3c) page 190. En résolvant cette équation, et en remontant les
inférences précédentes, on obtient d𝒮, donc 𝒮 à une constante près.
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9.2 Propriétés du lagrangien

9.2.1 Changement d’unités

La multiplication du lagrangien par une constante 𝛼 ne change pas l’action correspondante, donc
la trajectoire trouvée :

𝛿
ˆ 𝑡𝐵

𝑡𝐴
𝛼ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

𝛼𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

𝛿
ˆ 𝑡𝐵

𝑡𝐴
ℒ(𝑞𝑗(𝑡), ̇𝑞𝑗(𝑡), 𝑡) d𝑡 = 0

𝛿𝒮 = 0

Cela correspond à un changement d’unités (cf. § 3.2.3 page 96).

9.2.2 Additivité du lagrangien

Soit un système isolé, constitué de deux sous-systèmes. La trajectoire de ce système est donnée
par le principe de moindre action de ce système :

𝛿𝒮 = 0

Si les deux sous-systèmes sont eux aussi isolés, donc n’interagissent pas l’un avec l’autre, chacun
aura sa propre trajectoire indépendante de l’autre :

{
𝛿𝒮1 = 0
𝛿𝒮2 = 0

La trajectoire du système est la somme des trajectoires des deux sous-systèmes :

𝛿𝒮 = 𝛿𝒮1 + 𝛿𝒮2
= 𝛿(𝒮1 + 𝒮2)

𝛿
ˆ
ℒ = 𝛿

ˆ
(ℒ1 + ℒ2)

ℒ = ℒ1 + ℒ2

Nous retrouvons l’additivité du lagrangien, § 3.2.5 page 98.
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9.2.3 Invariance de jauge du lagrangien

Établissons l’invariance de jauge du lagrangien du § 3.2.6 page 98. Soient deux lagrangiens ne
différant que de la dérivée totale par rapport au temps d’une fonction quelconque des coordonnées
et du temps :

𝐿(𝑞, ̇𝑞, 𝑡) = ℒ(𝑞, ̇𝑞, 𝑡) + d
d𝑡𝑓(𝑞, 𝑡)ˆ 𝑡2

𝑡1
𝐿(𝑞, ̇𝑞, 𝑡) d𝑡 =

ˆ 𝑡2

𝑡1
ℒ(𝑞, ̇𝑞, 𝑡) d𝑡 +

ˆ 𝑡2

𝑡1

d
d𝑡𝑓(𝑞, 𝑡) d𝑡

=
ˆ 𝑡2

𝑡1
ℒ(𝑞, ̇𝑞, 𝑡) d𝑡 + [𝑓(𝑞, 𝑡)]𝑡2𝑡1

=
ˆ 𝑡2

𝑡1
ℒ(𝑞, ̇𝑞, 𝑡) d𝑡 + 𝑓(𝑞(𝑡2), 𝑡2) − 𝑓(𝑞(𝑡1), 𝑡1)

𝛿
ˆ 𝑡2

𝑡1
𝐿(𝑞, ̇𝑞, 𝑡) d𝑡 = 𝛿

ˆ 𝑡2

𝑡1
ℒ(𝑞, ̇𝑞, 𝑡) d𝑡

𝛿𝑆 = 𝛿𝒮

Le lagrangien n’est donc défini qu’à la dérivée totale par rapport au temps d’une fonction
quelconque des coordonnées et du temps près.

9.3 Symétries et lois de conservation

Si l’on place le principe de moindre action comme axiome de départ de toute la mécanique, il faut
trouver l’expression du lagrangien des systèmes, à commencer par le lagrangien le plus simple,
celui du système libre ou isolé, c.-à-d., non soumis à une influence extérieure.

9.3.1 Conservation de l’énergie

Le lagrangien d’un système libre ne peut dépendre de l’époque à laquelle un observateur galiléen
le considère, ceci est une conséquence de l’homogénéité du temps, toutes les époques se valent.
Une translation dans le temps ne change pas le lagrangien d’un mobile libre :

ℒ(𝑞, ̇𝑞, 𝑡 + d𝑡) = ℒ(𝑞, ̇𝑞, 𝑡)
ℒ(𝑞, ̇𝑞, 𝑡 + d𝑡) − ℒ(𝑞, ̇𝑞, 𝑡) = 0

𝛿ℒ(𝑞, ̇𝑞, 𝑡) = 0
𝜕ℒ
𝜕𝑡 d𝑡 = 0

𝜕ℒ
𝜕𝑡 = 0
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En conséquence le lagrangien d’un mobile libre ne dépend pas explicitement du temps.

Remarque 9.3.1
Nous avons vu au § 3.3.1 page 107 que cela implique la conservation de l’énergie généralisée, et donc du hamiltonien. Cette dernière est
donc liée à l’homogénéité du temps.

9.3.2 Conservation de la quantité de mouvement

Le lagrangien d’un système libre ne peut dépendre de l’endroit où il se trouve dans le référentiel
d’un observateur galiléen, ceci est une conséquence de l’homogénéité de l’espace, tous les lieux
se valent. Une translation dans l’espace ne change pas le lagrangien d’un mobile libre :

ℒ(𝑞 + d𝑞, ̇𝑞) = ℒ(𝑞, ̇𝑞)
ℒ(𝑞 + d𝑞, ̇𝑞) − ℒ(𝑞, ̇𝑞) = 0

𝛿ℒ(𝑞 + d𝑞, ̇𝑞) = 0
𝜕ℒ
𝜕𝑞 d𝑞 = 0

𝜕ℒ
𝜕𝑞 = 0

En conséquence le lagrangien ne dépend pas explicitement des coordonnées généralisées.

Remarque 9.3.2
En coordonnées rectangulaires

𝜕ℒ
𝜕𝑥 = 0

La coordonnées 𝑥 est cyclique, d’après le § 3.3.2 page 108 la quantité de mouvement selon l’axe 𝑥, donc selon n’importe quel axe, se
conserve. Cette dernière est donc liée à l’homogénéité de l’espace.

La quantité de mouvement d’un système formé de deux sous-systèmes est la somme des quantités
de mouvement des deux sous-systèmes, car elle ne dépend pas de l’interaction entre les deux
sous-sytèmes. Elle est donc additive.

9.3.3 Conservation du moment cinétique

Le lagrangien d’un système libre ne peut dépendre de son orientation dans un référentiel galiléen,
ceci est une conséquence de l’isotropie de l’espace, toutes les directions se valent. Il ne peut donc
être fonction que de la norme de sa vitesse, autrement dit de 𝑣2 :

ℒ = ℒ(𝑣2) (9.2)

Montrons que l’isotropie de l’espace implique la conservation du moment cinétique. Imaginons
la rotation infinitésimale d’un système libre par rapport au référentiel d’un observateur galiléen.
Chaque vecteur position passe de la position #»r 𝑖 à la position #»r 𝑖 + d #»r 𝑖 avec

d #»r 𝑖 = d #»ω × #»r 𝑖

Chaque vecteur vitesse passe de #»v 𝑖 à #»v 𝑖 + d #»v 𝑖 avec

d #»v 𝑖 = d #»ω × #»v 𝑖
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La rotation dans l’espace ne change pas le lagrangien d’un système libre. Utilisons la notation
vectorielle de la remarque 3.2.1 page 94 :

ℒ( #»r 𝑖 + d #»r 𝑖,
#»v 𝑖 + d #»v 𝑖) = ℒ( #»r 𝑖,

#»v 𝑖)
ℒ( #»r 𝑖 + d #»r 𝑖,

#»v 𝑖 + d #»v 𝑖) − ℒ( #»r 𝑖,
#»v 𝑖) = 0

dℒ( #»r 𝑖,
#»v 𝑖) = 0

𝑁
∑
𝑖=1

( 𝜕ℒ
𝜕 #»r 𝑖

⋅ d #»r 𝑖 +
𝜕ℒ
𝜕 #»v 𝑖

⋅ d #»v 𝑖) = 0

𝑁
∑
𝑖=1

[ 𝜕ℒ
𝜕 #»r 𝑖

⋅ ( #»r 𝑖 + d #»r 𝑖) +
𝜕ℒ
𝜕 #»v 𝑖

⋅ (d #»ω × #»v 𝑖)] = 0

𝑁
∑
𝑖=1

[
#»ṗ 𝑖 ⋅ (d

#»ω × #»r 𝑖) +
#»p 𝑖 ⋅ (d

#»ω × #»v 𝑖)] = 0

On utilise la propriété suivante des produits mixtes, #»a ⋅ (
#»

b × #»c ) =
#»

b ⋅ ( #»c × #»a ) :

𝑁
∑
𝑖=1

[d #»ω ⋅ ( #»r 𝑖 ×
#»ṗ 𝑖) + d #»ω ⋅ ( #»v 𝑖 ×

#»p 𝑖)] = 0

d #»ω ⋅
𝑁
∑
𝑖=1

[( #»r 𝑖 ×
#»ṗ 𝑖) + ( #»̇r 𝑖 ×

#»p 𝑖)] = 0

d
d𝑡

𝑁
∑
𝑖=1

#»r 𝑖 ×
#»p 𝑖 = 0

d
d𝑡

𝑁
∑
𝑖=1

#»σ 𝑖 = 0

Le moment cinétique total du système se conserve dans le temps. Le moment cinétique d’un
système formé de deux sous-systèmes est la somme des moments cinétiques des deux sous-
systèmes, car il ne dépend pas de l’interaction entre les deux sous-sytèmes. Il est donc additif.

9.4 Principe de relativité de Galilée

D’après (9.2) page ci-contre, le lagrangien d’un système libre n’est fonction que de 𝑣. Les
équations de Lagrange donnent :

d
d𝑡 (

𝜕ℒ(𝑣)
𝜕 #»v

) − 𝜕ℒ
𝜕 #»r (𝑣)

= 0

d
d𝑡 (

𝜕ℒ(𝑣)
𝜕 #»v

) = 0
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⎧
⎪
⎪

⎨
⎪
⎪
⎩

d
d𝑡 (

𝜕ℒ(𝑣)
𝜕𝑣𝑥

) = 0

d
d𝑡 (

𝜕ℒ(𝑣)
𝜕𝑣𝑦

) = 0

d
d𝑡 (

𝜕ℒ(𝑣)
𝜕𝑣𝑧

) = 0

⇒

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜕ℒ(𝑣)
𝜕𝑣𝑥

= 𝐶𝑠𝑡𝑒/𝑡
1

𝜕ℒ(𝑣)
𝜕𝑣𝑦

= 𝐶𝑠𝑡𝑒/𝑡
2

𝜕ℒ(𝑣)
𝜕𝑣𝑧

= 𝐶𝑠𝑡𝑒/𝑡
3

⇒
⎧

⎨
⎩

ℒ(𝑣) = 𝐶𝑠𝑡𝑒/𝑡
1 𝑣𝑥 + 𝑓(𝑣𝑦, 𝑣𝑧)

ℒ(𝑣) = 𝐶𝑠𝑡𝑒/𝑡
2 𝑣𝑦 + ℎ(𝑣𝑥, 𝑣𝑧)

ℒ(𝑣) = 𝐶𝑠𝑡𝑒/𝑡
3 𝑣𝑧 + 𝑔(𝑣𝑥, 𝑣𝑦)

⎧

⎨
⎩

𝑣𝑥 = 𝑐𝑠𝑡𝑒/𝑡1

𝑣𝑦 = 𝑐𝑠𝑡𝑒/𝑡2

𝑣𝑧 = 𝑐𝑠𝑡𝑒/𝑡3

⇒ #»v = #»C𝑠𝑡𝑒/𝑡

Dans un référentiel galiléen, tout système libre se déplace avec une vitesse constante en grandeur
et en direction. C’est la loi de l’inertie. Elle définit les référentiels galiléens et les systèmes libres.

Les coordonnées #»r et #»r ′ d’un même point dans deux référentiels galiléens ℛ et ℛ′, dont le
second se déplace par rapport au premier avec la vitesse #»V , sont liées par la transformation de
Galilée

#»r = #»r ′ + #»V𝑡

où le temps est le même dans les deux référentiels.

Remarque 9.4.1
Remarquons que nous pouvons redéfinir les référentiels galiléens comme des référentiels dans lesquels l’espace est homogène et isotrope,
et le temps homogène.

9.5 Lagrangien d’un mobile libre

Cherchons l’expression du lagrangien d’un mobile libre. D’après le § précédent, son lagrangien
n’est fonction que de la norme de sa vitesse dans un référentiel galiléen. Supposons une vitesse
relative infinitésimale d #»v entre deux référentiels galiléens. On prend le carré pour ne prendre en
compte que la norme :

#»v ′ = #»v + d #»v
𝑣′2 = ( #»v + d #»v )2

= 𝑣2 + 2d #»v ⋅ #»v + (d𝑣)2

Si nous voulons que la trajectoire du mobile soit la même dans le second référentiel galiléen,
l’action doit être identique dans les deux référentiels, autrement dit le lagrangien ne doit différer
que de la dérivée totale par rapport au temps d’une fonction des coordonnées et du temps :

ℒ(𝑣) = ℒ(𝑣′) + d𝐹
d𝑡

ℒ(𝑣) = ℒ(𝑣 + d𝑣) + d𝐹
d𝑡

ℒ(𝑣2) = ℒ (𝑣2 + 2d #»v ⋅ #»v + (d𝑣)2) + d𝐹( #»r , 𝑡)
d𝑡
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On effectue le développement limité au 1er ordre en d #»v de la fonction ℒ(𝑣2), du type

𝑓(𝑥 + d𝑥) = 𝑓(𝑥) +
𝜕𝑓(𝑥)
𝜕𝑥 d𝑥

En négligeant le terme d’ordre deux (d𝑣)2 :

ℒ(𝑣2) = ℒ(𝑣2) + 2d #»v ⋅ #»v 𝜕ℒ
𝜕𝑣2 +

d𝐹
d𝑡

d𝐹
d𝑡 (

#»r , #»v , 𝑡) = −2d #»v ⋅ #»v 𝜕ℒ
𝜕𝑣2

Cette égalité n’est vérifiée que si

𝜕ℒ
𝜕𝑣2 = 𝐶

ℒ = 𝐶𝑣2

En effet, dans ce cas, en se souvenant que d #»v est constant :

d𝐹( #»r , 𝑡)
d𝑡 = −2𝐶d #»v ⋅ #»v

= −2𝐶d #»v ⋅ d
#»r
d𝑡

𝐹( #»r , 𝑡) = −2𝐶d #»v ⋅ #»r où d #»v est constant.

Remarque 9.5.1
Dans le cas où 𝜕𝑣2ℒ = 𝑓(𝑟, 𝑣, 𝑡) non constante :

d𝐹( #»r , 𝑡)
d𝑡 = −2𝑓(𝑟, 𝑣, 𝑡)d #»v ⋅ #»v

𝐹( #»r , 𝑡) = −2d #»v ⋅
ˆ
𝑓(𝑟, 𝑣, 𝑡) #»vd𝑡

ce qui est impossible car la fonction 𝐹 n’est pas fonction de la vitesse #»v et l’intégrale la fait apparaitre.

La constante doit caractériser le système, on pose 𝐶 = 𝑚/2 et on appelle masse du système la
constante 𝑚. La masse ne peut être négative, sans quoi l’intégrale du lagrangien ne pourrait
passer par un minimum. D’après le § 9.2.1 page 246, la constante 1/2 ne change pas le lagrangien,
elle correspond au choix des unités :

ℒ = 1
2
𝑚𝑣2

Le lagrangien d’un mobile libre se confond avec son énergie cinétique, que nous noterons 𝒯.

9.6 Lagrangien d’un système
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9.6.1 Lagrangien d’un système libre

Pour un système libre constitué de deux mobiles libres, d’après le § 9.2.2 page 246, les lagrangiens
s’additionnent. L’énergie cinétique est donc la somme des énergies cinétiques des parties du
système :

𝒯(𝑞, ̇𝑞, 𝑡) = ∑
𝑖
𝒯𝑖(𝑞, ̇𝑞, 𝑡)

C’est en cela que la masse n’est pas une simple constante que l’on pourrait supprimer du lagrangien.
Elle intervient lorsque le système est constitué de plusieurs parties mobiles.

Pour un système libre constitué de deux mobiles en interaction, nous devons ajouter au lagrangien
des deux mobiles isolés, une fonction qui modélise des interactions dans le système. Elle doit donc
être fonction des coordonnées généralisées des mobiles, et de même dimension que le premier
terme d’énergie cinétique. En mécanique classique on suppose que l’interaction se propage à
vitesse infinie, elle est instantanée et ne dépend pas du temps. Nous l’appelons l’énergie potentielle
𝒱(𝑞). Le lagrangien s’écrit :

ℒ(𝑞, ̇𝑞, 𝑡) = 𝒯(𝑞, ̇𝑞, 𝑡) − 𝒱(𝑞)

Le signe négatif est affaire de convention car 𝒱(𝑞) doit être remplacé par un modèle. Tout
dépend de ce que l’on souhaite appeler énergie potentielle, p. ex. 1

2
𝑘𝑥2 ou −1

2
𝑘𝑥2 pour l’énergie

potentielle élastique d’un ressort dans sa partie linéaire.

9.6.2 Lagrangien d’un système dans un champ extérieur

Si le système est plongé dans un champ extérieur variable dans le temps alors

ℒ(𝑞, ̇𝑞, 𝑡) = 𝒯(𝑞, ̇𝑞, 𝑡) − 𝒱(𝑞, 𝑡)

9.7 Le temps comme quatrième coordonnée

Dérivons le lagrangien par rapport au temps :

dℒ = 𝜕ℒ
𝜕𝑡 d𝑡 +

𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗

dℒ
d𝑡 =

𝜕ℒ
𝜕𝑡 +

𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

̇𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̈𝑞𝑗

Avec les équations de Lagrange (3.13) page 74 :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) − 𝜕ℒ
𝜕𝑞𝑗

= 0

𝜕ℒ
𝜕𝑞𝑗

= d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

)
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Donc

dℒ
d𝑡 =

𝜕ℒ
𝜕𝑡 +

𝑛
∑
𝑗=1

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

) ̇𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̈𝑞𝑗

= 𝜕ℒ
𝜕𝑡 +

𝑛
∑
𝑗=1

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

𝑞𝑗)

𝜕ℒ
𝜕𝑡 +

d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗 − ℒ) = 0 (9.3)

Supposons que dans l’intervalle (𝑡0, 𝑡1) la variable 𝑡 maintenant indépendante varie de 𝛿𝑡 sauf
aux extrémités de la trajectoire. Nous avons alors 𝛿𝑞𝑗 = 0 (où ici le delta n’est dû qu’à la variation
temporelle), et :

𝛿 ̇𝑞𝑗 = 𝛿 (
d𝑞𝑗
d𝑡 )

=
𝛿(d𝑞𝑗)d𝑡 − d𝑞𝑗𝛿(d𝑡)

(d𝑡)2

=
d𝛿𝑞𝑗
d𝑡 −

d𝑞𝑗
d𝑡

𝛿(d𝑡)
d𝑡

= − ̇𝑞𝑗
d𝛿𝑡
d𝑡

En intégrant par parties et avec (9.3) de la présente page :

𝛿
ˆ
ℒd𝑡 =

ˆ
ℒ𝛿d𝑡 +

ˆ
𝛿ℒd𝑡

=
ˆ
ℒd𝛿𝑡 +

ˆ
(𝜕ℒ𝜕𝑡 𝛿𝑡 +

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿 ̇𝑞𝑗) d𝑡

=
ˆ
ℒ d
d𝑡(𝛿𝑡)d𝑡 +

ˆ
𝜕ℒ
𝜕𝑡 𝛿𝑡d𝑡 −

ˆ 𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗
d
d𝑡(𝛿𝑡)d𝑡

= −
ˆ

dℒ
d𝑡 𝛿𝑡d𝑡 +

ˆ
𝜕ℒ
𝜕𝑡 𝛿𝑡d𝑡 +

ˆ 𝑛
∑
𝑗=1

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗) 𝛿𝑡d𝑡

=
ˆ

𝜕ℒ
𝜕𝑡 +

d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

̇𝑞𝑗 − ℒ)𝛿𝑡d𝑡

= 0

La contribution de la variation temporelle est donc nulle. Par conséquent on peut traiter le temps
comme si c’était une quatrième coordonnée, le principe de moindre action de Hamilton incluant
le temps comme paramètre est équivalent au principe de Hamilton sans le temps. Dans un espace
𝑉4 à quatre dimensions, de paramètres 𝑞1, 𝑞2, 𝑞3, 𝑡, les trois équations

∀𝑗 = 1, 2, 3 𝑞𝑗 = 𝑞𝑗(𝑡)

représentent une courbe appelée ligne d’univers. Réciproquement, toute courbe peut être repré-
sentée de la sorte dans 𝒱4. Imaginons un mobile soumis à des forces et répondant aux équations
de Lagrange. Sa trajectoire dans l’espace et dans le temps, c.-à-d. sa ligne d’univers dans 𝑉4, est
telle que 𝛿

´
ℒd𝑡 = 0 en prenant le temps comme quatrième coordonnée, les extrémités spatiales

et temporelles restant fixes.
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Chapitre 10

LE THÉORÈME DE NOETHER
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10.1 Transformations invariantes

10.1.1 Définition des transformations invariantes

Lors d’une transformation ponctuelle de l’espace des configurations (déf. 5.1.1 page 146), on
exprime les anciennes coordonnées généralisées 𝑞 en fonction des nouvelles 𝑞′ :

∀𝑗 = 1,… , 𝑛 𝑞𝑗 = 𝑞𝑗(𝑞′1,… , 𝑞′𝑛, 𝑡)

Les anciennes vitesses généralisées ̇𝑞 s’expriment de facto en fonction des 𝑞′ et des ̇𝑞′ :

∀𝑗 = 1,… , 𝑛 ̇𝑞𝑗 = ̇𝑞𝑗(𝑞′1,… , 𝑞′𝑛, ̇𝑞′1,… , ̇𝑞′𝑛, 𝑡)

On obtient le nouveau lagrangien ℒ′ en injectant ce changement de variables dans l’ancien ℒ :

ℒ′(𝑞′, ̇𝑞′, 𝑡) = ℒ [𝑞(𝑞′, 𝑡), ̇𝑞(𝑞′, ̇𝑞′, 𝑡), 𝑡] (10.1)

Ces lagrangiens sont égaux à chaque instant 𝑡, mais en général ils n’ont pas la même forme
fonctionnelle. En revanche, les équations de Lagrange (3.13) page 74 gardent la même forme
fonctionnelle :

∀𝑗 = 1,… , 𝑛 d
d𝑡 (

𝜕ℒ′(𝑞′𝑗 , ̇𝑞′𝑗 , 𝑡)
𝜕 ̇𝑞′𝑗

) −
𝜕ℒ′(𝑞′𝑗 , ̇𝑞′𝑗 , 𝑡)

𝜕𝑞′𝑗
= 0



Chapitre 10 : Le théorème de Noether

Les équations explicites du mouvement écrites en fonction des nouvelles variables sont habi-
tuellement différentes de celles écrites en fonction des anciennes, elles n’ont pas même forme
fonctionnelle. En général, on ne peut pas obtenir les équations explicites du mouvement simple-
ment en changeant les anciennes variables par les nouvelles.

Exemple 10.1.1 : Des coordonnées rectangulaires du plan aux coordonnées polaires
En coordonnées rectangulaires, la force gravitationnelle (force centrale attractive) s’écrit
en posant 𝑘 > 0 :

#»𝐹 = − 𝑘
𝑥2 + 𝑦2

#»e 𝑟

Cette force dérive de l’énergie potentielle gravitationnelle :

𝒱 = − 𝑘
√𝑥2 + 𝑦2

Le lagrangien a pour expression :

ℒ
def
= 𝒯 − 𝒱

= 1
2
𝑚( ̇𝑥2 + ̇𝑦2) + 𝑘

√𝑥2 + 𝑦2

Reprenons le changement de coordonnées polaires vers rectangulaires ((2.2) page 56) :

{
𝑥 = 𝜌 cos(𝜃)
𝑦 = 𝜌 sin(𝜃)

⇒ {
̇𝑥 = ̇𝜌 cos(𝜃) − 𝜌 ̇𝜃 sin(𝜃)
̇𝑦 = ̇𝜌 sin(𝜃) + 𝜌 ̇𝜃 cos(𝜃)

L’énergie cinétique devient :

𝒯′( ̇𝜌, ̇𝜃) = 𝒯 [ ̇𝑥 ( ̇𝜌, ̇𝜃) , ̇𝑦 ( ̇𝜌, ̇𝜃)]

= 1
2
𝑚[ ̇𝑥2 ( ̇𝜌, ̇𝜃) + ̇𝑦2 ( ̇𝜌, ̇𝜃)]

= 1
2
𝑚{[ ̇𝜌 cos(𝜃) − 𝜌 ̇𝜃 sin(𝜃)]

2
+ [ ̇𝜌 sin(𝜃) + 𝜌 ̇𝜃 cos(𝜃)]

2
}

= 1
2
𝑚( ̇𝜌2 + 𝜌2 ̇𝜃2)

L’énergie potentielle devient :

𝒱′(𝜌, 𝜃) = 𝒱[𝑥(𝜌, 𝜃), 𝑦(𝜌, 𝜃)]

= −𝑘
√𝑥2(𝜌, 𝜃) + 𝑦2(𝜌, 𝜃)

= −𝑘

√𝜌2 cos2(𝜃) + 𝜌2 sin2(𝜃)

= −𝑘𝜌
Le nouveau lagrangien s’écrit :

ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡) = ℒ[𝑥(𝜌, 𝜃, 𝑡), 𝑦(𝜌, 𝜃, 𝑡), ̇𝑥(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡), ̇𝑦(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡), 𝑡]
= 𝒯′( ̇𝜌, ̇𝜃) + 𝒱′(𝜌, 𝜃)

= 1
2
𝑚( ̇𝜌2 + 𝜌2 ̇𝜃2) + 𝑘

𝜌
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Remarque 10.1.1
Si le nouveau lagrangien avait eu même forme fonctionnelle on aurait eu :

ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡) = 1
2
𝑚( ̇𝜌2 + ̇𝜃2) + 𝑘

√𝜌2 + 𝜃2

= ℒ(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)

Les équations de Lagrange s’écrivent de la même façon (elles ont même forme fonction-
nelle) :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)
𝜕 ̇𝜌 ) −

𝜕ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)
𝜕𝜌 = 0

d
d𝑡 (

𝜕ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)
𝜕 ̇𝜃

) −
𝜕ℒ′(𝜌, 𝜃, ̇𝜌, ̇𝜃, 𝑡)

𝜕𝜃 = 0

En revanche les équations du mouvement à force centrale ne s’écrivent pas de la même
façon en coordonnées (𝜌, 𝜃) et en coordonnées (𝑥, 𝑦).

Cependant, il existe des transformations de coordonnées pour lesquelles les équations explicites
du mouvement sont les mêmes, elles ont même forme fonctionnelle et l’on peut passer des unes
aux autres simplement en échangeant les anciennes et les nouvelles coordonnées.

Définition 10.1.1 : Transformations invariantes
Les transformations de coordonnées qui laissent invariantes les équations explicites du
mouvement sont appelées des transformations invariantes.

Remarque 10.1.2
Ne pas confondre l’invariance de forme fonctionnelle d’un lagrangien ℒ′(𝑞′, ̇𝑞′, 𝑡) = ℒ(𝑞′, ̇𝑞′, 𝑡) pour laquelle les variables sont les
mêmes, et l’égalité à chaque instant ℒ′(𝑞′, ̇𝑞′, 𝑡) = ℒ(𝑞, ̇𝑞, 𝑡).

Il est certain que si le lagrangien est invariant de forme fonctionnelle par changement de coor-
données, c.-à-d. si

ℒ′(𝑞′, ̇𝑞′, 𝑡) = ℒ(𝑞′, ̇𝑞′, 𝑡) ou ℒ′(𝑞, ̇𝑞, 𝑡) = ℒ(𝑞, ̇𝑞, 𝑡) (10.2)
alors les équations de Lagrange (qui sont toujours invariantes de forme fonctionnelle), donneront
des équations du mouvement invariantes de forme fonctionnelle. Nous pouvons ajouter au lagran-
gien la dérivée totale par rapport au temps d’une fonction 𝑓 des 𝑛 coordonnées généralisées 𝑞(𝑡)
et du temps (cf. § 3.2.6 page 98) :

ℒ(𝑞′, ̇𝑞′, 𝑡) ≡ ℒ(𝑞′, ̇𝑞′, 𝑡) +
d𝑓(𝑞′, 𝑡)

d𝑡 ou ℒ(𝑞, ̇𝑞, 𝑡) ≡ ℒ(𝑞, ̇𝑞, 𝑡) +
d𝑓(𝑞, 𝑡)
d𝑡

Avec (10.2) de la présente page on obtient la condition générale d’invariance de la transformation,
par exemple pour les coordonnées primées :

ℒ′(𝑞′, ̇𝑞′, 𝑡) = ℒ(𝑞′, ̇𝑞′, 𝑡) +
d𝑓(𝑞′, 𝑡)

d𝑡 (10.3)

La relation (10.1) page 255 toujours vraie lors d’un changement de coordonnées, donne la
condition sur le lagrangien de départ ℒ pour avoir une transformation invariante :

ℒ(𝑞, ̇𝑞, 𝑡) = ℒ(𝑞′, ̇𝑞′, 𝑡) +
d𝑓(𝑞′, 𝑡)

d𝑡 (10.4)
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Exemple 10.1.2 : Mobile libre en une dimension
Le lagrangien d’un mobile de masse 𝑚 libre en une dimension s’écrit :

ℒ(𝑥, ̇𝑥, 𝑡) = 1
2
𝑚 ̇𝑥2

Considérons la possible invariance de ce système par une transformation de la forme,

𝑥′ = 𝑥 + 𝑔(𝑡)
𝑥 = 𝑥′ − 𝑔(𝑡)
̇𝑥 = ̇𝑥′ − ̇𝑔(𝑡)

et cherchons 𝑔(𝑡). Par changement de variables, le nouveau lagrangien s’écrit :

ℒ′(𝑥′, ̇𝑥′, 𝑡) = 1
2
𝑚[ ̇𝑥(𝑥, ̇𝑥, 𝑡)]2

= 1
2
𝑚 ̇𝑥2(𝑥, ̇𝑥, 𝑡)

= 1
2
𝑚[ ̇𝑥′ − ̇𝑔(𝑡)]2

= 1
2
𝑚 ̇𝑥′2 + 1

2
𝑚 ̇𝑔2(𝑡) − 𝑚 ̇𝑥′ ̇𝑔(𝑡)

= ℒ(𝑥′, ̇𝑥′, 𝑡) + 1
2
𝑚 ̇𝑔2(𝑡) − 𝑚 ̇𝑥′ ̇𝑔(𝑡)

Pour que la transformation soit invariante la relation (10.3) page précédente doit être
vérifiée :

ℒ′(𝑥′, ̇𝑥′, 𝑡) = ℒ(𝑥′, ̇𝑥′, 𝑡) +
d𝑓(𝑥′, 𝑡)

d𝑡
1
2
𝑚 ̇𝑔2(𝑡) − 𝑚 ̇𝑥′ ̇𝑔(𝑡) =

d𝑓(𝑥′, 𝑡)
d𝑡

= 1
d𝑡 (

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑥′ d𝑥′ +

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑡 d𝑡)

=
𝜕𝑓(𝑥′, 𝑡)
𝜕𝑥′ ̇𝑥′ +

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑡

1
2
𝑚 ̇𝑔2(𝑡) et 𝜕𝑓(𝑥′,𝑡)

𝜕𝑡
ne sont pas des fonctions explicites de ̇𝑥′, donc seule possibilité :

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑥′ ̇𝑥′ = −𝑚 ̇𝑥′ ̇𝑔(𝑡)

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑥′ = −𝑚 ̇𝑔(𝑡)

𝑓(𝑥′, 𝑡) = −𝑚 ̇𝑔(𝑡)𝑥′ + ℎ1(𝑡)

Il reste :
𝜕𝑓(𝑥′, 𝑡)

𝜕𝑡 = 1
2
𝑚 ̇𝑔2(𝑡)
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Les conditions de Schwarz pour que 𝑓(𝑥′, 𝑡) soit une différentielle totale exacte s’écrivent :

𝜕2𝑓
𝜕𝑡𝜕𝑥′ =

𝜕2𝑓
𝜕𝑥′𝜕𝑡

𝜕
𝜕𝑡 [−𝑚 ̇𝑔(𝑡)] = 𝜕

𝜕𝑥′ [
1
2
𝑚 ̇𝑔2(𝑡)]

𝜕 ̇𝑔(𝑡)
𝜕𝑡 = 0

̇𝑔(𝑡) = 𝛽
𝑔(𝑡) = 𝛼 + 𝛽𝑡

où 𝛼 et 𝛽 sont des constantes.

Remarque 10.1.3

𝜕𝑓(𝑥′, 𝑡)
𝜕𝑡 = 1

2
𝑚𝛽2 et 𝑓(𝑥′, 𝑡) = −𝑚𝛽𝑥′ + ℎ1(𝑡)

𝑓(𝑥′, 𝑡) = 1
2
𝑚𝛽2𝑡 + ℎ2(𝑥′)

La fonction a pour expression :
𝑓(𝑥′, 𝑡) = −𝑚𝛽𝑥′ + 1

2
𝑚𝛽2𝑡

La transformation invariante la plus générale avec les hypothèses que nous avons prises est
donc la suivante :

𝑥′ = 𝑥 + 𝛼 + 𝛽𝑡

Pour 𝛼 ≠ 0 et 𝛽 = 0 il s’agit d’un déplacement purement spatial, et pour 𝛼 = 0 et
𝛽 ≠ 0 d’une transformation galiléenne (changement de référentiel galiléen pour une vitesse
relative 𝛽).

Remarque 10.1.4
On note qu’une transformation de coordonnées vers un référentiel accéléré n’est pas une transformation invariante, puisque
nous avons montré que seuls un déplacement spatial et une transformation galiléenne sont possibles. En mécanique de Newton
cela est clair par l’apparition de forces fictives, aussi appelées force d’inertie.

10.2 Transformations infinitésimales

10.2.1 Définition des transformations infinitésimales

Certaines transformations ont des paramètres ajustables, par exemple 𝛼 et 𝛽 dans l’exemple
précédent. Notons 𝛼𝑘 ces paramètres :

∀𝑗 = 1,… , 𝑛 𝑞′𝑗 = 𝑞′𝑗 (𝑞𝑖, 𝛼𝑘, 𝑡)
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Pour certaines valeurs 𝛼0𝑘 des paramètres, la transformation devient la transformation identité :

∀𝑗 = 1,… , 𝑛 𝑞′𝑗 = 𝑞′𝑗 (𝑞𝑖, 𝛼
0
𝑘, 𝑡)

= 𝑞𝑗

Définition 10.2.1 : Transformations infinitésimales
Les transformations de coordonnées pour lesquelles les paramètres 𝛼𝑘 sont infiniment
proches des 𝛼0𝑘 et pour lesquelles les nouvelles coordonnées généralisées 𝑞′𝑗 ne diffèrent
qu’infiniment peu des anciennes coordonnées généralisées 𝑞𝑖 sont appelées des transfor-
mations infinitésimales. Pour ces transformations :

𝛼𝑘 = 𝛼0𝑘 + 𝛿𝛼𝑘 et ∀𝑗 𝑞′𝑗 = 𝑞𝑗 + 𝛿𝑞𝑗 avec 𝛿𝑞𝑗 = ∑
𝑘
(
𝜕𝑞′𝑗
𝜕𝛼𝑘

)
𝛼0𝑘

𝛿𝛼𝑘

Reprenons la condition (10.4) page 257 sur le lagrangien de départ pour avoir une transformation
invariante, et considérons une transformation infinitésimale invariante :

ℒ(𝑞, ̇𝑞, 𝑡) = ℒ(𝑞′, ̇𝑞′, 𝑡) +
d𝑓(𝑞′, 𝑡)

d𝑡

= ℒ(𝑞 + 𝛿𝑞, ̇𝑞 + 𝛿 ̇𝑞, 𝑡) + d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)]

Remarque 10.2.1
Pour que les lagrangiens soient infiniment proches, la fonction 𝑓 doit prendre une valeur infiniment petite, d’où le 𝛿𝑓. Ici 𝛿𝑓 n’est pas
une petite variation de la fonction 𝑓, mais signifie que 𝑓 prend une valeur infiniment petite du premier ordre.

ℒ(𝑞, ̇𝑞, 𝑡) − ℒ(𝑞 + 𝛿𝑞, ̇𝑞 + 𝛿 ̇𝑞, 𝑡) = d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)]

−𝛿ℒ(𝑞, ̇𝑞, 𝑡) = d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)]

𝛿ℒ(𝑞, ̇𝑞, 𝑡) + d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)] = 0

Un changement de coordonnées 𝛿𝑞𝑗 induit un changement de vitesse généralisée 𝛿 ̇𝑞𝑗 :

∀𝑗 = 1,… , 𝑛 𝛿 ̇𝑞𝑗 = 𝛿 (
d𝑞𝑗
d𝑡 )

= d
d𝑡(𝛿𝑞𝑗)

La transformation infinitésimale invariante s’écrit donc :
𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

𝛿𝑞𝑗 +
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿 ̇𝑞𝑗 +
d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)] = 0

𝑛
∑
𝑗=1

𝜕ℒ
𝜕𝑞𝑗

𝛿𝑞𝑗 +
d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗) −
d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

) 𝛿𝑞𝑗 +
d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)] = 0
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En utilisant les équations de Lagrange :

d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗) +
d
d𝑡 [𝛿𝑓(𝑞

′, 𝑡)] = 0

d
d𝑡 (

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗 + 𝛿𝑓(𝑞′, 𝑡)) = 0

𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗 + 𝛿𝑓(𝑞′, 𝑡) = 𝐶 𝑠𝑡𝑒
/𝑡𝑒𝑚𝑝𝑠 (10.5)

Théorème 10.2.1 : Théorème de Noether
À toute transformation infinitésimale invariante est associée une constante du mouvement,
appelée intégrale première.

Exemple 10.2.1
Nous avons vu (cf. (4.14) page 138) que l’impulsion généralisée associée à une coordonnée
cyclique est une constante du mouvement. C’est un cas particulier du résultat que nous
venons d’obtenir. La variable cyclique 𝑞𝑐𝑦 n’apparaissant pas dans le lagrangien, ce dernier
est invariant sous toute transformation de coordonnées impliquant cette variable,

𝑞′ = 𝑞𝑐𝑦 + 𝛼
𝑞′ − 𝑞𝑐𝑦 = 𝛼

𝛿𝑞𝑐𝑦 = 𝛿𝛼

où 𝛿𝛼 est une constante arbitraire infiniment petite du premier ordre. La condition 10.4
page 257 sur le lagrangien de départ est respectée, avec d𝑓(𝑞′, 𝑡)/d𝑡 = 0, soit 𝑓(𝑞′, 𝑡) = 0.
D’après (10.5) de la présente page, la constante du mouvement associée à la transformation
infinitésimale correspondant à cette transformation invariante est l’impulsion généralisée
𝜕ℒ/𝜕 ̇𝑞𝑐𝑦, conjuguée de la coordonnée cyclique 𝑞𝑐𝑦.

Exemple 10.2.2
Reprenons l’exemple 10.1.2 page 258. La transformation suivante est invariante pour un
mobile libre en une dimension :

𝑥′ = 𝑥 + 𝛼 + 𝛽𝑡

La transformation infinitésimale correspondante est donnée par :

𝑥 + 𝛿𝑥 = 𝑥 + 𝛼 + 𝛽𝑡
𝛿𝑥 = 𝛼 + 𝑡𝛽

= 𝛿𝛼 + 𝑡𝛿𝛽

Remarque 10.2.2
𝛿𝛼 n’est pas une petite variation de 𝛼 mais signifie que 𝛼 est un nombre infiniment petit du premier ordre. De même pour 𝛿𝛽.
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D’après la remarque 10.1.3 page 259, la fonction a pour expression :

𝑓(𝑥′, 𝑡) = −𝑚𝑥′𝛽 + 1
2
𝑚𝛽2𝑡

𝛿𝑓 = −𝑚𝑥′𝛿𝛽 + 1
2
𝑚(𝛿𝛽)2𝑡

En négligeant les infiniments petits d’ordre deux devant ceux d’ordre un :

𝑓(𝑥′, 𝑡) = −𝑚(𝑥 + 𝛿𝑥)𝛿𝛽
= −𝑚𝑥𝛿𝛽

D’après le théorème de Noether 10.2.1 page précédente, pour ℒ(𝑥, ̇𝑥, 𝑡) = 1
2
𝑚 ̇𝑥2, la

constante du mouvement associée à cette transformation infinitésimale invariante s’écrit :
𝑛
∑
𝑗=1

𝜕ℒ
𝜕 ̇𝑞𝑗

𝛿𝑞𝑗 + 𝛿𝑓(𝑞′, 𝑡) = 𝑚 ̇𝑥(𝛿𝛼 + 𝑡𝛿𝛽) − 𝑚𝑥𝛿𝛽

= 𝑚 ̇𝑥𝛿𝛼 + (𝑚 ̇𝑥𝑡 − 𝑚𝑥)𝛿𝛽

Au déplacement purement spatial, 𝛿𝛼 ≠ 0 et 𝛿𝛽 = 0, est associée la conservation de la
quantité de mouvement𝑚 ̇𝑥. À la transformation de Galilée, 𝛿𝛼 = 0 et 𝛿𝛽 ≠ 0, est associée
la conservation de 𝑥0 = 𝑥(𝑡) − ̇𝑥𝑡, c.-à-d. la position initiale du mobile.

10.3 Transformations de l’espace et du temps

10.3.1 Homogénéité de l’espace

Considérons un système libre. Dans le cas général, ce système est constitué de plusieurs parties
qui peuvent être en interaction les unes avec les autres. Ces parties peuvent être en mouvement, la
𝑖e partie est repérée par son vecteur position #»r 𝑖(𝑡) éventuellement fonction du temps. Ce système
contient de l’énergie potentielle 𝒱 (dite interne), par exemple un gaz sous pression, un ressort
tendu, un volant d’inertie, etc. Dans le cas général donc, le lagrangien du système libre constitué
de 𝑁 parties s’écrit :

ℒ =
𝑁
∑
𝑖=1

1
2
𝑚𝑖𝑣2𝑖 + 𝒱

Une expérience de physique donne les mêmes résultats quel que soit l’endroit où elle est faite, ce
qui implique l’homogénéité de l’espace. La physique est invariante par une transformation des
coordonnées consistant en une translation arbitraire d’un vecteur #»a dans l’espace. La translation
est arbitraire pour le système global donc pour chacune de ses parties :

∀𝑖 = 1,… ,𝑁 #»r ′𝑖(𝑡) =
#»r 𝑖(𝑡) +

#»a
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Remarque 10.3.1
La translation spatiale peut être vue indifféremment comme une transformation active, pour laquelle c’est le système qui se déplace, ou
comme une transformation passive, pour laquelle c’est l’observateur qui se déplace.

Une constante du mouvement est donc associée à la transformation infinitésimale invariante
correspondante :

∀𝑖 = 1,… ,𝑁 #»r 𝑖(𝑡) + 𝛿 #»r 𝑖 =
#»r 𝑖(𝑡) + 𝛿 #»a

𝛿 #»r 𝑖 = 𝛿 #»a

La vitesse de chacune des parties du système reste invariante lors d’une translation dans l’espace,

∀𝑖 = 1,… ,𝑁 #»̇r ′𝑖(𝑡) =
#»̇r 𝑖(𝑡) +

#»ȧ

= #»̇r 𝑖(𝑡)

donc aussi l’énergie cinétique totale du système. De même, translater un système dans l’espace
laisse invariante son énergie potentielle interne. Le lagrangien du système est donc invariant de
forme fonctionnelle par une translation dans l’espace :

ℒ′( #»r ′, #»̇r ′, 𝑡) = ℒ( #»r ′, #»̇r ′, 𝑡)

D’après (10.5) page 261 la constante du mouvement associée à la transformation infinitésimale
invariante s’écrit :

𝑁
∑
𝑖=1

𝜕ℒ
𝜕 #»̇r 𝑖

⋅ 𝛿 #»a =
𝑁
∑
𝑖=1

𝑚𝑖
#»̇r 𝑖 ⋅ 𝛿

#»a

On pose
#»𝑃

def
=

𝑁
∑
𝑖=1

𝑚𝑖
#»̇r 𝑖 (10.6)

la constante du mouvement. On l’appelle quantité de mouvement totale du système.

Remarque 10.3.2
Notez que ce résultat est indépendant de l’énergie potentielle interne du système.

10.3.2 Isotropie de l’espace

On considère que le même système libre que précédemment. Une expérience de physique donne les
mêmes résultats quelle que soit l’orientation spatiale qu’on lui donne, ce qui implique l’isotropie
de l’espace. La physique est invariante par une transformation des coordonnées consistant en
une rotation arbitraire d’un angle 𝜃 dans l’espace. Dans le cas d’une transformation active, on
tourne le système d’un angle 𝜃 autour de l’axe des 𝑧. Si l’axe des 𝑧 ne passe pas par le centre
d’inertie du système, celui-ci subit une rotation et un déplacement spatial, mais nous avons vu
que l’espace est homogène. Dans le cas d’une transformation passive l’observateur tourne d’un
angle −𝜃 autour du même axe 𝑧, le système subit une rotation et un déplacement spatial fictif. La
transformation des coordonnées s’écrit :

{
𝑥′ = 𝑥 cos(𝜃) − 𝑦 sin(𝜃)
𝑦′ = 𝑥 sin(𝜃) + 𝑦 cos(𝜃)
𝑧′ = 𝑧
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Une constante du mouvement est donc associée à la transformation infinitésimale invariante
correspondante :

{
𝑥 + 𝛿𝑥 = 𝑥 cos(𝛿𝜃) − 𝑦 sin(𝛿𝜃)
𝑦 + 𝛿𝑦 = 𝑥 sin(𝛿𝜃) + 𝑦 cos(𝛿𝜃)
𝑧′ = 𝑧

⇒ {
𝑥 + 𝛿𝑥 = 𝑥 − 𝑦𝛿𝜃
𝑦 + 𝛿𝑦 = 𝑥𝛿𝜃 + 𝑦
𝑧′ = 𝑧

⇒ {
𝛿𝑥 = −𝑦𝛿𝜃
𝛿𝑦 = 𝑥𝛿𝜃
𝑧′ = 𝑧

L’énergie cinétique du système et son énergie potentielle interne ne sont pas affectées par une
rotation de l’espace. Le lagrangien du système est donc invariant, et par conséquent la trans-
formation des coordonnées aussi. D’après (10.5) page 261 à cette transformation infinitésimale
invariante est associée la constante du mouvement :

𝑁
∑
𝑖=1

( 𝜕ℒ𝜕 ̇𝑥𝑖
𝛿𝑥𝑖 +

𝜕ℒ
𝜕 ̇𝑦𝑖

𝛿𝑦𝑖) =
𝑁
∑
𝑖=1

(−𝜕ℒ𝜕 ̇𝑥𝑖
𝑦𝑖𝛿𝜃 +

𝜕ℒ
𝜕 ̇𝑦𝑖

𝑥𝑖𝛿𝜃)

=
𝑁
∑
𝑖=1

𝑚𝑖(𝑥𝑖 ̇𝑦𝑖 − 𝑦𝑖 ̇𝑥𝑖)𝛿𝜃

= L𝑧𝛿𝜃

où L𝑧 est la composante en 𝑧 du moment angulaire total du système. De même, en considérant
des rotations autour des axes 𝑥 et 𝑦, on montre que les composantes L𝑥 et L𝑦 sont des constantes
du mouvement. Le moment cinétique total du système est donc une constante du mouvement.

Remarque 10.3.3
Les vecteurs étant indépendants de tout système de coordonnées, une égalité (ici

#»𝐿 = #»𝑐 𝑠𝑡𝑒) démontrée dans un système de coordonnées
particulier (ici rectangulaire) est valable dans tout système de coordonnées.

Nous pouvons refaire cette démonstration sous forme vectorielle, sans utiliser de système de
coordonnées. Soit #»a un vecteur unitaire porté par l’axe de rotation passant par le centre du
système de coordonnées, alors :

𝛥 #»r 𝑖 =
#»a × #»r 𝑖

𝛿 #»r 𝑖 = 𝛿 #»a × #»r 𝑖

où 𝛿 #»a = 𝛿𝜃 #»a .
𝑁
∑
𝑖=1

( 𝜕ℒ
𝜕 #»̇r 𝑖

𝛿 #»r 𝑖) =
𝑁
∑
𝑖=1

[𝑚𝑖
#»̇r 𝑖 × (𝛿 #»a × #»r 𝑖)]

=
𝑁
∑
𝑖=1

( #»r 𝑖 ×𝑚𝑖
#»̇r 𝑖) 𝛿

#»a

= #»𝐿 ⋅ 𝛿 #»a
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10.3.3 Changement de référentiel galiléen

Une expérience de physique donne les mêmes résultats quel que soit le référentiel galiléen
dans lequel se trouve le système et quel que soit le référentiel galiléen dans lequel se trouve
l’observateur. La physique est invariante par une transformation de galilée des coordonnées. Dans
une transformation active, le système voit sa vitesse augmenter de #»v . Dans une transformation
passive, la vitesse nulle de l’observateur devient − #»v . La transformation de coordonnées de
l’ancien référentiel galiléen ℛ vers le nouveau ℛ′ s’écrit :

#»r ′𝑖(𝑡) =
#»r 𝑖(𝑡) + 𝑡 #»v ⇒ #»̇r ′𝑖 =

#»̇r 𝑖 +
#»v

La nouvelle énergie cinétique s’écrit :

𝒯′ = 1
2

𝑁
∑
𝑖=1

𝑚𝑖‖
#»̇r ′𝑖 −

#»v ‖2

= 𝒯 − 1
2

𝑁
∑
𝑖=1

𝑚𝑖
#»̇r ′𝑖 ⋅

#»v + 1
2

𝑁
∑
𝑖=1

𝑚𝑖‖
#»v ‖2

L’énergie potentielle interne n’est pas affectée par un changement de référentiel. Le nouveau
lagrangien s’écrit :

ℒ′(𝑞′, ̇𝑞′) = ℒ(𝑞′, ̇𝑞′) − 1
2

𝑁
∑
𝑖=1

𝑚𝑖
#»̇r ′𝑖 ⋅

#»v + 1
2

𝑁
∑
𝑖=1

𝑚𝑖‖
#»v ‖2

Le lagrangien n’est pas invariant, mais le terme de droite est la dérivée totale par rapport au
temps d’une fonction de la position et du temps :

𝑓 = −1
2

𝑁
∑
𝑖=1

𝑚𝑖
#»r ′𝑖 ⋅

#»v + 1
2

𝑁
∑
𝑖=1

𝑚𝑖‖
#»v ‖2𝑡

Une constante du mouvement est donc associée à la transformation infinitésimale invariante :
#»r 𝑖 + 𝛿 #»r 𝑖 =

#»r 𝑖 + 𝑡𝛿 #»v
𝛿 #»r 𝑖 = 𝑡𝛿 #»v

D’après (10.5) page 261 à cette transformation infinitésimale invariante est associée la constante
du mouvement :

𝑁
∑
𝑖=1

𝜕ℒ
𝜕 #»̇r 𝑖

𝛿 #»r 𝑖 + 𝛿𝑓[ #»r ′(𝑡), 𝑡] =
𝑁
∑
𝑖=1

𝑚𝑖
#»̇r 𝑖 ⋅ 𝛿

#»v 𝑡 −
𝑁
∑
𝑖=1

𝑚𝑖
#»r ′𝑖 ⋅ 𝛿

#»v

= (
𝑁
∑
𝑖=1

𝑚𝑖
#»̇r 𝑖𝑡 −

𝑁
∑
𝑖=1

𝑚𝑖
#»r 𝑖) ⋅ 𝛿

#»v

= ( #»𝑃𝑡 −
𝑁
∑
𝑖=1

𝑚𝑖
#»r 𝑖) ⋅ 𝛿

#»v

où #»𝑃 la quantité de mouvement totale du système se conserve (déf. 10.6 page 263). En posant

#»𝑅𝐺(𝑡)
def
= 1

𝑀

𝑁
∑
𝑖=1

𝑚𝑖
#»r 𝑖(𝑡)
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le vecteur position du centre d’inertie 𝐺 du système :
#»𝑃𝑡 + 𝑀 #»𝑅𝐺 = #»𝑐 𝑠𝑡𝑒

= 𝑀 #»𝑅𝐺(𝑡 = 0)

La constante du mouvement est donc le vecteur position initial du centre d’inertie du système.

10.3.4 Décalage temporel

Les transformations invariantes et les transformations infinitésimales concernent les transfor-
mations des coordonnées spatiales uniquement, les variables dépendantes. Pour la variable
indépendante, le temps, la relation (4.9) page 134 montre que si le lagrangien ne dépend pas
explicitement du temps, de sorte que les équations du mouvement sont invariantes lors d’un
décalage temporel, alors le hamiltonien se conserve.
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11.1 Double plan incliné

Deux masses 𝑚1 et 𝑚2 sur un double plan incliné sont reliées entre elles par un câble de longueur
constante passant par une poulie. Les masses se déplacent sans frottements. Quelle est l’équation
de leur mouvement?



Chapitre 11 : Comparaison des différentes mécaniques

11.1.1 Résolution par la mécanique de Newton

𝛼1 𝛼2

#»𝑃 1
#»𝑃 2

#»𝑅1

#»𝑅2

#»𝑇 1
#»𝑇 2

𝑋1 𝑋2

𝑌1 𝑌2

Fig. 11.1 – Double plan incliné

a) Grâce à la relation fondamentale de la dynamique

Pour chaque masse, la relation fondamentale de la dynamique s’écrit :

𝑚 #»a = ∑
#»

f (𝑒)

= #»𝑃 + #»𝑅 + #»𝑇

Pour la masse 𝑚1 :
𝑚1

#»a 1 =
#»𝑃 1 +

#»𝑅1 +
#»𝑇 1

En projetant sur les axes 𝑋1 et 𝑌1, on obtient le système

{
𝑚1 ̈𝑥1 = 𝑚1𝑔 sin(𝛼1) − 𝑇
0 = −𝑚1𝑔 cos(𝛼1) + 𝑅1

De même, pour la masse 𝑚2, en projetant sur les axes 𝑋2 et 𝑌2 :

{
𝑚2 ̈𝑥2 = 𝑚2𝑔 sin(𝛼2) − 𝑇
0 = −𝑚2𝑔 cos(𝛼2) + 𝑅2

Avec ce choix d’axes de projection, les positions et les vitesses des masses sont liées par :

𝑥2 = −𝑥1
̇𝑥2 = − ̇𝑥1
̈𝑥2 = − ̈𝑥1

Par conséquent :

𝑚1 ̈𝑥1 −𝑚2 ̈𝑥2 = 𝑚1𝑔 sin(𝛼1) − 𝑚2𝑔 sin(𝛼2)

̈𝑥1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

𝑚1 +𝑚2
𝑔

̇𝑥1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

(𝑚1 +𝑚2)
𝑔𝑡 + ̇𝑥1 (𝑡 = 0)

𝑥1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

2 (𝑚1 +𝑚2)
𝑔𝑡2 + ̇𝑥1 (𝑡 = 0) 𝑡 + 𝑥1 (𝑡 = 0)
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b) Grâce aux intégrales premières

À 𝑛 = 1 degré de liberté correspond 2𝑛 − 1 = 1 intégrale première. Toutes les forces
extérieures dérivent d’un potentiel donc l’énergie mécanique se conserve. Elle a pour
expression :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚1 ̇𝑥21 +

1
2
𝑚2 ̇𝑥22 −𝑚1𝑔𝑥1 sin(𝛼1) − 𝑚2𝑔𝑥2 sin(𝛼2)

= 𝑐 𝑠𝑡𝑒

Avec notre choix d’axes de projection :

ℰ = 1
2
𝑚1 ̇𝑥21 +

1
2
𝑚2 ̇𝑥21 −𝑚1𝑔𝑥1 sin(𝛼1) + 𝑚2𝑔𝑥1 sin(𝛼2)

= 1
2
(𝑚1 +𝑚2) ̇𝑥21 − 𝑔[𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)]𝑥1

= 1
2
(𝑚1 +𝑚2) ̇𝑥21 − 𝐴𝑥1

où l’on a posé 𝐴 = 𝑔[𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)]. On prend les conditions initiales sur la
position 𝑥1(𝑡 = 0) = 0 et sur la vitesse ̇𝑥1(𝑡 = 0) = 0, par conséquent 𝑚1 descend et :

ℰ = 0

Nous avons alors
d𝑥1
d𝑡 = ±

√
2𝐴𝑥1

𝑚1 +𝑚2

On ne conserve que le signe positif pour la vitesse car nous avons supposé que la masse
𝑚1 descend. La seule variable 𝑥1 est notée 𝑥 dans ce qui suit :

ˆ 𝑡

0
d𝑡 = √

𝑚1 +𝑚2
2

ˆ 𝑥

0

d𝑥
√𝐴𝑥

On pose 𝑋 = 𝐴𝑥 donc d𝑥 = d𝑋/𝐴 :

𝑡 = 1
𝐴√

𝑚1 +𝑚2
2

ˆ 𝑋

0

d𝑋
√𝑋

= 2
𝐴√

𝑚1 +𝑚2
2 [√𝑋]

𝑋

0

= 1
𝐴
√2(𝑚1 +𝑚2)𝑋

Revenons à la variable 𝑥 :

𝑡 = √
2(𝑚1 +𝑚2)

𝐴
√𝑥

𝑥 = 𝐴
2(𝑚1 +𝑚2)

𝑡2

= 𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)
2(𝑚1 +𝑚2)

𝑔𝑡2
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11.1.2 Résolution par le principe des travaux virtuels

𝛼1 𝛼2

#»𝑃 1
#»𝑃 2

#»𝑅1

#»𝑅2
𝛿 #»r 1

𝛿 #»r 2

Fig. 11.2 – Double plan incliné

Le système est soumis la liaison holonome :

‖𝛿 #»r 1‖ = ‖𝛿 #»r 2‖

On choisit des déplacements virtuels 𝛿 #»r 1 et 𝛿 #»r 2 compatibles entre eux et avec les liaisons. Le
principe des travaux virtuels (2.1) page 54 s’écrit :

( #»𝑃 1 +
#»𝑅1 −

#»ṗ 1) ⋅ 𝛿
#»r 1 + ( #»𝑃 2 +

#»𝑅2 −
#»ṗ 2) ⋅ 𝛿

#»r 2 = 0

(−𝑚1𝑔 sin(𝛼1) − 𝑚1‖
#»ṗ 1‖) ‖𝛿

#»r 1‖ + (𝑚2𝑔 sin(𝛼2) − 𝑚2‖
#»ṗ 2‖) ‖𝛿

#»r 2‖ = 0

Avec ‖ #»ṗ 1‖ = ‖ #»ṗ 2‖ et la condition de liaison holonome :

−𝑚1𝑔 sin(𝛼1) − 𝑚1‖
#»ṗ 1‖ + 𝑚2𝑔 sin(𝛼2) − 𝑚2‖

#»ṗ 1‖ = 0

(−𝑚1 −𝑚2) ‖
#»ṗ 1‖ − 𝑚1𝑔 sin(𝛼1) + 𝑚2𝑔 sin(𝛼2) = 0

‖ #»ṗ 1‖ =
𝑚2 sin(𝛼2) − 𝑚1 sin(𝛼1)

𝑚1 +𝑚2
𝑔

Résolvons ce problème en utilisant les multiplicateurs indéterminés de Lagrange. Soit 𝜆 le
multiplicateur, le principe des travaux virtuels et la condition de liaison s’écrivent en une seule
équation :

( #»𝑃 1 +
#»𝑅1 −

#»ṗ 1) ⋅ 𝛿
#»r 1 + ( #»𝑃 2 +

#»𝑅2 −
#»ṗ 2) ⋅ 𝛿

#»r 2 + 𝜆 (‖𝛿 #»r 1‖ − ‖𝛿 #»r 2‖) = 0

[−𝑚1𝑔 sin(𝛼1) − 𝑚1‖
#»ṗ 1‖] ‖𝛿

#»r 1‖ + [𝑚2𝑔 sin(𝛼2) − 𝑚2‖
#»ṗ 2‖] ‖𝛿

#»r 2‖ + 𝜆 [‖𝛿 #»r 1‖ − ‖𝛿 #»r 2‖] = 0

[−𝑚1𝑔 sin(𝛼1) − 𝑚1‖
#»ṗ 1‖ + 𝜆] ‖𝛿 #»r 1‖ + [𝑚2𝑔 sin(𝛼2) − 𝑚2‖

#»ṗ 2‖ − 𝜆] ‖𝛿 #»r 2‖ = 0

‖𝛿 #»r 1‖ et ‖𝛿 #»r 2‖ étant non nuls et ‖ #»ṗ 1‖ = ‖ #»ṗ 2‖ :

{
−𝑚1𝑔 sin(𝛼1) − 𝑚1‖

#»ṗ 1‖ + 𝜆 = 0

𝑚2𝑔 sin(𝛼2) − 𝑚2‖
#»ṗ 2‖ − 𝜆 = 0

⇒ 𝑚2𝑔 sin(𝛼2) − 𝑚1𝑔 sin(𝛼2) − (𝑚1 +𝑚2)‖
#»ṗ 1‖ = 0

‖ #»ṗ 1‖ =
𝑚2 sin(𝛼2) − 𝑚1 sin(𝛼1)

𝑚1 +𝑚2
𝑔
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11.1.3 Résolution par la mécanique de Lagrange

Soient 𝑞1 la distance du sommet du double plan à la masse 𝑚1, et 𝑞2 celle à la masse 𝑚2. Le
système est soumis à la liaison holonome :

𝑞1 + 𝑞2 = 𝑐 𝑠𝑡𝑒

d𝑞1 + d𝑞2 = 0
̇𝑞1 = − ̇𝑞2

Il n’y a qu’un seul degré de liberté donc une seule coordonnée généralisée, p. ex. 𝑞1.

En prenant le sommet du double plan comme origine des énergies potentielles, le lagrangien
s’écrit :

ℒ
def
= 𝒯 − 𝒱

= 1
2
𝑚1 ̇𝑞21 +

1
2
𝑚2 ̇𝑞22 − (−𝑚1𝑔 𝑞1 sin(𝛼1) − 𝑚2𝑔 𝑞2 sin(𝛼2))

= 1
2
(𝑚1 +𝑚2) ̇𝑞21 + [𝑚1 𝑞1 sin(𝛼1) + 𝑚2 (𝐶 − 𝑞1) sin(𝛼2)] 𝑔

= 1
2
(𝑚1 +𝑚2) ̇𝑞21 + (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1

L’équation de Lagrange s’écrit :
d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞1

) = 𝜕ℒ
𝜕𝑞1

(𝑚1 +𝑚2) ̈𝑞1 = (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔

̈𝑞1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

𝑚1 +𝑚2
𝑔

11.1.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝑞1. Le moment
conjugué de la variable 𝑞1 a pour expression :

𝑝1
def
= 𝜕ℒ

𝜕 ̇𝑞1
= (𝑚1 +𝑚2) ̇𝑞1 ⇒ ̇𝑞1 =

𝑝1
𝑚1 +𝑚2

(11.1)

Le hamiltonien s’écrit :

ℋ
def
= 𝑝1 ̇𝑞1 − ℒ

=
𝑝21

𝑚1 +𝑚2
− 1

2
(𝑚1 +𝑚2)

𝑝21
(𝑚1 +𝑚2)2

− (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1

=
𝑝21

2(𝑚1 +𝑚2)
− (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1

Les équations de Hamilton s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝1 = −𝜕ℋ𝜕𝑞1

̇𝑞1 =
𝜕ℋ
𝜕𝑝1

⇒ {
̇𝑝1 = (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔

̇𝑞1 =
𝑝1

𝑚1 +𝑚2
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{
𝑝1 = (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑡 + 𝑝1 (𝑡 = 0)

̇𝑞1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

𝑚1 +𝑚2
𝑔𝑡 +

𝑝1 (𝑡 = 0)
𝑚1 +𝑚2

soit, en utilisant (11.1) page précédente,

𝑞1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

2(𝑚1 +𝑚2)
𝑔𝑡2 + ̇𝑞1 (𝑡 = 0) 𝑡 + 𝑞1 (𝑡 = 0)

11.1.5 Résolution par la mécanique de Hamilton-Jacobi

Avec (7.3a) page 190 le hamiltonien a pour expression :

ℋ = 1
2(𝑚1 +𝑚2)

( 𝜕𝒮𝜕𝑞1
)
2
− (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1

L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

𝜕𝒮(𝑞1, 𝛼, 𝑡)
𝜕𝑡 + 1

2(𝑚1 +𝑚2)
( 𝜕𝒮𝜕𝑞1

)
2
− (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 = 0

D’après (4.8) page 133, le hamiltonien ne dépend pas explicitement du temps donc il se conserve.
La liaison étant holonome scléronome et le potentiel ne dépendant pas des vitesses généralisées,
l’énergie mécanique se confond avec le hamiltonien :

−ℰ+ 1
2(𝑚1 +𝑚2)

(
𝜕𝒮0
𝜕𝑞1

)
2
− (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 = 0

𝜕𝒮0
𝜕𝑞1

= ±√2(𝑚1 +𝑚2) [(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 + ℰ]

𝒮0(𝑞1, ℰ) = ±√2(𝑚1 +𝑚2)
ˆ
√(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 + ℰd𝑞1 + 𝑐

= ±23
√2(𝑚1 +𝑚2)

[(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 + ℰ]3/2

(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔
+ 𝑐

= ±
2√2(𝑚1 +𝑚2)

3 (𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔
[(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 + ℰ]3/2

où nous avons supprimer la constante d’intégration. (7.9b) page 193 donne l’équation du mouve-
ment 𝑡(𝑞1) :

𝛽 = −𝑡 +
𝜕𝒮0
𝜕ℰ

= −𝑡 ±
√2(𝑚1 +𝑚2)

(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔 √
(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔𝑞1 + ℰ

En isolant la coordonnée généralisée 𝑞1 on trouve l’équation du mouvement 𝑞1(𝑡) :

𝑞1 =
𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)

2(𝑚1 +𝑚2)
𝑔(𝛽 + 𝑡)2 − ℰ

(𝑚1 sin(𝛼1) − 𝑚2 sin(𝛼2)) 𝑔

272 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 11 : Comparaison des différentes mécaniques

11.2 Poulies coaxiales

Soient deux poulies coaxiales, de rayons 𝑅1 et 𝑅2, supportant les poids #»𝑃 1 et #»𝑃 2. Quelle est
l’équation du mouvement des poids?

#»𝑃 1
#»𝑃 2

#»𝑇 1
#»𝑇 2

𝛿𝜑

𝑅1
𝑅2

Fig. 11.3 – Poulies coaxiales

11.2.1 Résolution par la mécanique de Newton

a) Grâce au théorème du moment cinétique

La dérivée totale par rapport au temps du moment cinétique d’un système par rapport à un
point 𝑜 quelconque, est égale à la somme des moments par rapport au même point 𝑜 des
forces extérieures appliquées à ce système :

d #»L 0
d𝑡 = ∑ #»Γ (𝑒)

0

L’ensemble des poids et des poulies coaxiales constitue le système. Les tensions #»𝑇 1 ≠
#»𝑇 2

sont des forces intérieures qui n’interviennent pas. En prenant le centre commun des poulies
coaxiales comme point 𝑜, nous avons :

d
d𝑡 (

#»𝑅1 ×𝑚1
#»v 1 +

#»𝑅2 ×𝑚2
#»v 2) =

#»𝑅1 ×
#»𝑃 1 +

#»𝑅2 ×
#»𝑃 2

d
d𝑡 (𝑅1 ⋅ 𝑚1𝑅1 ̇𝜑 + 𝑅2 ⋅ 𝑚2𝑅2 ̇𝜑) = 𝑅1 ⋅ 𝑚1𝑔 − 𝑅2 ⋅ 𝑚2𝑔
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soit,

̈𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅21 +𝑚2𝑅22

𝑔

̇𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅22 +𝑚1𝑅22

𝑔𝑡 + ̇𝜑 (𝑡 = 0)

𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
2 (𝑚1𝑅22 +𝑚1𝑅22)

𝑔𝑡2 + ̇𝜑 (𝑡 = 0) 𝑡 + 𝜑 (𝑡 = 0)

b) Grâce aux intégrales premières

À 𝑛 = 1 degré de liberté correspond 2𝑛 − 1 = 1 intégrale première. Toutes les forces
extérieures dérivent d’un potentiel donc l’énergie mécanique se conserve. Elle a pour
expression :

ℰ
def
= 𝒯 + 𝒱

= 1
2
(𝑚1𝑅21 +𝑚2𝑅22) ̇𝜑2 − (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

= 𝑐 𝑠𝑡𝑒

En dérivant par rapport au temps :

(𝑚1𝑅21 +𝑚2𝑅22) ̇𝜑 ̈𝜑 − (𝑚1𝑅1 −𝑚2𝑅2) 𝑔 ̇𝜑 = 0

̈𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅21 +𝑚2𝑅22

𝑔

11.2.2 Résolution par le principe des travaux virtuels

Donnons aux poulies une rotation virtuelle d’angle 𝛿𝜑. Appliquons le principe des travaux
virtuels (2.1) page 54 aux deux parties mobiles (𝑁 = 2), les masses 𝑚1 et 𝑚2 :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 1 −
#»ṗ 1) ⋅ 𝛿

#»r 1 + ( #»𝑃 2 −
#»ṗ 2) ⋅ 𝛿

#»r 2 = 0

(𝑚1𝑔 − 𝑚1𝑅1 ̈𝜑) 𝑅1𝛿𝜑 + (−𝑚2𝑔 − 𝑚2𝑅2 ̈𝜑) 𝑅2𝛿𝜑 = 0
𝑚1𝑔𝑅1 −𝑚1𝑅21 ̈𝜑 − 𝑚2𝑔𝑅2 −𝑚2𝑅22 ̈𝜑 = 0

̈𝜑 (−𝑚2𝑅22 −𝑚1𝑅21) = 𝑚2𝑔𝑅2 −𝑚1𝑔𝑅1

̈𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅21 +𝑚2𝑅22

𝑔
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11.2.3 Résolution par la mécanique de Lagrange

On choisit le centre des poulies coaxiales comme origine des énergies potentielles :

𝒱 = −𝑚1𝑔ℎ1 −𝑚2𝑔ℎ2
= − [𝑚1 (𝐶1 + 𝑅1𝜑) + 𝑚2 (𝐶2 − 𝑅2𝜑)] 𝑔
= − (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

Il n’y a qu’une seule coordonnée généralisée, 𝑞1 = 𝜑. Le lagrangien s’écrit :

ℒ
def
= 𝒯 − 𝒱

= 1
2
(𝑚1𝑅21 +𝑚2𝑅22) ̇𝜑2 + (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜑 ) =

𝜕ℒ
𝜕𝜑

(𝑚1𝑅21 +𝑚2𝑅22) ̈𝜑 = (𝑚1𝑅1 −𝑚2𝑅2) 𝑔

̈𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅21 +𝑚2𝑅22

𝑔

11.2.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝜑. Le moment
conjugué de la coordonnée généralisée 𝜑 a pour expression :

𝑝
def
= 𝜕ℒ

𝜕 ̇𝜑 = (𝑚1𝑅21 +𝑚2𝑅22) ̇𝜑 ⇒ ̇𝜑 =
𝑝

𝑚1𝑅21 +𝑚2𝑅22
(11.2)

Le hamiltonien a pour expression :

ℋ
def
= 𝑝 ̇𝜑 − ℒ

=
𝑝2

𝑚1𝑅21 +𝑚2𝑅22
− 1

2
(𝑚1𝑅21 +𝑚2𝑅22) ̇𝜑2 − (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

=
𝑝2

2 (𝑚1𝑅21 +𝑚2𝑅22)
− (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

= ℰ

Il ne dépend pas explicitement du temps donc il se conserve. Les équations de Hamilton s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝 = −𝜕ℋ𝜕𝜑

̇𝜑 = 𝜕ℋ
𝜕𝑝

⇒ {
̇𝑝 = (𝑚1𝑅1 −𝑚2𝑅2) 𝑔

̇𝜑 =
𝑝

𝑚1𝑅21 +𝑚2𝑅22
⇒ {

𝑝 = (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝑡 + 𝑝 (𝑡 = 0)

̇𝜑 = 𝑚1𝑅1 −𝑚2𝑅2
𝑚1𝑅22 +𝑚1𝑅22

𝑔𝑡 +
𝑝 (𝑡 = 0)

𝑚1𝑅22 +𝑚1𝑅22
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11.2.5 Résolution par la mécanique de Hamilton-Jacobi

Avec (7.3a) page 190 le hamiltonien a pour expression :

ℋ = 1
2 (𝑚1𝑅21 +𝑚2𝑅22)

(𝜕𝒮𝜕𝜑)
2
− (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑

L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

𝜕𝒮(𝜑, 𝛼, 𝑡)
𝜕𝑡 + 1

2 (𝑚1𝑅21 +𝑚2𝑅22)
(𝜕𝒮𝜕𝜑)

2
− (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 = 0

D’après (4.8) page 133, le hamiltonien ne dépend pas explicitement du temps donc il se conserve.
La liaison étant holonome scléronome et le potentiel ne dépendant pas des vitesses généralisées,
l’énergie mécanique se confond avec le hamiltonien :

−ℰ + 1
2 (𝑚1𝑅21 +𝑚2𝑅22)

(
𝜕𝒮0
𝜕𝜑 )

2
− (𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 = 0

𝜕𝒮0
𝜕𝜑 = ±√2 (𝑚1𝑅21 +𝑚2𝑅22) [(𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 + ℰ]

𝒮0(𝜑, ℰ) = ±√2 (𝑚1𝑅21 +𝑚2𝑅22)
ˆ
√(𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 + ℰd𝜑 + 𝑐

= ±23 √2 (𝑚1𝑅21 +𝑚2𝑅22)
[(𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 + ℰ]3/2

(𝑚1𝑅1 −𝑚2𝑅2) 𝑔
+ 𝑐

= ±
2√2 (𝑚1𝑅21 +𝑚2𝑅22)

3 (𝑚1𝑅1 −𝑚2𝑅2) 𝑔
[(𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 + ℰ]3/2

où nous avons supprimer la constante d’intégration. (7.9b) page 193 donne l’équation du mouve-
ment 𝑡(𝜑) :

𝛽 = −𝑡 +
𝜕𝒮0
𝜕ℰ

= −𝑡 ±
√2 (𝑚1𝑅21 +𝑚2𝑅22)

(𝑚1𝑅1 −𝑚2𝑅2) 𝑔
√(𝑚1𝑅1 −𝑚2𝑅2) 𝑔𝜑 + ℰ

En isolant la coordonnée généralisée 𝜑 on trouve l’équation du mouvement 𝜑(𝑡) :

𝜑 = (𝑚1𝑅1 −𝑚2𝑅2)
2 (𝑚1𝑅21 +𝑚2𝑅22)

𝑔(𝛽 + 𝑡)2 − ℰ
(𝑚1𝑅1 −𝑚2𝑅2) 𝑔

276 sciences-physiques.neocities.org

http://sciences-physiques.neocities.org


Chapitre 11 : Comparaison des différentes mécaniques

11.3 Masse glissant sans frottements sur un plan incliné non fixe

Une masses 𝑚 glisse sans frottements sur un plan incliné de masse 𝑀, lui-même glissant sans
frottements sur une surface horizontale. Quelles sont les équations du mouvement de la masse 𝑚
et du plan incliné?

11.3.1 Résolution par la mécanique de Newton

(a) Grâce à la relation fondamentale de la dynamique

𝑋

𝑌

𝛼
𝑀

#»a

𝑚
#»𝑅𝑚

#»𝐴 #»𝑃𝑚

𝑂

Fig. 11.4 – Masse glissant sans frottements sur un plan incliné non fixe

Soit #»a le vecteur accélération de la masse 𝑚 relative au plan incliné, et soit #»𝐴 le vecteur
accélération du plan incliné.

Pour le plan incliné de masse 𝑀, la relation fondamentale de la dynamique s’écrit :

∑
#»

f (𝑒)
𝑀 = 𝑀 #»𝐴

La force exercée par la masse 𝑚 sur le plan incliné n’est pas son poids total #»𝑃𝑚, mais sa
composante perpendiculaire au plan incliné, − #»𝑅𝑚. À la limite où l’angle 𝛼 tend vers 90°, cette
composante du poids tend vers zéro et la masse 𝑚 tombe en chute libre.

#»𝑃𝑀 + #»𝑅𝑀 + (− #»𝑅𝑚) = 𝑀 #»𝐴

En projetant sur les axes 𝑋 et 𝑌, nous avons :

{
−𝑅𝑚 sin(𝛼) = 𝑀𝐴𝑥

−𝑀𝑔 + (𝑀𝑔 + 𝑅𝑚 cos(𝛼)) − 𝑅𝑚 cos(𝛼) = 𝑀𝐴𝑦
⇒ {

𝐴𝑥 = −
𝑅𝑚
𝑀 sin(𝛼)

𝐴𝑦 = 0

donc le vecteur accélération #»𝐴 est horizontal et la composante 𝐴𝑥 est négative. En notant 𝐴 la
norme de #»𝐴 ,

𝐴 = √𝐴2𝑥
= −𝐴𝑥
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Donc,
𝑀𝐴 = 𝑅𝑚 sin(𝛼) (11.3)

L’accélération de la masse 𝑚 dans un référentiel galiléen est la somme des accélérations #»a + #»𝐴 .
Pour la masse 𝑚, la relation fondamentale de la dynamique s’écrit :

∑
#»

f (𝑒)
𝑚 = 𝑚( #»a + #»𝐴)

#»𝑃𝑚 + #»𝑅𝑚 = 𝑚( #»a + #»𝐴)

Le vecteur accélération #»a est parallèle au plan incliné. En projetant sur les axes 𝑋 et 𝑌, nous
avons :

{
𝑅𝑚 sin(𝛼) = 𝑚𝑎𝑥 +𝑚𝐴𝑥

−𝑚𝑔 + 𝑅𝑚 cos(𝛼) = 𝑚𝑎𝑦
donc la composante 𝑎𝑥 est positive et la composante 𝑎𝑦 est négative.

{
𝑅𝑚 sin2(𝛼) = 𝑚𝑎𝑥 sin(𝛼) − 𝑚𝐴 sin(𝛼)
𝑅𝑚 cos2(𝛼) = 𝑚𝑔 cos(𝛼) + 𝑚𝑎𝑦 cos(𝛼)

En notant 𝑎 la norme de #»a ,

{
𝑅𝑚 sin2(𝛼) = 𝑚𝑎 cos(𝛼) sin(𝛼) − 𝑚𝐴 sin(𝛼)
𝑅𝑚 cos2(𝛼) = 𝑚𝑔 cos(𝛼) − 𝑚𝑎 sin(𝛼) cos(𝛼)

⇒ 𝑅𝑚 = 𝑚𝑔 cos(𝛼) − 𝑚𝐴 sin(𝛼)

On isole 𝑎 en multipliant par cos(𝛼) la première équation, et par sin(𝛼) la seconde,

{
𝑅𝑚 sin(𝛼) cos(𝛼) = 𝑚𝑎 cos2(𝛼) − 𝑚𝐴 cos(𝛼)
𝑅𝑚 cos(𝛼) sin(𝛼) = 𝑚𝑔 sin(𝛼) − 𝑚𝑎 sin2(𝛼)

⇒ 𝑎 = 𝐴 cos(𝛼) + 𝑔 sin(𝛼)

En combinant (11.3) et (11.3.1),

𝑀𝐴 = 𝑚𝑔 cos(𝛼) sin(𝛼) − 𝑚𝐴 sin2(𝛼)
𝐴 (𝑚 sin2(𝛼) + 𝑀) = 𝑚𝑔 cos(𝛼) sin(𝛼)

𝐴 = cos(𝛼) sin(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔

En combinant (11.3.1) de la présente page et (11.3) de la présente page,

𝑎 = cos2(𝛼) sin(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔 + 𝑔 sin(𝛼)

= ( cos2(𝛼)
sin2(𝛼) + 𝑀/𝑚

+ 1) 𝑔 sin(𝛼)

= 𝑚 cos2(𝛼) + 𝑚 sin2(𝛼) + 𝑀
𝑚 sin2(𝛼) + 𝑀

𝑔 sin(𝛼)

= 𝑚 +𝑀
𝑚 sin2(𝛼) + 𝑀

𝑔 sin(𝛼)

Si l’on suppose la masse du plan incliné 𝑀 très petite devant celle du solide 𝑚, on a :

𝑎 ≈ 𝑚
𝑚 sin2(𝛼)

𝑔 sin(𝛼)

≈
𝑔

sin(𝛼)
> 𝑔
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car 0 < 𝛼 < 𝜋/2. Plus l’angle 𝛼 est petit, et plus l’accélération relative du solide par rapport au
plan incliné est importante. L’accélération verticale 𝑎 sin(𝛼) a pour expression 𝑎 sin(𝛼) ≈ 𝑔, la
masse 𝑚 tombe en chute libre. De même, pour le plan incliné nous avons :

𝐴 ≈ cos(𝛼) sin(𝛼)
sin2(𝛼)

𝑔

≈
𝑔

tan(𝛼) > 𝑔

Plus l’angle 𝛼 est petit, plus le plan incliné est accéléré vers la gauche.

(b) Grâce aux intégrales premières

𝑋

𝑌

𝛼
𝑀

𝑚

𝑟2

𝑟1

𝑂

Fig. 11.5 – Masse glissant sans frottements sur un plan incliné non fixe

À 𝑛 = 2 degrés de liberté correspond 2𝑛 − 1 = 3 intégrales premières. La seule force est la force
de pesanteur qui dérive d’un potentiel, donc l’énergie mécanique se conserve. Soit #»v la vitesse
de la masse 𝑚 exprimée dans le repère 𝑂𝑋𝑌, elle a pour composantes

{
𝑣𝑥 = ̇𝑟1 + ̇𝑟2 cos(𝛼)
𝑣𝑦 = ̇𝑟2 sin(𝛼)

Le carré de sa norme vaut

𝑣2 = 𝑣2𝑥 + 𝑣2𝑦
= ̇𝑟21 + 2 ̇𝑟1 ̇𝑟2 cos(𝛼) + ̇𝑟22 cos2(𝛼) + ̇𝑟22 sin2(𝛼)
= ̇𝑟21 + 2 ̇𝑟1 ̇𝑟2 cos(𝛼) + ̇𝑟22

L’énergie cinétique est la somme des énergies cinétiques de 𝑚 et 𝑀 :

𝒯 = 1
2
𝑀 ̇𝑟21 +

1
2
𝑚𝑣2

= 1
2
𝑀 ̇𝑟21 +

1
2
𝑚( ̇𝑟21 + 2 ̇𝑟1 ̇𝑟2 cos(𝛼) + ̇𝑟22 )

= 1
2
(𝑀 +𝑚) ̇𝑟21 +

1
2
𝑚 ̇𝑟22 +𝑚 ̇𝑟1 ̇𝑟2 cos(𝛼)

En prenant l’origine de l’énergie potentielle au sommet du plan incliné, elle a pour expression :

𝒱 = −𝑚𝑔𝑟2 sin(𝛼)
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L’énergie mécanique est une intégrale première du mouvement :

ℰ
def
= 𝒯 + 𝒱

= 1
2
(𝑀 +𝑚) ̇𝑟21 +

1
2
𝑚 ̇𝑟22 +𝑚 ̇𝑟1 ̇𝑟2 cos(𝛼) − 𝑚𝑔𝑟2 sin(𝛼)

= 𝑐 𝑠𝑡𝑒

En dérivant par rapport au temps,

(𝑀 +𝑚) ̈𝑟1 ̇𝑟1 +𝑚 ̈𝑟2 ̇𝑟2 +𝑚 ̈𝑟1 ̇𝑟2 cos(𝛼) + 𝑚 ̈𝑟2 ̇𝑟1 cos(𝛼) − 𝑚𝑔 ̇𝑟2 sin(𝛼) = 0

Le système n’est pas isolé puisque dans un champ de gravitation. Cependant, ce champ est selon
l’axe des 𝑌, par conséquent la quantité de mouvement se conserve selon l’axe des 𝑋 et nous avons
une deuxième intégrale première du mouvement :

(𝑀 +𝑚) ̇𝑟1 +𝑚 ̇𝑟2 cos(𝛼) = 𝑐 𝑠𝑡𝑒

(𝑀 +𝑚) ̈𝑟1 +𝑚 ̈𝑟2 cos(𝛼) = 0

̈𝑟1 = − 𝑚
𝑀 +𝑚 ̈𝑟2 cos(𝛼)

La conservation de l’énergie mécanique s’écrit maintenant :

−𝑚 ̈𝑟2 ̇𝑟1 cos(𝛼) + 𝑚 ̇𝑟2 ̈𝑟2 −
𝑚2 cos2(𝛼)
𝑀 +𝑚 ̈𝑟2 ̇𝑟2 +𝑚 ̈𝑟2 ̇𝑟1 cos(𝛼) − 𝑚𝑔 ̇𝑟2 sin(𝛼) = 0

𝑚 ̈𝑟2 −
𝑚2 cos2
𝑀 +𝑚 ̈𝑟2 = 𝑚𝑔 sin(𝛼)

̈𝑟2 [1 −
𝑚 cos2(𝛼)
𝑀 +𝑚 ] = 𝑔 sin(𝛼)

̈𝑟2
𝑀 +𝑚−𝑚[1 − sin2(𝛼)]

𝑀 +𝑚 = 𝑔 sin(𝛼)

̈𝑟2 =
𝑀 +𝑚

𝑚 sin2(𝛼) + 𝑀
𝑔 sin(𝛼)

et pour la coordonnée 𝑟1 :

̈𝑟1 = −𝑚 sin(𝛼) cos(𝛼)
𝑚 sin2(𝛼) + 𝑀

𝑔

= − sin(𝛼) cos(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔
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11.3.2 Résolution par le principe des travaux virtuels

𝑋

𝑌

𝛼
𝑀

𝑚

#»r 2

#»r 1
#»𝑃𝑚

𝑂

Fig. 11.6 – Masse glissant sans frottements sur un plan incliné non fixe

Le système possède deux degrés de liberté. Choisissons 𝑟1 et 𝑟2 comme coordonnées généralisées.

Appliquons le principe des travaux virtuels (2.1) page 54 aux deux parties mobiles (𝑁 = 2), la
masse 𝑚 et l’ensemble 𝑀 +𝑚 :

𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

(∑ #»𝐹𝑀+𝑚 − #»ṗ𝑀+𝑚) ⋅ 𝛿
#»r 1 + (∑ #»𝐹𝑚 − #»ṗ𝑚) ⋅ 𝛿

#»r 2 = 0

Les déplacements virtuels 𝛿 #»r 1 et 𝛿 #»r 2 sont indépendants. Le premier terme concerne l’en-
semble 𝑀 +𝑚. Posons 𝛿 #»r 1 = 𝛿𝑟1 ⃗𝚤 :

{ #»𝑃𝑀 + #»𝑅𝑀+𝑚 + #»𝑃𝑚 − [(𝑀 +𝑚) ̈#»r 1 +𝑚 ̈#»r 2]} ⋅ 𝛿
#»r 1 = 0

(𝑀 +𝑚) ̈𝑟1 +𝑚 ̈𝑟2 cos(𝛼) = 0

Le second terme concerne la masse 𝑚 seule.
Posons 𝛿 #»r 2 = 𝛿𝑟2 (cos(𝛼) ⃗𝚤 − sin(𝛼) ⃗𝚥) :

[ #»𝑃𝑚 + #»𝑅𝑚 −𝑚( ̈#»r 1 + ̈#»r 2)] ⋅ 𝛿
#»r 2 = 0

𝑚𝑔 sin(𝛼) − 𝑚 ( ̈𝑟1 cos(𝛼) + ̈𝑟2) = 0

Nous avons le système suivant :

{
(𝑀 +𝑚) ̈𝑟1 +𝑚 ̈𝑟2 cos(𝛼) = 0
̈𝑟1 cos(𝛼) + ̈𝑟2 = 𝑔 sin(𝛼)

⇒ {
(𝑀 +𝑚) ̈𝑟1 +𝑚 ̈𝑟2 cos(𝛼) = 0
𝑚 ̈𝑟1 cos2(𝛼) + 𝑚 ̈𝑟2 cos(𝛼) = 𝑚𝑔 sin(𝛼) cos(𝛼)

{
̈𝑟1 (𝑀 +𝑚 −𝑚 cos2(𝛼)) = −𝑚𝑔 sin(𝛼) cos(𝛼)
̈𝑟2 = 𝑔 sin(𝛼) − ̈𝑟1 cos(𝛼)

⇒
⎧⎪
⎨⎪
⎩

̈𝑟1 =
−𝑚𝑔 sin(𝛼) cos(𝛼)

𝑀 +𝑚 −𝑚(1 − sin2(𝛼))

̈𝑟2 = 𝑔 sin(𝛼) +
𝑚𝑔 sin(𝛼) cos2(𝛼)
𝑀 +𝑚 sin2(𝛼)

⇒
⎧⎪
⎨⎪
⎩

̈𝑟1 = − sin(𝛼) cos(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔

̈𝑟2 =
𝑀 +𝑚

𝑀 +𝑚 sin2(𝛼)
𝑔 sin(𝛼)
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𝑋

𝑌

𝛼
𝑀

𝑚

𝑞2(𝑡)

𝑞1(𝑡)

𝑂

Fig. 11.7 – Masse glissant sans frottements sur un plan incliné non fixe

Le système possède deux degrés de liberté. Le choix des coordonnées généralisées est libre.
Choisissons 𝑞1 et 𝑞2 comme coordonnées généralisées. Pour 𝑞2 nous aurions pu choisir la hauteur
𝑦 de la masse 𝑚. Le lagrangien s’écrit :

ℒ
def
= 𝒯 − 𝒱

= 1
2
(𝑀 +𝑚) ̇𝑞21 +

1
2
𝑚 ̇𝑞22 +𝑚 ̇𝑞1 ̇𝑞2 cos(𝛼) + 𝑚𝑔𝑞2 sin(𝛼)

La coordonnée 𝑞1 est cyclique, elle n’apparait pas dans le lagrangien. Nous avons alors :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞1

) = 0

d
d𝑡 [(𝑀 +𝑚) ̇𝑞1 +𝑚 ̇𝑞2 cos(𝛼)] = 0

(𝑀 +𝑚) ̇𝑞1 +𝑚 ̇𝑞2 cos(𝛼) = 𝑐 𝑠𝑡𝑒

On retrouve l’intégrale première du mouvement correspondant à la conservation de la quantité de
mouvement selon l’axe des 𝑋. Les équations de Lagrange pour chaque coordonnée généralisée
s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞1

) = 𝜕ℒ
𝜕𝑞1

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝑞2

) = 𝜕ℒ
𝜕𝑞2

⇒
⎧

⎨
⎩

d
d𝑡 [(𝑀 +𝑚) ̇𝑞1 +𝑚 ̇𝑞2 cos(𝛼)] = 0

d
d𝑡 (𝑚 ̇𝑞1 cos(𝛼) + 𝑚 ̇𝑞2) = 𝑚𝑔 sin(𝛼)

{
(𝑀 +𝑚) ̈𝑞1 +𝑚 ̈𝑞2 cos(𝛼) = 0
̈𝑞1 cos(𝛼) + ̈𝑞2 = 𝑔 sin(𝛼)

⇒ {
(𝑀 +𝑚) ̈𝑞1 +𝑚 ̈𝑞2 cos(𝛼) = 0
𝑚 ̈𝑞1 cos2(𝛼) + 𝑚 ̈𝑞2 cos(𝛼) = 𝑚𝑔 sin(𝛼) cos(𝛼)

{
̈𝑞1 (𝑀 +𝑚 −𝑚 cos2(𝛼)) = −𝑚𝑔 sin(𝛼) cos(𝛼)
̈𝑞2 = 𝑔 sin(𝛼) − ̈𝑞1 cos(𝛼)

⎧⎪
⎨⎪
⎩

̈𝑞1 =
−𝑚𝑔 sin(𝛼) cos(𝛼)

𝑀 +𝑚 −𝑚(1 − sin2(𝛼))

̈𝑞2 = 𝑔 sin(𝛼) +
𝑚𝑔 sin(𝛼) cos2(𝛼)
𝑀 +𝑚 sin2(𝛼)

⇒
⎧⎪
⎨⎪
⎩

̈𝑞1 = − sin(𝛼) cos(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔

̈𝑞2 =
𝑀 +𝑚

𝑀 +𝑚 sin2(𝛼)
𝑔 sin(𝛼)
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Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées ̇𝑞1 et ̇𝑞2.
Les moments conjugués des variables 𝑞1 et 𝑞2 ont pour expression :

⎧⎪
⎨⎪
⎩

𝑝1
def
= 𝜕ℒ

𝜕 ̇𝑞1

𝑝2
def
= 𝜕ℒ

𝜕 ̇𝑞2

⇒ {
𝑝1 = (𝑀 +𝑚) ̇𝑞1 +𝑚 ̇𝑞2 cos(𝛼)
𝑝2 = 𝑚 ̇𝑞1 cos(𝛼) + 𝑚 ̇𝑞2

Inversons ces relations grâce à la méthode de Cramer :

(𝑝1𝑝2
) = [ 𝑀 +𝑚 𝑚 cos(𝛼)

𝑚 cos(𝛼) 𝑚 ] ( ̇𝑞1
̇𝑞2
)

Notons 𝛥 le déterminant de la matrice,

⎧⎪
⎨⎪
⎩

̇𝑞1 = 1
𝛥
|||
𝑝1 𝑚 cos(𝛼)
𝑝2 𝑚

|||

̇𝑞2 = 1
𝛥
|||
𝑀 +𝑚 𝑝1
𝑚 cos(𝛼) 𝑝2

|||

⇒
⎧⎪
⎨⎪
⎩

̇𝑞1 =
𝑚𝑝1 −𝑚𝑝2 cos(𝛼)

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)

̇𝑞2 =
(𝑀 +𝑚)𝑝2 −𝑚𝑝1 cos(𝛼)
𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)

Le hamiltonien s’écrit :

ℋ
def
= ∑

𝑖
𝑝𝑖 ̇𝑞𝑖 − ℒ

= 𝑝1 ̇𝑞1 + 𝑝2 ̇𝑞2 −
1
2
(𝑀 +𝑚) ̇𝑞21 −

1
2
𝑚 ̇𝑞22 −𝑚 ̇𝑞1 ̇𝑞2 cos(𝛼) − 𝑚𝑔𝑞2 sin(𝛼)

Inutile d’expliciter davantage le hamiltonien en fonction de 𝑝1 et 𝑝2. Les équations de Hamilton
pour la coordonnée 𝑞1 s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝1 = −𝜕ℋ𝜕𝑞1

̇𝑞1 =
𝜕ℋ
𝜕𝑝1

⇒ {
̇𝑝1 = 0

̇𝑞1 =
𝑚𝑝1 −𝑚𝑝2 cos(𝛼)

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)

Les équations de Hamilton pour la coordonnée 𝑞2 s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝2 = −𝜕ℋ𝜕𝑞2

̇𝑞2 =
𝜕ℋ
𝜕𝑝2

⇒ {
̇𝑝2 = 𝑚𝑔 sin(𝛼)

̇𝑞2 =
(𝑀 +𝑚)𝑝2 −𝑚𝑝1 cos(𝛼)
𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)

En intégrant,

{
𝑝1 = 𝑐 𝑠𝑡𝑒1
𝑝2 = 𝑚𝑔 sin(𝛼) 𝑡 + 𝑐 𝑠𝑡𝑒2

⎧⎪
⎨⎪
⎩

̇𝑞1 =
−𝑚2𝑔𝑠𝑖𝑛𝛼 cos(𝛼)

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼) 𝑡 + 𝑐 𝑠𝑡𝑒

̇𝑞2 =
(𝑀 +𝑚)𝑚𝑔𝑠𝑖𝑛𝛼

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)
𝑡 + 𝑐 𝑠𝑡𝑒

⇒
⎧⎪
⎨⎪
⎩

̇𝑞1 = − sin(𝛼) cos(𝛼)
sin2(𝛼) + 𝑀/𝑚

𝑔𝑡 + 𝑐 𝑠𝑡𝑒

̇𝑞2 =
𝑀 +𝑚

𝑚 sin2(𝛼) + 𝑀
𝑔 sin(𝛼) 𝑡 + 𝑐 𝑠𝑡𝑒
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Le hamiltonien s’écrit :

ℋ = 𝑝1 ̇𝑞1 + 𝑝2 ̇𝑞2 −
1
2
(𝑀 +𝑚) ̇𝑞21 −

1
2
𝑚 ̇𝑞22 −𝑚 ̇𝑞1 ̇𝑞2 cos(𝛼) − 𝑚𝑔𝑞2 sin(𝛼)

=
𝑚𝑝21 −𝑚𝑝1𝑝2 cos(𝛼)

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼) +
(𝑀 +𝑚)𝑝22 −𝑚𝑝1𝑝2 cos(𝛼)
𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)

− 1
2
(𝑀 +𝑚) [

𝑚𝑝1 −𝑚𝑝2 cos(𝛼)
𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]

2

− 1
2
𝑚[

(𝑀 +𝑚)𝑝2 −𝑚𝑝1 cos(𝛼)
𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼) ]

2

−
(𝑚2𝑝1 cos(𝛼) − 𝑚2𝑝2 cos2(𝛼)) [(𝑀 +𝑚)𝑝2 −𝑚𝑝1 cos(𝛼)]

[𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]2
−𝑚𝑔𝑞2 sin(𝛼)

ℋ = [𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]−2 {[𝑚𝑝21 + (𝑀 +𝑚)𝑝22 − 2𝑚𝑝1𝑝2 cos(𝛼)]

[𝑚 (𝑀+𝑚)− 𝑚2 cos2(𝛼)]− 1
2
(𝑀+𝑚)𝑚2𝑝21 −

1
2
(𝑀+𝑚)𝑚2𝑝22 cos2(𝛼)

+ (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼) − 1
2
(𝑀 +𝑚)2𝑚𝑝22 −

1
2
𝑚3𝑝21 cos2(𝛼)

+ (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼) − (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼)
+ (𝑀 +𝑚)𝑚2𝑝22 cos2(𝛼) + 𝑚3𝑝21 cos2(𝛼) − 𝑚3𝑝1𝑝2 cos3𝛼} − 𝑚𝑔𝑞2 sin(𝛼)

ℋ = [𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]−2 [(𝑀 +𝑚)𝑚2𝑝21 + (𝑀 +𝑚)2𝑚𝑝22
− 2 (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼) − 𝑚3𝑝21 cos2(𝛼) − (𝑀 +𝑚)𝑚2𝑝22 cos2(𝛼)

+ 2𝑚3𝑝1𝑝2 cos3𝛼 − 1
2
(𝑀 +𝑚)𝑚2𝑝21 +

1
2
(𝑀 +𝑚)𝑚2𝑝22 cos2(𝛼)

+ (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼) − 1
2
(𝑀 +𝑚)2𝑚𝑝22 +

1
2
𝑚3𝑝21 cos2(𝛼)

+ −𝑚3𝑝1𝑝2 cos3𝛼] − 𝑚𝑔𝑞2 sin(𝛼)

ℋ = [𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]−2 [1
2
(𝑀 +𝑚)𝑚2𝑝21 +

1
2
(𝑀 +𝑚)2𝑚𝑝22

− (𝑀 +𝑚)𝑚2𝑝1𝑝2 cos(𝛼) − 1
2
𝑚3𝑝21 cos2(𝛼) − 1

2
(𝑀 +𝑚)𝑚2𝑝22 cos2(𝛼)

+𝑚3𝑝1𝑝2 cos3𝛼] − 𝑚𝑔𝑞2 sin(𝛼)

ℋ =
𝑚𝑝21

2 [𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]
+

(𝑀 +𝑚)𝑝22
2 [𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼)]

−
𝑚𝑝1𝑝2 cos(𝛼)

𝑚 (𝑀 +𝑚) − 𝑚2 cos2(𝛼) − 𝑚𝑔𝑞2 sin(𝛼)

=
𝑚𝑝21 + (𝑀 +𝑚)𝑝22 − 2𝑚𝑝1𝑝2 cos(𝛼)
2 [𝑚𝑀 +𝑚2 −𝑚2 (1 − sin2(𝛼))]

− 𝑚𝑔𝑞2 sin(𝛼)

=
𝑚𝑝21 + (𝑀 +𝑚)𝑝22 − 2𝑚𝑝1𝑝2 cos(𝛼)

2𝑚 (𝑚 sin2(𝛼) + 𝑀)
− 𝑚𝑔𝑞2 sin(𝛼)
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Avec (7.3a) page 190 le hamiltonien a pour expression :

ℋ =
𝑚𝜕𝑞1𝒮

2 + (𝑀 +𝑚) 𝜕𝑞2𝒮
2 − 2𝑚𝜕𝑞1𝒮 𝜕𝑞2𝒮 cos(𝛼)

2𝑚 (𝑚 sin2(𝛼) + 𝑀)
− 𝑚𝑔𝑞2 sin(𝛼)

L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

𝜕𝒮 (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝑡)
𝜕𝑡 +ℋ(𝑞1, 𝑞2,

𝜕𝒮
𝜕𝑞1

, 𝜕𝒮𝜕𝑞2
, 𝑡) = 0

𝜕𝒮
𝜕𝑡 +

𝑚𝜕𝑞1𝒮
2 + (𝑀 +𝑚) 𝜕𝑞2𝒮

2 − 2𝑚𝜕𝑞1𝒮 𝜕𝑞2𝒮 cos(𝛼)
2𝑚 (𝑚 sin2(𝛼) + 𝑀)

− 𝑚𝑔𝑞2 sin(𝛼) = 0

La variable temps étant cyclique, on pose :

𝒮 (𝑞1, 𝑞2, ℰ, 𝛼2, 𝑡) = −ℰ𝑡 + 𝒮0 (𝑞1, 𝑞2, ℰ, 𝛼2)

et l’équation de Hamilton-Jacobi devient :

𝑚𝜕𝑞1𝒮
2
0 + (𝑀 +𝑚) 𝜕𝑞2𝒮

2
0 − 2𝑚 cos(𝛼) 𝜕𝑞1𝒮0 𝜕𝑞2𝒮0

2𝑚 (𝑚 sin2(𝛼) + 𝑀)
− 𝑚𝑔𝑞2 sin(𝛼) = ℰ

La variable 𝑞1 étant cyclique, 𝑝1 = 𝛼2, et l’on pose :

𝒮0 (𝑞1, 𝑞2, ℰ, 𝛼2) = 𝒮1 (𝑞2, ℰ, 𝛼2) + 𝛼2𝑞1

et l’équation de Hamilton-Jacobi devient :

𝑚𝛼22 + (𝑀 +𝑚) 𝜕𝑞2𝒮
2
1 − 2𝑚𝛼2 cos(𝛼) 𝜕𝑞2𝒮1

2𝑚 (𝑚 sin2(𝛼) + 𝑀)
− 𝑚𝑔𝑞2 sin(𝛼) = ℰ

soit,

(𝑀+𝑚)𝜕𝑞2𝒮
2
1 − 2𝑚𝛼2 cos(𝛼) 𝜕𝑞2𝒮1 − 2𝑚2𝑔𝑞2 sin(𝛼) (𝑚 sin2(𝛼) + 𝑀) + 𝑚𝛼22

= 2𝑚ℰ (𝑚 sin2(𝛼) + 𝑀)

Polynôme du second degré en 𝜕𝑞2𝒮1, de la forme,

𝑎𝜕𝑞2𝒮
2
1 (𝑞2) + 𝑏𝜕𝑞2𝒮1 (𝑞2) + 𝑐 = 0

avec,

𝑎 = 𝑀 +𝑚
𝑏 = −2𝑚𝛼2 cos(𝛼)
𝑏′ = −𝑚𝛼2 cos(𝛼)
𝑐 = d 𝑞2 + 𝑒
𝑑 = −2𝑚2𝑔 sin(𝛼) (𝑚 sin2(𝛼) + 𝑀)
𝑒 = 𝑚𝛼22 − 2𝑚ℰ (𝑚 sin2(𝛼) + 𝑀)

Le discriminant réduit s’écrit,
𝛥′ = 𝑏′2 − 𝑎𝑐
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Les racines sont :

𝜕𝑞2𝒮1 =
−𝑏′
𝑎 ±

√𝑏′2 − 𝑎𝑐
𝑎

= −𝑏′
𝑎 ±

√𝑏′2 − 𝑎d 𝑞2 − 𝑎𝑒
𝑎

On intègre :

𝒮1 (𝑞2) =
−𝑏′
𝑎 𝑞2 ∓

2 (𝑏′2 − 𝑎d 𝑞2 − 𝑎𝑒)3/2

3𝑎2𝑑
Nous avons donc,

𝒮1 =
𝑚𝛼2 cos(𝛼)
𝑀 +𝑚 𝑞2 ±

1
3 (𝑀 +𝑚)2𝑚2𝑔 sin(𝛼) (𝑚 sin2(𝛼) + 𝑀)

× {𝑚2𝛼22 cos2(𝛼) + 2 (𝑀 +𝑚)𝑚2𝑔 sin(𝛼) (𝑚 sin2(𝛼) + 𝑀) 𝑞2
− (𝑀 +𝑚)𝑚𝛼22 + 2𝑚 (𝑀 +𝑚)ℰ (𝑚 sin2(𝛼) + 𝑀)}

3/2

= 𝑚𝛼2 cos(𝛼)
𝑀 +𝑚 𝑞2 ±

1
3 (𝑀 +𝑚)2𝑚2𝑔 sin(𝛼) (𝑚 sin2(𝛼) + 𝑀)

× {[2 (𝑀 +𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22]𝑚 (𝑚 sin2(𝛼) + 𝑀)}
3/2

= ±
√𝑚 sin2(𝛼) + 𝑀

3 (𝑀 +𝑚)2√𝑚𝑔 sin(𝛼)
[2 (𝑀 +𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22]

3/2 + 𝑚𝛼2 cos(𝛼)
𝑀 +𝑚 𝑞2

L’action de Hamilton s’écrit :

𝒮 = 𝒮1 (𝑞2, ℰ, 𝛼2) − ℰ𝑡 + 𝛼2𝑞1

= ±
√𝑚 sin2(𝛼) + 𝑀

3 (𝑀 +𝑚)2√𝑚𝑔 sin(𝛼)
[2 (𝑀 +𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22]

3/2+ 𝑚𝛼2 cos(𝛼)
𝑀 +𝑚 𝑞2

− ℰ𝑡 + 𝛼2𝑞1

(7.3b) page 190 donne les équations du mouvement :

𝛽1 =
𝜕𝒮
𝜕ℰ

= ±
√(𝑚 sin2(𝛼) + 𝑀) [2 (𝑀+𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22]

(𝑀 +𝑚)√𝑚𝑔 sin(𝛼)
− 𝑡

Isolons 𝑞2,

2 (𝑀 +𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22 =
𝑚(𝛽1 + 𝑡)2 [(𝑀 +𝑚) 𝑔 sin(𝛼)]2

𝑚 sin2(𝛼) + 𝑀
(11.4)

𝑚𝑔𝑞2 sin(𝛼) = 1
2 (𝑀 +𝑚) {

𝑚 (𝛽1 + 𝑡)2 [(𝑀 +𝑚) 𝑔 sin(𝛼)]2 + 𝛼22
𝑚 sin2(𝛼) + 𝑀

} − ℰ

𝑞2 =
𝛼22 − 2 (𝑀 +𝑚)ℰ

2 (𝑀 +𝑚)𝑚𝑔 sin(𝛼) +
(𝛽21 + 𝛽1𝑡 + 𝑡2) (𝑀 +𝑚) 𝑔 sin(𝛼)

2 (𝑚 sin2(𝛼) + 𝑀)
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(7.3b) page 190 donne :

𝛽2 =
𝜕𝒮
𝜕𝛼2

= ∓
𝛼2√𝑚 sin2(𝛼) + 𝑀

(𝑀 +𝑚)2√𝑚𝑔 sin(𝛼)
√2 (𝑀 +𝑚) (ℰ + 𝑚𝑔𝑞2 sin(𝛼)) − 𝛼22 +

𝑚 cos(𝛼)
𝑀 +𝑚 𝑞2 + 𝑞1

Avec (11.4) :

𝛽2 = ∓
𝛼2√𝑚 sin2(𝛼) + 𝑀

(𝑀 +𝑚)2√𝑚𝑔 sin(𝛼)
×
√𝑚(𝛽1 + 𝑡) (𝑀 +𝑚) 𝑔 sin(𝛼)

√𝑚 sin2(𝛼) + 𝑀
+ 𝑚 cos(𝛼)

𝑀 +𝑚 𝑞2 + 𝑞1

= ∓
𝛼2 (𝛽1 + 𝑡)
𝑀 +𝑚 + 𝑚 cos(𝛼)

𝑀 +𝑚 𝑞2 + 𝑞1

𝑞1 = 𝛽2 ±
𝛼2 (𝛽1 + 𝑡)
𝑀 +𝑚 − 𝑚 cos(𝛼)

𝑀 +𝑚 𝑞2

11.4 Pendule simple, plan

Soit une masse 𝑚 attachée à une tige de longueur 𝜌 constante, dans un champ de gravitation −𝑔 ⃗𝚥,
oscillant dans le plan (𝑥, 𝑦). Quelle est l’équation du mouvement de la masse 𝑚?

11.4.1 Résolution par la mécanique de Newton

a) Grâce à la relation fondamentale de la dynamique

𝑚

𝜌𝜃

#»𝑃

#»𝐹

Fig. 11.8 – Pendule simple, plan

On note #»𝐹 la force exercée par la tige sur la masse 𝑚 et #»𝑃 son poids. (2.4) page 57 donne
l’expression de l’accélération en coordonnées polaires dans la base polaire orthonormée
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( #»e 𝜌,
#»e 𝜃) :

𝑚 #»a = ∑
#»

f (𝑒)

= #»𝑃 + #»𝐹
𝑚𝜌 ̈𝜃 #»e 𝜃 −𝑚𝜌 ̇𝜃2 #»e 𝜌 = −𝑚𝑔 sin(𝜃) #»e 𝜃 +𝑚𝑔 cos(𝜃) #»e 𝜌 − 𝐹 #»e 𝜌

qui donne le système,

{
𝑚𝜌 ̇𝜃2 +𝑚𝑔 cos(𝜃) = 𝐹
𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

La seconde relation est l’équation différentielle de l’élongation 𝜃(𝑡) du pendule simple.
Dans l’approximation des petites oscillations, on utilise le développement limité de la
fonction sinus à l’ordre un. L’équation devient :

𝜌 ̈𝜃 + 𝑔𝜃 = 0

La solution de cette équation différentielle linéaire du 2nd ordre par rapport au temps est de
forme sinusoïdale, fonction sinus ou cosinus au choix, la phase à l’origine des temps 𝜑0
permettant de passer d’une fonction circulaire à l’autre :

𝜃(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑0)
̇𝜃(𝑡) = 𝐴𝜔 cos(𝜔𝑡 + 𝜑0)
̈𝜃(𝑡) = −𝐴𝜔2 sin(𝜔𝑡 + 𝜑0)

où 𝐴 est l’amplitude (élongation maximale) et 𝜑 = 𝜔𝑡 + 𝜑0 est la phase du mouvement
oscillatoire. En remplaçant dans l’équation différentielle, on trouve l’expression de la
pulsation propre,

−𝜌𝐴𝜔2 sin(𝜔𝑡 + 𝜑0) + 𝑔𝐴 sin(𝜔𝑡 + 𝜑0) = 0

𝜔 = ±√
𝑔
𝜌

pour laquelle on ne conserve que la valeur positive. L’amplitude 𝐴 et la phase à l’origine
des temps 𝜑0 sont les deux constantes de ce système à un degré de liberté :

{
𝜃 = 𝜃 (𝑡, 𝐴, 𝜑0)
̇𝜃 = ̇𝜃 (𝑡, 𝐴, 𝜑0)

En posant 𝜑0
def
= −𝜔𝑡0,

{
𝜃 = 𝐴 sin(𝜔𝑡 − 𝜔𝑡0)
̇𝜃 = 𝐴𝜔 cos(𝜔𝑡 − 𝜔𝑡0)

⇒ {
𝜃 = 𝐴 sin[𝜔(𝑡 − 𝑡0)]
̇𝜃 = 𝐴𝜔 cos[𝜔(𝑡 − 𝑡0)]

puis 𝜏 = 𝑡 − 𝑡0,

{
𝜃 = 𝐴 sin(𝜔𝜏)
̇𝜃 = 𝐴𝜔 cos(𝜔𝜏)

nous supprimons la constante 𝜑0. Il ne reste comme constante que l’amplitude𝐴. À l’instant
initial 𝜏 = 0,

{
𝜃0 = 𝐴
̇𝜃0 = 0
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et l’on a :
𝜃(𝜏) = 𝜃0 sin(𝜔𝜏)

L’intégrale première 𝐴 n’est autre que la racine carrée de l’énergie mécanique à un facteur
multiplicatif près. En effet, en prenant l’origine de l’énergie potentielle au point le plus bas
de la trajectoire, l’énergie mécanique s’écrit :

ℰ = 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 [1 − cos(𝜃)]

Pour de petites oscillations, on utilise le développement limité de la fonction cosinus
cos(𝜃) ≈ 1 − 1

2
𝜃2 :

ℰ ≈ 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 (1

2
𝜃2)

Relation valable en particulier à l’instant initial :

ℰ ≈ 1
2
𝑚𝑔𝜌𝐴2

Pour de petites oscillations, 𝜃(𝑡) est donc une fonction sinusoïdale du temps :

𝜃(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑0)

avec 𝜔 = √𝑔/𝜌. Nous pouvons exprimer les constantes 𝐴 et 𝜑0 en fonction des conditions
initiales sur la position 𝜃0 et sur la vitesse ̇𝜃0 :

{
𝜃2 = 𝐴2 sin2(𝜔𝑡 + 𝜑0)
̇𝜃2 = 𝐴2𝜔2 cos2(𝜔𝑡 + 𝜑0)

donne pour l’amplitude 𝐴 :

𝐴 =
√√

√
(

̇𝜃
𝜔)

2

+ 𝜃2

où l’on ne conserve que le signe positif car l’amplitude est positive. À l’instant initial :

𝐴 =
√√

√
(
̇𝜃0
𝜔 )

2

+ 𝜃20

Pour la phase à l’origine des temps 𝜑0, nous avons :

{
𝜃0 = 𝐴 sin(𝜑0)
̇𝜃0 = 𝐴𝜔 cos(𝜑0)

soit :
𝜑0 = arctan (

𝜔𝜃0
̇𝜃0
)

La solution s’écrit :

𝜃(𝑡) =
√√

√
(
̇𝜃0
𝜔 )

2

+ 𝜃20 sin [𝜔𝑡 + arctan (
𝜔𝜃0
̇𝜃0
)]
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b) Grâce au théorème du moment cinétique Prenons le moment cinétique du pendule par
rapport au point d’attache 𝑜 du pendule :

d #»L 𝑜
d𝑡 = ∑ #»Γ (𝑒)

𝑜

d
d𝑡 (

#»ρ × 𝑚 #»v ) = #»ρ × #»𝑃 + #»ρ × #»𝐹

d
d𝑡 [𝜌

#»e 𝜌 ×𝑚( ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜃 #»e 𝜃)] = 𝜌 #»e 𝜌 × (−𝑚𝑔 sin(𝜃) #»e 𝜃 +𝑚𝑔 cos(𝜃) #»e 𝜌 − 𝐹 #»e 𝜌)

d
d𝑡 (𝑚𝜌

2 ̇𝜃 #»e 𝑘) = −𝑚𝑔𝜌 sin(𝜃) #»e 𝑘

𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

c) Grâce aux intégrales premières

À 𝑛 = 1 degré de liberté correspond 2𝑛 − 1 = 1 intégrale première. La force de pesanteur
est la seule force extérieure, elle dérive d’une énergie potentielle. L’énergie mécanique est
donc une intégrale première qui fournira une équation pour la seule variable 𝜃. Prenons
l’origine de l’énergie potentielle de pesanteur au point de suspension du pendule. La
conservation de l’énergie mécanique s’écrit :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚( ̇𝜌2 + 𝜌2 ̇𝜃2) − 𝑚𝑔ℎ

= 1
2
𝑚𝜌2 ̇𝜃2 −𝑚𝑔𝜌 cos(𝜃)

= −𝑚𝑔𝜌 cos(𝜃𝑚𝑎𝑥)
= 𝑐 𝑠𝑡𝑒

Nous reportons l’approximation des petites oscillations à la fin des calculs :
1
2
𝑚𝜌2 ̇𝜃2 −𝑚𝑔𝜌 cos(𝜃) = −𝑚𝑔𝜌 cos(𝜃𝑚𝑎𝑥)

1
2
𝜌 ̇𝜃2 = 𝑔[cos(𝜃) − cos(𝜃𝑚𝑎𝑥)]

d𝜃
d𝑡 = √

2𝑔
𝜌 √cos(𝜃) − cos(𝜃𝑚𝑎𝑥)

𝑡 − 𝑡0 =√
𝜌
2𝑔

ˆ 𝜃

𝜃0

d𝜃
√cos(𝜃) − cos(𝜃𝑚𝑎𝑥)

On utilise la formule de trigonométrie de l’angle double cos(𝑥) = 1 − 2 sin2(𝑥/2) :

𝑡 − 𝑡0 =√
𝜌
2𝑔

ˆ 𝜃

𝜃0

d𝜃

√2 sin2(𝜃𝑚𝑎𝑥/2) − 2 sin2(𝜃/2)

= 1
2√

𝜌
𝑔

ˆ 𝜃

𝜃0

d𝜃

√sin2(𝜃𝑚𝑎𝑥/2) − sin2(𝜃/2)

Une période est le quadruple du temps mis pour aller de 𝜃 = 0 à 𝜃𝑚𝑎𝑥 :

𝑇 = 2
√

𝜌
𝑔

ˆ 𝜃𝑚𝑎𝑥

0

d𝛼

√sin2(𝜃𝑚𝑎𝑥/2) − sin2(𝜃/2)
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On pose 𝛼 = 𝜃/2, donc 𝛼𝑚𝑎𝑥 = 𝜃𝑚𝑎𝑥/2 et d𝜃 = 2d𝛼 :

𝑇 = 4
√

𝜌
𝑔

ˆ 𝛼𝑚𝑎𝑥

0

d𝛼

√sin2(𝛼𝑚𝑎𝑥) − sin2(𝛼)

= 4
sin(𝛼𝑚𝑎𝑥)√

𝜌
𝑔

ˆ 𝛼𝑚𝑎𝑥

0

d𝛼

√1 − [ sin(𝛼)
sin(𝛼𝑚𝑎𝑥)

]
2

On pose

sin(𝜉) = sin(𝛼)
sin(𝛼𝑚𝑎𝑥)

Pour 𝛼 = 0 nous avons 𝜉 = 0, et pour 𝛼 = 𝛼𝑚𝑎𝑥 nous avons 𝜉 = 𝜋/2. Dérivons le
changement de variable pour trouver l’expression du nouvel élément différentiel :

d sin(𝜉)
d𝜉

=
d sin(𝜉)
d𝛼

d𝛼
d𝜉

cos(𝜉) = 1
sin(𝛼𝑚𝑎𝑥)

d sin(𝛼)
d𝛼

d𝛼
d𝜉

d𝛼
sin(𝛼𝑚𝑎𝑥)

=
cos(𝜉)
cos(𝛼) d𝜉

=
√

1 − sin2(𝜉)
1 − sin2(𝛼)

d𝜉

Or

sin(𝛼) = sin(𝛼𝑚𝑎𝑥) sin(𝜉)
sin2(𝛼) = sin2(𝛼𝑚𝑎𝑥) sin2(𝜉)

si bien que
d𝛼

sin(𝛼𝑚𝑎𝑥)
=
√

1 − sin2(𝜉)
1 − sin2(𝛼𝑚𝑎𝑥) sin2(𝜉)

d𝜉

𝑇 =
√

𝜌
𝑔

ˆ 𝜋/2

0

d𝜉

√1 − sin2(𝜉) √
1 − sin2(𝜉)

1 − sin2(𝛼𝑚𝑎𝑥) sin2(𝜉)

=
√

𝜌
𝑔

ˆ 𝜋/2

0

d𝜉

√1 − sin2(𝜃𝑚𝑎𝑥/2) sin2(𝜉)

L’intégrale

𝐾(𝑘) =
ˆ 𝜋/2

0

d𝜉

√1 − 𝑘2 sin2(𝜉)

où 𝑘 est un paramètre, est une intégrale elliptique complète de première espèce sous sa
forme trigonométrique. Pour de petites oscillations 𝜃𝑚𝑎𝑥 ≪ 1, le développement de la
fonction 𝐾 donne :

𝑇 ≈ 2𝜋
√

𝜌
𝑔 (1 +

1
16 𝜃

2
𝑚𝑎𝑥 +

9
1024 𝜃

4
𝑚𝑎𝑥 +…)
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11.4.2 Résolution par le principe des travaux virtuels

Appliquons le principe des travaux virtuels (2.1) page 54 à la seule partie mobile (𝑁 = 1) :
𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 + #»𝐹 − #»ṗ ) ⋅ 𝛿 #»r = 0

Choisissons un déplacement virtuel pour lequel la force de liaison ne travaille pas :

𝛿 #»r = 𝜌𝛿𝜃 #»e 𝜃

(2.4) page 57 donne l’expression de l’accélération en coordonnées polaires dans la base polaire
orthonormée ( #»e 𝜌,

#»e 𝜃). Avec 𝜌 constant, nous avons :
#»ṗ = 𝑚 #»a
= −𝑚𝜌 ̇𝜃2 #»e 𝜌 +𝑚𝜌 ̈𝜃 #»e 𝜃

donc,

(−𝑚𝑔 sin(𝜃) #»e 𝜃 +𝑚𝑔 cos(𝜃) #»e 𝜌 − 𝐹 #»e 𝜌 +𝑚𝜌 ̇𝜃2 #»e 𝜌 −𝑚𝜌 ̈𝜃 #»e 𝜃) ⋅ 𝜌𝛿𝜃
#»e 𝜃 = 0

(−𝑚𝑔 sin(𝜃) − 𝑚𝜌 ̈𝜃) 𝜌𝛿𝜃 = 0
𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

Pour trouver l’expression de la tension 𝐹 dans la tige, on choisit un déplacement virtuel pour
lequel la force de liaison travaille :

𝛿 #»r = 𝛿𝜌 #»e 𝜌
donc,

(−𝐹 + 𝑚𝑔 cos(𝜃) + 𝑚𝜌 ̇𝜃2) 𝛿𝜌 = 0
𝑚𝜌 ̇𝜃2 +𝑚𝑔 cos(𝜃) = 𝐹

11.4.3 Résolution par la mécanique de Lagrange

Le système possède deux dimensions 𝑥 et 𝑦, et une contrainte holonome :

√𝑥2 + 𝑦2 = 𝜌
= 𝑐 𝑠𝑡𝑒

donc un seul degré de liberté. Prenons 𝜃 comme coordonnée généralisée, le lagrangien s’écrit :

ℒ
def
= 𝒯 − 𝒱

= 1
2
𝑚𝜌2 ̇𝜃2 − [−𝑚𝑔𝜌 cos(𝜃)]

= 1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 cos(𝜃)

= 1
2
𝜌 ̇𝜃2 +𝑚𝑔 cos(𝜃)
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L’équation de Lagrange s’écrit :

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) = 𝜕ℒ

𝜕𝜃
d
d𝑡 (𝜌

̇𝜃) = −𝑔 sin(𝜃)

𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

Remarque 11.4.1
Si l’on ne connait pas l’expression du potentiel 𝒱, on calcule la force généralisée à partir de la déf. 3.1.1 page 71. Par exemple, la force
généralisée de pesanteur a pour expression :

𝑄𝑗 =
𝑚
∑
𝑖=1

#»𝑃 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

= −𝑚𝑔𝚥⃗ ⋅ 𝜕 (𝜌𝜃)𝜕𝜃
#»e 𝜃

= −𝑚𝑔𝜌 sin(𝜃)

puis l’on se sert de (3.10) page 72 :

∀𝑗 = 1,… ,𝑛 d
d𝑡 (

𝜕𝒯
𝜕 ̇𝑞𝑗

) − 𝜕𝒯
𝜕𝑞𝑗

= 𝑄𝑗

d
d𝑡 (𝑚𝜌2 ̇𝜃) = −𝑚𝑔𝜌 sin(𝜃)

𝜌 ̈𝜃 + 𝑔 sin(𝜃) = 0

11.4.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour la vitesse généralisée ̇𝜃. Le moment
conjugué de la coordonnée généralisée 𝜃 a pour expression :

𝑝
def
= 𝜕ℒ

𝜕 ̇𝜃
= 𝑚𝜌2 ̇𝜃 ⇒ ̇𝜃 =

𝑝
𝑚𝜌2

Le hamiltonien s’écrit :

ℋ
def
= 𝑝 ̇𝜃 − ℒ

= 𝑚𝜌2 ̇𝜃2 − [1
2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 cos(𝜃)]

= 1
2
𝑚𝜌2 ̇𝜃2 −𝑚𝑔𝜌 cos(𝜃)

=
𝑝2

2𝑚𝜌2 −𝑚𝑔𝜌 cos(𝜃) (11.5)

= ℰ

Les équations de Hamilton s’écrivent :

⎧

⎨
⎩

̇𝑝 = −𝜕ℋ𝜕𝜃
̇𝜃 = 𝜕ℋ

𝜕𝑝

⇒ {
̇𝑝 = −𝑚𝑔𝜌 sin(𝜃)
̇𝜃 =

𝑝
𝑚𝜌2
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11.4.5 Résolution par la mécanique de Hamilton-Jacobi

Avec (7.3a) page 190 le hamiltonien s’écrit :

ℋ =
𝑝2

2𝑚𝜌2 −𝑚𝑔𝜌 cos(𝜃)

= 1
2𝑚𝜌2 (

𝜕𝒮
𝜕𝜃)

2
−𝑚𝑔𝜌 cos(𝜃)

Pour de petites oscillations cos(𝜃) ≈ 1 − 1
2
𝜃2, nous avons :

ℋ = 1
2𝑚𝜌2 (

𝜕𝒮
𝜕𝜃)

2
−𝑚𝑔𝜌 (1 − 1

2
𝜃2)

= 1
2𝑚𝜌2 (

𝜕𝒮
𝜕𝜃)

2
+
𝑚𝑔𝜌
2 𝜃2

à une constante près. L’équation de Hamilton-Jacobi (7.3c) page 190 s’écrit :

𝜕𝒮 (𝜃, 𝛼, 𝑡)
𝜕𝑡 +ℋ(𝜃, 𝜕𝒮𝜕𝜃 , 𝑡) = 0

𝜕𝒮
𝜕𝑡 +

1
2𝑚𝜌2 (

𝜕𝒮
𝜕𝜃)

2
+
𝑚𝑔𝜌
2 𝜃2 = 0

La variable temps étant cyclique, on pose :

𝒮 (𝜃, ℰ, 𝑡) = −ℰ𝑡 + 𝒮0 (𝜃, ℰ)

et l’équation de Hamilton-Jacobi devient :

1
2𝑚𝜌2 (

𝜕𝒮0
𝜕𝜃 )

2
+
𝑚𝑔𝜌
2 𝜃2 = ℰ

(
𝜕𝒮0
𝜕𝜃 )

2
= 2𝑚𝜌2 (ℰ −

𝑚𝑔𝜌
2 𝜃2)

𝜕𝒮0
𝜕𝜃 = ±𝜌√2𝑚ℰ −𝑚2𝑔𝜌𝜃2

𝒮0 = ±𝜌
ˆ
√2𝑚ℰ −𝑚2𝑔𝜌𝜃2 d𝜃

et l’action de Hamilton a pour expression :

𝒮 = −ℰ𝑡 ± 𝜌
ˆ
√2𝑚ℰ −𝑚2𝑔𝜌𝜃2 d𝜃

(7.3b) page 190 donne l’équation du mouvement 𝑡(𝜃) :

𝛽 = 𝜕𝒮
𝜕ℰ

= 𝜕
𝜕ℰ (−ℰ𝑡 ± 𝜌

ˆ
√2𝑚ℰ −𝑚2𝑔𝜌𝜃2 d𝜃)
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En se servant de la résolution de (7.13) page 197, avec 𝑘 = 𝑚𝑔𝜌,

𝛽 = −𝑡 ±
√

𝜌
𝑔 arcsin (√

𝑚𝑔𝜌
2ℰ 𝜃)

soit, en isolant la coordonnée généralisée 𝜃 :

arcsin (√
𝑚𝑔𝜌
2ℰ 𝜃) = ±√

𝑔
𝜌 (𝑡 + 𝛽)

𝜃 = ±
√

2ℰ
𝑚𝑔𝜌 sin (√

𝑔
𝜌 (𝑡 + 𝛽))

Résolution en utilisant l’ex. 6.7.3 page 183

ℋ =
𝑝2

2𝑚𝜌2 −𝑚𝑔𝜌 cos(𝜃)

Pour de petites oscillations cos(𝜃) ≈ 1 − 1
2
𝜃2 :

ℋ =
𝑝2

2𝑚𝜌2 +
𝑚𝑔𝜌
2 𝜃2

On pose 𝑀 = 𝑚𝜌2 et 𝜔 = √𝑔/𝜌 :

ℋ =
𝑝2

2𝑀 − 1
2
𝑀𝜔2𝜃2

= 1
2𝑀 (𝑝2 −𝑀2𝜔2𝜃2)

De la forme de (6.11) page 185. La solution est donc :

⎧
⎨
⎩

𝑝(𝑡) = √2𝑀ℰ cos(𝜔𝑡 + 𝛽)

𝑞(𝑡) = 1
𝜔√

2ℰ
𝑀 sin(𝜔𝑡 + 𝛽)

⇒
⎧⎪
⎨⎪
⎩

𝑝(𝑡) = 𝜌√2𝑚ℰ cos(𝜔𝑡 + 𝛽)

𝑞(𝑡) =
√

2ℰ
𝑚𝑔𝜌 sin(𝜔𝑡 + 𝛽)

11.5 Pendule simple à ressort, plan

Soit un pendule simple, à ressort, de longueur 𝜌(𝑡) variable. La masse 𝑚 est supposée osciller
dans le plan. Quelle est l’équation de son mouvement?
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𝑚

𝜌

#»𝑃

#»𝐹

𝜃

Fig. 11.9 – Pendule plan à ressort

11.5.1 Résolution par la mécanique de Newton

a) Grâce à la relation fondamentale de la dynamique

(2.4) page 57 donne l’expression de l’accélération en coordonnées polaires dans la base
polaire orthonormée ( #»e 𝜌,

#»e 𝜃). En utilisant la relation fondamentale de la dynamique,

𝑚 #»a = ∑
#»

f (𝑒)

= #»𝑃 + #»𝐹
𝑚 ( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 +𝑚(𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃 = −𝑚𝑔 sin(𝜃) #»e 𝜃 +𝑚𝑔 cos(𝜃) #»e 𝜌 + 𝐹 #»e 𝜌

qui donne le système,

{
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = 𝐹

𝑚
𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

Si le modèle de la force de rappel du ressort est de la forme,
#»𝐹 = −𝑘 (𝜌 − 𝜌0)

#»e 𝜌

alors,

{
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = − 𝑘

𝑚 (𝜌 − 𝜌0)

𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

b) Grâce aux intégrales premières

À 𝑛 = 2 degrés de liberté correspond 2𝑛 − 1 = 3 intégrales premières. Il nous faut deux
équations, c.-à-d. deux intégrales premières, pour deux inconnues 𝜌 et 𝜃. Si le modèle de
la force de rappel du ressort dérive d’une énergie potentielle alors l’énergie mécanique se
conserve. Supposons que le modèle de la force de rappel soit de la forme

#»𝐹 = −𝑘 (𝜌 − 𝜌0)
#»e 𝜌

qui dérive de l’énergie potentielle

𝒱 = 1
2
𝑘 (𝜌 − 𝜌0)

2
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L’énergie est alors une intégrale première :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚( ̇𝜌2 + 𝜌2 ̇𝜃2) − 𝑚𝑔𝜌 cos(𝜃) + 1

2
𝑘 (𝜌 − 𝜌0)

2

En dérivant par rapport au temps :

𝑚 ̇𝜌 ̈𝜌 + 𝑚𝜌 ̇𝜌 ̇𝜃2 +𝑚𝜌2 ̇𝜃 ̈𝜃 − 𝑚𝑔 ̇𝜌 cos(𝜃) + 𝑚𝑔𝜌 ̇𝜃 sin(𝜃) + 𝑘 ̇𝜌 (𝜌 − 𝜌0) = 0 (11.6)

Le vecteur moment cinétique est aussi une intégrale première. Calculons-le par rapport au
point d’attache 𝑜 du pendule :

d #»L 𝑜
d𝑡 = ∑ #»Γ (𝑒)

𝑜

d
d𝑡 (

#»ρ × 𝑚 #»v ) = #»ρ × #»𝑃 + #»ρ × #»𝐹

d
d𝑡 [𝜌

#»e 𝜌 ×𝑚( ̇𝜌 #»e 𝜌 + 𝜌 ̇𝜃 #»e 𝜃)] = 𝜌 #»e 𝜌 × (−𝑚𝑔 sin(𝜃) #»e 𝜃 +𝑚𝑔 cos(𝜃) #»e 𝜌 − 𝐹 #»e 𝜌)

d
d𝑡 (𝑚𝜌

2 ̇𝜃 #»e 𝑘) = −𝑚𝑔𝜌 sin(𝜃) #»e 𝑘

𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

On multiplie cette équation par 𝑚𝜌 ̇𝜃 et l’on soustrait de (11.6) :

{
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = − 𝑘

𝑚 (𝜌 − 𝜌0)

𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

11.5.2 Résolution par le principe des travaux virtuels

Appliquons le principe des travaux virtuels (2.1) page 54 à la seule partie mobile (𝑁 = 1) :
𝑁
∑
𝑖=1

( #»𝐹 (𝑎)
𝑖 − #»ṗ 𝑖) ⋅ 𝛿

#»r 𝑖 = 0

( #»𝑃 + #»𝐹 − #»ṗ ) ⋅ 𝛿 #»r = 0

(2.4) page 57 donne l’expression de l’accélération en coordonnées polaires dans la base polaire
orthonormée ( #»e 𝜌,

#»e 𝜃). Il y a deux coordonnées généralisées, donc deux déplacements virtuels.

{
[𝑚𝑔 cos(𝜃) #»e 𝜌 −𝑚𝑔 sin(𝜃) #»e 𝜃 + 𝐹 #»e 𝜌 −𝑚( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 −𝑚(𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃] ⋅ 𝛿𝜌

#»e 𝜌 = 0
[𝑚𝑔 cos(𝜃) #»e 𝜌 −𝑚𝑔 sin(𝜃) #»e 𝜃 + 𝐹 #»e 𝜌 −𝑚( ̈𝜌 − 𝜌 ̇𝜃2) #»e 𝜌 −𝑚(𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃) #»e 𝜃] ⋅ 𝜌𝛿𝜃

#»e 𝜃 = 0

{
𝑚𝑔 cos(𝜃) + 𝐹 − 𝑚 ̈𝜌 + 𝑚𝜌 ̇𝜃2 = 0
−𝑚𝑔 sin(𝜃) − 𝑚𝜌 ̈𝜃 − 2𝑚 ̇𝜌 ̇𝜃 = 0

⇒ {
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = 𝐹

𝑚
𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

Si le modèle de force est de la forme #»𝐹 = −𝑘 (𝜌 − 𝜌0)
#»e 𝜌, alors,

̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = − 𝑘
𝑚 (𝜌 − 𝜌0)
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11.5.3 Résolution par la mécanique de Lagrange

Le système possède deux degrés de liberté, donc deux coordonnées généralisées, 𝜌 et 𝜃. Le
lagrangien s’écrit :

ℒ
def
= 𝒯 − 𝒱

= 1
2
𝑚 ̇𝜌2 + 1

2
𝑚𝜌2 ̇𝜃2 − [−𝑚𝑔𝜌 cos(𝜃) + 1

2
𝑘 (𝜌 − 𝜌0)

2]

= 1
2
𝑚 ̇𝜌2 + 1

2
𝑚𝜌2 ̇𝜃2 +𝑚𝑔𝜌 cos(𝜃) − 1

2
𝑘 (𝜌 − 𝜌0)

2

Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜌 ) −

𝜕ℒ
𝜕𝜌 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0
⇒

⎧

⎨
⎩

d
d𝑡 (𝑚 ̇𝜌) − 𝑚𝜌 ̇𝜃2 −𝑚𝑔 cos(𝜃) + 𝑘 (𝜌 − 𝜌0) = 0

d
d𝑡 (𝑚𝜌

2 ̇𝜃) + 𝑚𝑔𝜌 sin(𝜃) = 0

{
̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) + 𝑘

𝑚 (𝜌 − 𝜌0) = 0

𝑚𝜌2 ̈𝜃 + 2𝑚 ̇𝜌𝜌 ̇𝜃 + 𝑚𝑔𝜌 sin(𝜃) = 0
⇒ {

̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = − 𝑘
𝑚 (𝜌 − 𝜌0)

𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0

Si le modèle de la force de rappel du ressort ne dérive pas d’un potentiel, on utilise la force
généralisée #»Q dont les composantes sont données par la déf. 3.1.1 page 71 :

𝑄𝑗
def
=

𝑚
∑
𝑖=1

#»𝐹 𝑖 ⋅
𝜕 #»r 𝑖
𝜕𝑞𝑗

𝑄𝜌 = 𝐹 #»e 𝜌 ⋅
𝜕𝜌 #»e 𝜌
𝜕𝜌

= 𝐹
𝑄𝜃 = 0

Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜌 ) −

𝜕ℒ
𝜕𝜌 = 𝐹

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0

⎧

⎨
⎩

d
d𝑡 (𝑚 ̇𝜌) − 𝑚𝜌 ̇𝜃2 −𝑚𝑔 cos(𝜃) = 𝐹

d
d𝑡 (𝑚𝜌

2 ̇𝜃) + 𝑚𝑔𝜌 sin(𝜃) = 0
⇒ {

̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = 𝐹
𝑚

𝜌 ̈𝜃 + 2 ̇𝜌 ̇𝜃 + 𝑔 sin(𝜃) = 0
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11.5.4 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées ̇𝜌 et ̇𝜃. Les
moments conjugués des variables 𝜌 et 𝜃 ont pour expression :

⎧⎪
⎨⎪
⎩

𝑝𝜌
def
= 𝜕ℒ

𝜕 ̇𝜌

𝑝𝜃
def
= 𝜕ℒ

𝜕 ̇𝜃

⇒ {
𝑝𝜌 = 𝑚 ̇𝜌
𝑝𝜃 = 𝑚𝜌2 ̇𝜃

⇒
⎧
⎨
⎩

̇𝜌 =
𝑝𝜌
𝑚

̇𝜃 =
𝑝𝜃
𝑚𝜌2

Le hamiltonien s’écrit :

ℋ
def
= ∑

𝑗
𝑝𝑗 ̇𝑞𝑗 − ℒ

= 𝑚 ̇𝜌2 +𝑚𝜌2 ̇𝜃2 − 1
2
𝑚 ̇𝜌2 − 1

2
𝑚𝜌2 ̇𝜃2 −𝑚𝑔𝜌 cos(𝜃) + 1

2
𝑘 (𝜌 − 𝜌0)

2

= 1
2
𝑚 ̇𝜌2 + 1

2
𝑚𝜌2 ̇𝜃2 −𝑚𝑔𝜌 cos(𝜃) + 1

2
𝑘 (𝜌 − 𝜌0)

2

=
𝑝2𝜌
2𝑚 +

𝑝2𝜃
2𝑚𝜌2 −𝑚𝑔𝜌 cos(𝜃) + 1

2
𝑘 (𝜌 − 𝜌0)

2

= ℰ

D’après (4.8) page 133 le hamiltonien n’étant pas une fonction explicite du temps, il se conserve.
Les équations de Hamilton pour la variable 𝜌 s’écrivent :

⎧⎪
⎨⎪
⎩

̇𝑝𝜌 = −𝜕ℋ𝜕𝜌

̇𝜌 = 𝜕ℋ
𝜕𝑝𝜌

⇒
⎧⎪
⎨⎪
⎩

̇𝑝𝜌 =
𝑝2𝜃
𝑚𝜌3 +𝑚𝑔 cos(𝜃) − 𝑘 (𝜌 − 𝜌0)

̇𝜌 =
𝑝𝜌
𝑚

{
̇𝑝𝜌 = 𝑚𝜌 ̇𝜃2 +𝑚𝑔 cos(𝜃) − 𝑘 (𝜌 − 𝜌0)
̇𝑝𝜌 = 𝑚 ̈𝜌

Nous vérifions qu’elles redonnent bien l’équation :

̈𝜌 − 𝜌 ̇𝜃2 − 𝑔 cos(𝜃) = − 𝑘
𝑚 (𝜌 − 𝜌0)

Les équations de Hamilton pour la variable 𝜃 s’écrivent :

⎧

⎨
⎩

̇𝑝𝜃 = −𝜕ℋ𝜕𝜃
̇𝜃 = 𝜕ℋ

𝜕𝑝𝜃

⇒ {
̇𝑝𝜃 = −𝑚𝑔𝜌 sin(𝜃)
̇𝜃 =

𝑝𝜃
𝑚𝜌2

⇒ {
̇𝑝𝜃 = −𝑚𝑔𝜌 sin(𝜃)
̇𝑝𝜃 = 𝑚𝜌2 ̈𝜃 + 2𝑚 ̇𝜃𝜌 ̇𝜌

Nous vérifions qu’elles redonnent bien l’équation :

𝜌 ̈𝜃 + 2 ̇𝜃 ̇𝜌 + 𝑔 sin(𝜃) = 0
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11.6 Pendule sphérique

Soit un pendule de masse 𝑚 et de longueur 𝑟 pouvant osciller dans toutes les directions. Quelle
est l’équation du mouvement de la masse 𝑚?

⃗𝚤
⃗𝚥

#»

k

𝑚

#»r𝜃

𝜙

#»𝑃

Fig. 11.10 – Pendule sphérique

Dans la base orthonormée ( ⃗𝚤, ⃗𝚥,
#»

k ), en coordonnées rectangulaires (𝑥, 𝑦, 𝑧), le vecteur position a
pour expression :

#»r (𝑥, 𝑦, 𝑧) = 𝑥 ⃗𝚤 + 𝑦 ⃗𝚥 + 𝑧
#»

k
Le changement de coordonnées sphériques à rectangulaires est le suivant :

{
𝑥 = 𝑟 sin(𝜃) cos(𝜙)
𝑦 = 𝑟 sin(𝜃) sin(𝜙)
𝑧 = −𝑟 cos(𝜃)

Nous employons ici deux méthodes pour déterminer l’expression du carré de la vitesse.
1. En restant dans la base ( ⃗𝚤, ⃗𝚥,

#»

k ) et en passant aux coordonnées sphériques (𝑟, 𝜃, 𝜙), le
vecteur position s’écrit

#»r (𝑟, 𝜃, 𝜙) = 𝑟 sin(𝜃) cos(𝜙) ⃗𝚤 + 𝑟 sin(𝜃) sin(𝜙) ⃗𝚥 − 𝑟 cos(𝜃)
#»

k

En dérivant et en prenant ̇𝑟 = 0, le vecteur vitesse s’écrit :
#»v = [𝑟 ̇𝜃 cos(𝜃) cos(𝜙) − 𝑟 ̇𝜙 sin(𝜃) sin(𝜙)] ⃗𝚤

+ [𝑟 ̇𝜃 cos(𝜃) sin(𝜙) + 𝑟 ̇𝜙 sin(𝜃) cos(𝜙)] ⃗𝚥 + 𝑟 ̇𝜃 sin(𝜃)
#»

k
𝑣2 = 𝑟2 ̇𝜃2 cos2(𝜃) cos2 𝜙 + 𝑟2 ̇𝜙2 sin2(𝜃) sin2 𝜙 − 2𝑟2 ̇𝜃 ̇𝜙 cos(𝜃) cos(𝜙) sin(𝜃) sin(𝜙)

+ 𝑟2 ̇𝜃2 cos2(𝜃) sin2 𝜙 + 𝑟2 ̇𝜙2 sin2(𝜃) cos2 𝜙 + 2𝑟2 ̇𝜃 ̇𝜙 cos(𝜃) sin(𝜙) sin(𝜃) cos(𝜙)
+ 𝑟2 ̇𝜃2 sin2(𝜃)

= 𝑟2 ̇𝜃2 + 𝑟2 ̇𝜙2 sin2(𝜃)
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2. En passant dans la base sphérique unitaire ( #»e 𝑟,
#»e 𝜃,

#»e 𝜙) :
#»r (𝑟, 𝜃, 𝜙) = 𝑟 #»e 𝑟

d #»r (𝑟, 𝜃, 𝜙) = (𝜕
#»r
𝜕𝑟 )𝜃,𝜙

+ (𝜕
#»r
𝜕𝜃 )𝑟,𝜃

+ (𝜕
#»r
𝜕𝜙 )𝑟,𝜙

= [sin(𝜃) cos(𝜙) ⃗𝚤 + sin(𝜃) sin(𝜙) ⃗𝚥 − cos(𝜃)
#»

k ] 𝑑𝑟

+ 𝑟 [cos(𝜃) cos(𝜙) ⃗𝚤 + cos(𝜃) sin(𝜙) ⃗𝚥 + cos(𝜃)
#»

k ] d𝜃
− 𝑟 [sin(𝜃) sin(𝜙) ⃗𝚤 − sin(𝜃) cos(𝜙) ⃗𝚥] d𝜙

= 𝑑𝑟 #»e 𝑟 + 𝑟d𝜃 #»e 𝜃 + 𝑟 sin(𝜃)d𝜙 #»e 𝜙

Nous en déduisons l’expression des vecteurs unitaires de la base sphérique dans la base
orthonormée,

⎧

⎨
⎩

#»e 𝑟 = sin(𝜃) cos(𝜙) ⃗𝚤 + sin(𝜃) sin(𝜙) ⃗𝚥 − cos(𝜃)
#»

k
#»e 𝜃 = cos(𝜃) cos(𝜙) ⃗𝚤 + cos(𝜃) sin(𝜙) ⃗𝚥 + cos(𝜃)

#»

k
#»e 𝜙 = − sin(𝜙) ⃗𝚤 + cos(𝜙) ⃗𝚥

et l’expression du vecteur vitesse en coordonnées sphériques dans la base unitaire sphé-
rique :

#»v = ̇𝑟 #»e 𝑟 + 𝑟 ̇𝜃 #»e 𝜃 + 𝑟 sin(𝜃) ̇𝜙 #»e 𝜙
= 𝑟 ̇𝜃 #»e 𝜃 + 𝑟 sin(𝜃) ̇𝜙 #»e 𝜙

𝑣2 = 𝑟2 ̇𝜃2 + 𝑟2 sin2(𝜃) ̇𝜙2

11.6.1 Résolution par la mécanique de Newton, grâce aux intégrales premières

À 𝑛 = 2 degrés de liberté correspond 2𝑛−1 = 3 intégrales premières. Il nous faut deux équations,
c.-à-d. deux intégrales premières, pour deux inconnues 𝜃 et 𝜙. Le vecteur moment cinétique est
une intégrale première. Calculons-le par rapport au point d’attache 𝑜 du pendule :

#»L 𝑜 =
#»r × 𝑚 #»v

= 𝑟𝒆𝑟 ×𝑚𝑟( ̇𝜃𝒆𝜃 + sin(𝜃) ̇𝜙𝒆𝜙)
= 𝑚𝑟2( ̇𝜃𝒆𝜙 − sin(𝜃) ̇𝜙𝒆𝜃)

Sa norme est constante
𝐿𝑜 = 𝑚𝑟2 ( ̇𝜃2 + sin2(𝜃) ̇𝜙2)

ansi que sa projection sur n’importe quel axe fixe, en particulier sur l’axe 𝑧 :
#»L 𝑜 ⋅

#»

k = 𝑚𝑟2( ̇𝜃𝒆𝜙 ⋅
#»

k − sin(𝜃) ̇𝜙𝒆𝜃 ⋅
#»

k )
𝐿𝑧0 = 𝑚𝑟2 sin2(𝜃) ̇𝜙 (11.7)

Les forces dérivant toutes d’un potentiel, l’énergie mécanique se conserve :

ℰ
def
= 𝒯 + 𝒱

= 1
2
𝑚𝑟2 [ ̇𝜃2 + sin2(𝜃) ̇𝜙2] − 𝑚𝑔𝑟 cos(𝜃)

= 𝑚𝑟2 ̇𝜃2
2 +

𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

− 𝑚𝑔𝑟 cos(𝜃) (11.8)
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On isole ̇𝜃 :

̇𝜃 =
√

2
𝑚𝑟2 [ℰ −

𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

+ 𝑚𝑔𝑟 cos(𝜃)]

𝑡 =
ˆ

d𝜃

√
2

𝑚𝑟2
[ℰ − 𝐿2𝑧0

2𝑚𝑟2 sin2(𝜃)
+𝑚𝑔𝑟 cos(𝜃)]

C’est une intégrale elliptique de première espèce. Avec (11.7), nous avons l’expression de l’autre
variable :

d𝜙
d𝜃 =

d𝜙
d𝑡

d𝑡
d𝜃

=
𝐿𝑧0

𝑚𝑟2 sin2(𝜃)
1

√
2

𝑚𝑟2
[ℰ − 𝐿2𝑧0

2𝑚𝑟2 sin2(𝜃)
+𝑚𝑔𝑟 cos(𝜃)]

𝜙 =
𝐿𝑧0
𝑟√2𝑚

ˆ
d𝜃

sin2(𝜃)√ℰ − 𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

+𝑚𝑔𝑟 cos(𝜃)

C’est une intégrale elliptique de troisième espèce. (11.8) donne

𝑚𝑟2 ̇𝜃2
2 = ℰ −

𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

+ 𝑚𝑔𝑟 cos(𝜃)

par conséquent :

ℰ −
𝐿2𝑧0

2𝑚𝑟2 sin2(𝜃)
+ 𝑚𝑔𝑟 cos(𝜃) ⩾ 0

𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

− 𝑚𝑔𝑟 cos(𝜃) ⩾ ℰ

Les limites du mouvement sont atteintes lorsque l’énergie cinétique est nulle, c.-à-d. lorsque

𝐿2𝑧0
2𝑚𝑟2 sin2(𝜃)

− 𝑚𝑔𝑟 cos(𝜃) = ℰ

C’est une équation du troisième degré en cos(𝜃), ayant deux racines cos(𝜃)1 et cos(𝜃)2 entre −1
et +1. Ces racines déterminent la position de deux cercles parallèles 𝜃1 = 𝑐 𝑠𝑡𝑒1 et 𝜃2 = 𝑐 𝑠𝑡𝑒2 , sur
la sphère, entre lesquels est comprise toute la trajectoire du pendule.

11.6.2 Résolution par la mécanique de Lagrange

L’énergie cinétique a pour expression,

𝒯 = 1
2
𝑚𝑟2 ( ̇𝜃2 + ̇𝜙2 sin2(𝜃))

et l’énergie potentielle :
𝒱 = −𝑚𝑔𝑟 cos(𝜃)
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Le lagrangien a pour expression :

ℒ = 1
2
𝑚𝑟2 ( ̇𝜃2 + ̇𝜙2 sin2(𝜃)) + 𝑚𝑔𝑟 cos(𝜃)

La coordonnée généralisée 𝜙 étant cyclique, son moment conjugué 𝑝𝜙 est une intégrale première
du mouvement. Les équations de Lagrange s’écrivent :

⎧⎪
⎨⎪
⎩

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜃
) − 𝜕ℒ

𝜕𝜃 = 0

d
d𝑡 (

𝜕ℒ
𝜕 ̇𝜙

) − 𝜕ℒ
𝜕𝜙 = 0

⇒
⎧

⎨
⎩

d
d𝑡 (𝑚𝑟

2 ̇𝜃) − 𝑚𝑟2 ̇𝜙2 sin(𝜃) cos(𝜃) + 𝑚𝑔𝑟 sin(𝜃) = 0

d
d𝑡 (𝑚𝑟

2 ̇𝜙 sin2(𝜃)) = 0

⇒ {
𝑚𝑟2 ̈𝜃 − 𝑚𝑟2 ̇𝜙2 sin(𝜃) cos(𝜃) + 𝑚𝑔𝑟 sin(𝜃) = 0
̇𝜙 sin2(𝜃) = 𝑐 𝑠𝑡𝑒

Nous obtenons l’équation différentielle du 2nd ordre par rapport au temps suivante :

̈𝜃 = ̇𝜙2 sin(𝜃) cos(𝜃) −
𝑔 sin(𝜃)

𝑟

= ̇𝜙2 sin4 𝜃 cos(𝜃)
sin3(𝜃)

−
𝑔 sin(𝜃)

𝑟

= 𝑐 𝑠𝑡𝑒 × cos(𝜃)
sin3(𝜃)

−
𝑔 sin(𝜃)

𝑟 (11.9)

11.6.3 Résolution par la mécanique de Hamilton

Effectuons la transformation de Legendre du lagrangien pour les vitesses généralisées ̇𝜃 et ̇𝜙 :

⎧⎪
⎨⎪
⎩

𝑝𝜃 =
𝜕ℒ
𝜕 ̇𝜃

𝑝𝜙 =
𝜕ℒ
𝜕 ̇𝜙

⇒ {
𝑝𝜃 = 𝑚𝑟2 ̇𝜃
𝑝𝜙 = 𝑚𝑟2 ̇𝜙 sin2(𝜃)

⇒
⎧

⎨
⎩

̇𝜃 =
𝑝𝜃
𝑚𝑟2

̇𝜙 =
𝑝𝜙

𝑚𝑟2 sin2(𝜃)

Le hamiltonien s’écrit :

ℋ
def
= ∑

𝑗
𝑝𝑗 ̇𝑞𝑗 − ℒ

= 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − [1
2
𝑚𝑟2 ( ̇𝜃2 + ̇𝜙2 sin2(𝜃)) + 𝑚𝑔𝑟 cos(𝜃)]

=
𝑝2𝜃
𝑚𝑟2 +

𝑝2𝜙
𝑚𝑟2 sin2(𝜃)

− 1
2
𝑝2𝜃
𝑚𝑟2 −

1
2

𝑝2𝜙
𝑚𝑟2 sin2(𝜃)

− 𝑚𝑔𝑟 cos(𝜃)

=
𝑝2𝜃
2𝑚𝑟2 +

𝑝2𝜙
2𝑚𝑟2 sin2(𝜃)

− 𝑚𝑔𝑟 cos(𝜃)

Le hamiltonien n’est pas une fonction explicite du temps, d’après (4.8) page 133 il se conserve.
On retrouve le fait que la coordonnée généralisée 𝜙 est cyclique et par conséquent que 𝑝𝜙 est une
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intégrale première du mouvement. Deux équations de Hamilton redonnent la transformation de
Legendre :

⎧⎪
⎨⎪
⎩

̇𝜃 = 𝜕ℋ
𝜕𝑝𝜃

̇𝜙 = 𝜕ℋ
𝜕𝑝𝜙

⇒
⎧

⎨
⎩

̇𝜃 =
𝑝𝜃
𝑚𝑟2

̇𝜙 =
𝑝𝜙

𝑚𝑟2 sin2(𝜃)

Les deux autres donnent les équations de la dynamique :

⎧

⎨
⎩

̇𝑝𝜃 = −𝜕ℋ𝜕𝜃

̇𝑝𝜙 = −𝜕ℋ𝜕𝜙

⇒
⎧
⎨
⎩

̇𝑝𝜃 =
𝑝2𝜙 cos(𝜃)

𝑚𝑟2 sin3(𝜃)
− 𝑚𝑔𝑟 sin(𝜃)

̇𝑝𝜙 = 0

Nous en déduisons l’équation différentielle du mouvement :

̈𝜃 =
̇𝑝𝜃

𝑚𝑟2

=
𝑝2𝜙 cos(𝜃)

𝑚2𝑟4 sin3(𝜃)
−
𝑔 sin(𝜃)

𝑟

= 𝑐 𝑠𝑡𝑒 × cos(𝜃)
sin3(𝜃)

−
𝑔 sin(𝜃)

𝑟

Pour établir cette équation nous avons dû dériver ̇𝜃. Nous retrouvons alors l’équation différentielle
de la méthode de Lagrange, (11.9) page précédente.
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